151
|
López-Castro R, García-Peña T, Mielgo-Rubio X, Riudavets M, Teixidó C, Vilariño N, Couñago F, Mezquita L. Targeting molecular alterations in non-small-cell lung cancer: what's next? Per Med 2022; 19:341-359. [PMID: 35748237 DOI: 10.2217/pme-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
In recent years, major advances have been achieved in our understanding of non-small-cell lung cancer (NSCLC) with oncogenic driver alterations and in the specific treatment of these with tyrosine kinase inhibitors. Currently, state-of-the-art management of patients with NSCLC (particularly adenocarcinoma or non-adenocarcinoma but with mild tobacco exposure) consists of the determination of EGFR, ALK, ROS1 and BRAF status, as they have US FDA and EMA approved targeted therapies. The increase in molecular knowledge of NSCLC and the development of drugs against other targets has settled new therapeutic indications. In this review we have incorporated the development around MET, KRAS and NTRK in the diagnosis of NSCLC given the therapeutic potential that they represent, as well as the drugs approved for these indications.
Collapse
Affiliation(s)
- Rafael López-Castro
- Medical Oncology Department, Hospital Clínico Universitario de Valladolid, Valladolid, 47003, Spain
| | - Tania García-Peña
- Medical Oncology Department, Hospital Clínico Universitario de Valladolid, Valladolid, 47003, Spain
| | - Xabier Mielgo-Rubio
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, 28922, Spain
| | - Mariona Riudavets
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, 94805, France
| | - Cristina Teixidó
- Thoracic Tumors Unit, Pathology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Noelia Vilariño
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, 28003, Spain
- Medicine Department, School of Biomedical Sciences, Universidad Europea, Villaviciosa de Odón, Madrid, 28670, Spain
| | - Laura Mezquita
- Thoracic Tumors Unit, Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
152
|
Scheffler M, Michels S, Nogova L. [Targeted treatment of non-small cell lung cancer]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:700-708. [PMID: 35925271 DOI: 10.1007/s00108-022-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Non-small cell lung cancer (NSCLC) has made a remarkable development in recent decades with respect to its perception. In the late 1990s it was the "problem child" as the main cause of cancer with increasing tendencies, especially in women and with a pronounced stigmatization. It is now the role model as a biologically rational targeted treatment based on molecular dependencies of the tumor with a vast improvement of the traditionally poor survival times. Molecular tumor boards have long followed the NSCLC example in the assessment of targeted treatment approaches for other tumor entities. This review article gives an overview of the current possibilities for targeted treatment of NSCLC, which nowadays are applicable for nearly one third of all patients with NSCLC.
Collapse
Affiliation(s)
- Matthias Scheffler
- Klinik I für Innere Medizin, Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Lung Cancer Group Cologne, Universitätsklinikum Köln (AöR), Kerpener Str. 62, 50937, Köln, Deutschland.
| | - Sebastian Michels
- Klinik I für Innere Medizin, Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Lung Cancer Group Cologne, Universitätsklinikum Köln (AöR), Kerpener Str. 62, 50937, Köln, Deutschland
| | - Lucia Nogova
- Klinik I für Innere Medizin, Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Lung Cancer Group Cologne, Universitätsklinikum Köln (AöR), Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
153
|
Xiong W, Hietala SF, Nyberg J, Papasouliotis O, Johne A, Berghoff K, Goteti K, Dong J, Girard P, Venkatakrishnan K, Strotmann R. Exposure-response analyses for the MET inhibitor tepotinib including patients in the pivotal VISION trial: support for dosage recommendations. Cancer Chemother Pharmacol 2022; 90:53-69. [PMID: 35771259 PMCID: PMC9300558 DOI: 10.1007/s00280-022-04441-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Purpose Tepotinib is a highly selective MET inhibitor approved for treatment of non-small cell lung cancer (NSCLC) harboring METex14 skipping alterations. Analyses presented herein evaluated the relationship between tepotinib exposure, and efficacy and safety outcomes. Methods Exposure–efficacy analyses included data from an ongoing phase 2 study (VISION) investigating 500 mg/day tepotinib in NSCLC harboring METex14 skipping alterations. Efficacy endpoints included objective response, duration of response, and progression-free survival. Exposure–safety analyses included data from VISION, plus four completed studies in advanced solid tumors/hepatocellular carcinoma (30–1400 mg). Safety endpoints included edema, serum albumin, creatinine, amylase, lipase, alanine aminotransferase, aspartate aminotransferase, and QT interval corrected using Fridericia’s method (QTcF). Results Tepotinib exhibited flat exposure–efficacy relationships for all endpoints within the exposure range observed with 500 mg/day. Tepotinib also exhibited flat exposure–safety relationships for all endpoints within the exposure range observed with 30–1400 mg doses. Edema is the most frequently reported adverse event and the most frequent cause of tepotinib dose reductions and interruptions; however, the effect plateaued at low exposures. Concentration-QTc analyses using data from 30 to 1400 mg tepotinib resulted in the upper bounds of the 90% confidence interval being less than 10 ms for the mean exposures at the therapeutic (500 mg) and supratherapeutic (1000 mg) doses. Conclusions These analyses provide important quantitative pharmacologic support for benefit/risk assessment of the 500 mg/day dosage of tepotinib as being appropriate for the treatment of NSCLC harboring METex14 skipping alterations. Registration Numbers NCT01014936, NCT01832506, NCT01988493, NCT02115373, NCT02864992. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-022-04441-3.
Collapse
Affiliation(s)
- Wenyuan Xiong
- Merck Institute of Pharmacometrics, Lausanne, Switzerland
| | | | | | | | | | | | - Kosalaram Goteti
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA
| | - Jennifer Dong
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA
| | - Pascal Girard
- Merck Institute of Pharmacometrics, Lausanne, Switzerland
| | | | | |
Collapse
|
154
|
The Therapeutic Potential of the Restoration of the p53 Protein Family Members in the EGFR-Mutated Lung Cancer. Int J Mol Sci 2022; 23:ijms23137213. [PMID: 35806218 PMCID: PMC9267050 DOI: 10.3390/ijms23137213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of precision medicine and targeted therapies, lung cancer remains the top cause of cancer-related mortality worldwide. The patients diagnosed with metastatic disease have a five-year survival rate lower than 6%. In metastatic disease, EGFR is the most common driver of mutation, with the most common co-driver hitting TP53. EGFR-positive patients are offered the frontline treatment with tyrosine kinase inhibitors, yet the development of resistance and the lack of alternative therapies make this group of patients only fit for clinical trial participation. Since mutant p53 is the most common co-driver in the metastatic setting, therapies reactivating the p53 pathway might serve as a promising alternative therapeutic approach in patients who have developed a resistance to tyrosine kinase inhibitors. This review focuses on the molecular background of EGFR-mutated lung cancer and discusses novel therapeutic options converging on the reactivation of p53 tumor suppressor pathways.
Collapse
|
155
|
Brain Metastases Management in Oncogene-Addicted Non-Small Cell Lung Cancer in the Targeted Therapies Era. Int J Mol Sci 2022; 23:ijms23126477. [PMID: 35742920 PMCID: PMC9223862 DOI: 10.3390/ijms23126477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The therapeutic landscape in patients with advanced non-small-cell lung cancer harboring oncogenic biomarkers has radically changed with the development of targeted therapies. Although lung cancers are known to frequently metastasize to the brain, oncogene-driven non-small-cell lung cancer patients show a higher incidence of both brain metastases at baseline and a further risk of central nervous system progression/relapse. Recently, a new generation of targeted agents, highly active in the central nervous system, has improved the control of intracranial disease. The intracranial activity of these drugs poses a crucial issue in determining the optimal management sequence in oncogene-addicted non-small-cell lung cancer patients with brain metastases, with a potential change of paradigm from primary brain irradiation to central nervous system penetrating targeted inhibitors.
Collapse
|
156
|
Skribek M, Rounis K, Tsakonas G, Ekman S. Complications following novel therapies for non-small cell lung cancer. J Intern Med 2022; 291:732-754. [PMID: 35032058 DOI: 10.1111/joim.13445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of tyrosine kinase inhibitors and immune checkpoint inhibitors has paved a new era for the management of non-small cell lung cancer, which has for many years lacked major clinical breakthroughs. Historically, 5-year overall survival remained below 5% in individuals with metastatic disease. These novel treatments have led to significant prolongation of survival in the locally advanced and metastatic setting, exceeding 25% in selected populations. However, they present new challenges to clinicians due to their inherently different spectrum of toxicity unique to each specific drug's pharmacodynamic profile. Internists commonly come across these side effects in their daily clinical practice. Their optimal recognition and management are of utmost importance, because it is associated with significant improvements in patient survival outcomes and their quality of life. The aim of this review is to summarize the complications following these novel treatments for non-small cell lung cancer.
Collapse
Affiliation(s)
- Marcus Skribek
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Rounis
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Georgios Tsakonas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
157
|
Farooq H, Bien H, Chang V, Becker D, Park YH, Bates SE. Loss of function STK11 alterations and poor outcomes in non-small-cell lung cancer: Literature and case series of US Veterans. Semin Oncol 2022; 49:319-325. [PMID: 35831213 DOI: 10.1053/j.seminoncol.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Emerging evidence suggests that STK11 alterations, frequently found in non-small-cell lung cancers, may be prognostic and/or predictive of response to therapy, particularly immunotherapy. STK11 affects multiple important cellular pathways, and mutations lead to tumor growth by creating an immunosuppressive and altered metabolic environment through changes in AMPK, STING, and vascular endothelial growth factor pathways. We illustrate the questions surrounding STK11 genomic alteration in NSCLC with a case series comprising six United States Veterans from a single institution. We discuss the history of STK11, review studies on its clinical impact, and describe putative mechanisms of how loss of STK11 might engender resistance to immunotherapy or other therapies. While the exact impact of STK11 alteration in non-small-cell lung cancer remain to be fully elucidated, future research and ongoing clinical trials will help us better understand its role in cancer development and devise more effective treatment strategies.
Collapse
Affiliation(s)
- Hafsa Farooq
- Section of Hematology and Oncology, VA Northport Medical Center, Northport, NY; Division of Hematology and Oncology, Renaissance School of Medicine, Stony Brook, NY.
| | - Harold Bien
- Section of Hematology and Oncology, VA Northport Medical Center, Northport, NY; Division of Hematology and Oncology, Renaissance School of Medicine, Stony Brook, NY
| | - Victor Chang
- Section of Hematology Oncology, VA New Jersey Health Care System, East Orange, NJ; Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Daniel Becker
- Section of Hematology Oncology, New York Harbor Health Care System, New York, NY; Division of Hematology and Medical Oncology, NYU Langone School of Medicine, New York, NY
| | - Yeun-Hee Park
- Section of Hematology Oncology, James J Peters VAMC, Bronx, NY; Division of Hematology/Oncology, Columbia Vagelos College of Physicians and Surgeons, New York, NY
| | - Susan E Bates
- Section of Hematology Oncology, James J Peters VAMC, Bronx, NY; Division of Hematology/Oncology, Columbia Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
158
|
MET Expression Level in Lung Adenocarcinoma Loosely Correlates with MET Copy Number Gain/Amplification and Is a Poor Predictor of Patient Outcome. Cancers (Basel) 2022; 14:cancers14102433. [PMID: 35626038 PMCID: PMC9139916 DOI: 10.3390/cancers14102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MET is a proto-oncogene and plays an important role on tumor cell survival, proliferation, metastasis, and drug resistance. Patient with MET amplification has shown an inferior outcome comparing to patients without MET amplification. Fluorescence in situ hybridization (FISH) is often used to detect MET amplification, and immunohistochemistry (IHC) is often used to assess MET expression level. Though some institutions provide both tests, IHC is more readily available in most pathology laboratories and is cheaper than FISH. This study evaluated the correlation of MET expression level with MET copy number gain/amplification, and the MET overexpression with patient’s outcome. By studying 446 patients with lung adenocarcinoma, we found that the concordance of MET expression and MET copy number gain/amplification was low; high-level of MET expression was associated with inferior outcome, but it was not an independent poor prognostic factor. These findings indicate that IHC for MET expression can’t substitute FISH analysis for MET amplification. Abstract MET amplification has been associated with shorter survival in cancer patients, however, the potential correlation of MET overexpression with either MET amplification or patient outcome is controversial. The aim of this study was to address these questions by correlating MET expression level with MET copy number and patient outcome in a cohort of 446 patients who had a lung adenocarcinoma: 88 with MET amplification, 118 with polysomy 7, and 240 with negative results by fluorescence in situ hybridization. MET expression assessed by immunohistochemistry was semi-quantified by expression level: absent (0+), weak (1+), moderate (2+) and strong (3+); or by H-score: 0–99, 100–199, and ≥200. MET expression level or H-score was positively but weakly correlated with MET copy number or MET/CEP7 ratio. Strong expression of MET (3+ or H-score ≥ 200) was associated with a shorter overall survival, but it was not an independent hazard for survival by multivariant analysis. We conclude that MET expression is loosely correlated with MET copy number gain/amplification. Strong expression of MET does not independently predict patient outcome.
Collapse
|
159
|
Brazel D, Zhang S, Nagasaka M. Spotlight on Tepotinib and Capmatinib for Non-Small Cell Lung Cancer with MET Exon 14 Skipping Mutation. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:33-45. [PMID: 35592355 PMCID: PMC9113513 DOI: 10.2147/lctt.s360574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Mesenchymal-epithelial transition (MET) receptor tyrosine kinase is overexpressed, amplified, or mutated in 1-20% of NSCLC. MET dysregulation is associated with a poor prognosis. Recently, development of targeted therapies against MET exon 14 mutations has demonstrated efficacy and tolerability in early trials. Here we focus on tepotinib and capmatinib in regards to molecular characteristics, early preclinical and clinical data, and the emerging role in future studies and clinical practice.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Shannon Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
160
|
Davies KD, Ritterhouse LL, Snow AN, Sidiropoulos N. MET Exon 14 Skipping Mutations: Essential Considerations for Current Management of Non-Small Cell Lung Cancer. J Mol Diagn 2022; 24:841-843. [PMID: 35550186 DOI: 10.1016/j.jmoldx.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kurtis D Davies
- Emerging and Evolving Biomarker Content Committee, A Working Group of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Colorado-Anschutz Medical Campus, Denver, Colorado
| | - Lauren L Ritterhouse
- Emerging and Evolving Biomarker Content Committee, A Working Group of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony N Snow
- Emerging and Evolving Biomarker Content Committee, A Working Group of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont; The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont.
| |
Collapse
|
161
|
Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico TA, DeCamp M, Dilling TJ, Dowell J, Gettinger S, Grotz TE, Gubens MA, Hegde A, Lackner RP, Lanuti M, Lin J, Loo BW, Lovly CM, Maldonado F, Massarelli E, Morgensztern D, Ng T, Otterson GA, Pacheco JM, Patel SP, Riely GJ, Riess J, Schild SE, Shapiro TA, Singh AP, Stevenson J, Tam A, Tanvetyanon T, Yanagawa J, Yang SC, Yau E, Gregory K, Hughes M. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:497-530. [PMID: 35545176 DOI: 10.6004/jnccn.2022.0025] [Citation(s) in RCA: 802] [Impact Index Per Article: 267.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non-Small Cell Lung Cancer (NSCLC) provide recommended management for patients with NSCLC, including diagnosis, primary treatment, surveillance for relapse, and subsequent treatment. Patients with metastatic lung cancer who are eligible for targeted therapies or immunotherapies are now surviving longer. This selection from the NCCN Guidelines for NSCLC focuses on targeted therapies for patients with metastatic NSCLC and actionable mutations.
Collapse
Affiliation(s)
| | - Douglas E Wood
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | | | - Ankit Bharat
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Debora S Bruno
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Joe Y Chang
- The University of Texas MD Anderson Cancer Center
| | | | | | | | | | | | | | | | | | | | | | | | - Jules Lin
- University of Michigan Rogel Cancer Center
| | | | | | | | | | - Daniel Morgensztern
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | - Thomas Ng
- The University of Tennessee Health Science Center
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | | | | | | | - Aditi P Singh
- Abramson Cancer Center at the University of Pennsylvania
| | - James Stevenson
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Alda Tam
- The University of Texas MD Anderson Cancer Center
| | | | | | - Stephen C Yang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Edwin Yau
- Roswell Park Comprehensive Cancer Center; and
| | | | | |
Collapse
|
162
|
Abdallah HM, Martinez-Meehan D, Lutfi W, Dhupar R, Grenda T, Schuchert MJ, Christie NA, Luketich JD, Okusanya OT. Adjuvant chemotherapy for pulmonary sarcomatoid carcinoma: A retrospective analysis of the National Cancer Database. J Thorac Cardiovasc Surg 2022; 163:1669-1681.e3. [PMID: 33678508 DOI: 10.1016/j.jtcvs.2021.01.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Pulmonary sarcomatoid carcinoma (PSC) is a rarely occurring variant of non-small cell lung cancer with sarcoma-like features. Compared with traditional non-small cell lung cancer, PSC patients typically present later and have poorer prognoses, irrespective of stage. The standard of care is resection, but guidelines for the use of adjuvant chemotherapy have not been established. To advance the development of evidence-based management algorithms for PSC after resection, a statistical analysis on a nationwide representative sample of patients was performed. METHODS A retrospective cohort study was performed by querying the National Cancer Database for patients with a diagnosis of PSC between 2004 and 2015. Patients who received complete anatomical resection with or without adjuvant chemotherapy were included. Multivariable regression was used to detect factors associated with the receipt of adjuvant chemotherapy. Multivariable Cox regression of overall survival and Kaplan-Meier survival analysis on propensity-matched groups was conducted to study the association between adjuvant chemotherapy and prognosis. RESULTS We included 1497 patients with PSC in the final analysis. Factors associated with receiving adjuvant chemotherapy were age, histology, and receipt of adjuvant radiation. The results of multivariable Cox analysis and Kaplan-Meier analysis on propensity matched groups yielded similar trends: adjuvant chemotherapy was associated with improved 5-year overall survival for stage II and III disease, but not for stage I disease. CONCLUSIONS Multiple factors are associated with receipt of adjuvant chemotherapy for PSC, and this treatment appears to be associated with improved survival in stage II and stage III, but not stage I patients.
Collapse
Affiliation(s)
| | | | - Waseem Lutfi
- Department of Surgery, Penn Medicine, Philadelphia, Pa
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Surgical Services Division, VA Pittsburgh Healthcare System, Pittsburgh, Pa
| | - Tyler Grenda
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pa
| | - Matthew J Schuchert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Neil A Christie
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Olugbenga T Okusanya
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pa.
| |
Collapse
|
163
|
Sobahy TM, Tashkandi G, Bahussain D, Al-Harbi R. Clinically actionable cancer somatic variants (CACSV): a tumor interpreted dataset for analytical workflows. BMC Med Genomics 2022; 15:95. [PMID: 35468810 PMCID: PMC9036759 DOI: 10.1186/s12920-022-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The recent development and enormous application of parallel sequencing technology in oncology has produced immense amounts of cell-specific genetic information. However, publicly available cell-specific genetic variants are not explained by well-established guidelines. Additionally, cell-specific variants interpretation and classification has remained a challenging task and lacks standardization. The Association for Molecular Pathology (AMP), the American Society of Clinical Oncology (ASCO), and the College of American Pathologists (CAP) published the first consensus guidelines for cell-specific variants cataloging and clinical annotations. METHODS AMP-ASCO-CAP recommended sources and information were downloaded and used as follows: relative knowledge in oncology clinical practice guidelines; approved, investigative or preclinical drugs; supporting literature and each gene-tumor site correlation. All information was homogenized into a single knowledgebase. Finally, we incorporated the consensus recommendations into a new computational method. RESULTS A subset of cancer genetic variants was manually curated to benchmark our method and well-known computational algorithms. We applied the new method on freely available tumor-specific databases to produce a clinically actionable cancer somatic variants (CACSV) dataset in an easy-to-integrate format for most clinical analytical workflows. The research also showed the current challenges and limitations of using different classification systems or computational methods. CONCLUSION CACSV is a step toward cell-specific genetic variants standardized interpretation as it is readily adaptable by most clinical laboratory pipelines for somatic variants clinical annotations. CACSV is freely accessible at ( https://github.com/tsobahytm/CACSV/tree/main/dataset ).
Collapse
Affiliation(s)
- Turki M. Sobahy
- grid.415310.20000 0001 2191 4301King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Research Center, Jeddah, 21499 Kingdom of Saudi Arabia
| | - Ghassan Tashkandi
- grid.415310.20000 0001 2191 4301King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Research Center, Jeddah, 21499 Kingdom of Saudi Arabia
| | - Donya Bahussain
- grid.415310.20000 0001 2191 4301King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Research Center, Jeddah, 21499 Kingdom of Saudi Arabia
| | - Raneem Al-Harbi
- grid.412125.10000 0001 0619 1117Genetic Medicine Department, College of Medicine, King Abdulaziz University (KAU), Jeddah, 7393 Kingdom of Saudi Arabia
| |
Collapse
|
164
|
Li J, Feng Y, Tan Y, Duan Q, Zhang Q. Case Report: A Lung Adenocarcinoma With Brain Metastasis Harbored Novel MET 14 Skipping Alteration Sensitive to Savolitinib. Front Oncol 2022; 12:863560. [PMID: 35444936 PMCID: PMC9015670 DOI: 10.3389/fonc.2022.863560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
A splice-site mutation that results in a loss of transcription of exon 14 in the oncogenic driver MET occurs in 3 to 4% of patients with non-small-cell lung cancer (NSCLC). Several MET exon 14 skipping alterations have been identified, but different MET exon splice variants tend to have different clinical outcomes which deserve concern. Herein, based on NGS panel analysis, we firstly described a 61-year-old woman with lung adenocarcinoma who harbored a novel MET exon 14 skipping (c.3004_3028+3del) concurrent MET amplification (copy number: 3.91) and benefited from Savolitinib treatment. Moreover, CytoTest MET/CCP7 FISH Probe (c-MET/CCP7 Ratio:1.41 and mean gene copy number:6) and qPCR which based on ABI 7500 also were performed to confirm these two MET alterations. After 2 months of Savolitinib treatment, the clinical evaluation was a partial response (PR). In summary, our finding not only expanded the spectrum of the MET exon14 variant (METex14). Targeted NGS analysis could improve detection of MET alterations in routine practice.
Collapse
Affiliation(s)
- Jian Li
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Yun Feng
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Qianqian Duan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| |
Collapse
|
165
|
Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood 2022; 139:2406-2410. [PMID: 34986231 DOI: 10.1182/blood.2021011708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
|
166
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
167
|
Hamilton G, Rath B. Met inhibitors in the treatment of lung cancer: the evidence to date. Expert Opin Pharmacother 2022; 23:815-825. [PMID: 35377279 DOI: 10.1080/14656566.2022.2062227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The hepatocyte growth factor (HGF) receptor MET is an oncogenic driver in a subpopulation of Non-small Lung Cancer Cells (NSCLC) at the primary tumor stage or in acquired resistance to treatment with tumor-targeting tyrosine kinase inhibitors (TKIs). AREAS COVERED This article summarizes the mechanisms leading to overexpression and activation of MET by amplification and mutations including exon 14 aberrations. Furthermore, the methods to detect and categorize MET as a tumor driver and the selective TKIs for patient treatment are discussed. EXPERT OPINION : Activating mutations and rearrangements of kinases in NSCLC are the target of successful therapeutic intervention. However, MET activation involves a number of complex alterations including gene amplification, prevention of degradation by METex14 exon skipping and a host of gene mutations. A high-level of MET expression is the precondition for tumor responses to TKIs and the confirmation of MET-dependent tumor progression is difficult in primary lesions and in tumors exhibiting resistance to mutated EGFR-directed therapy in absence of standardized and concordant assays of MET amplification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
168
|
Multimodality Treatment of Pulmonary Sarcomatoid Carcinoma: A Review of Current State of Art. JOURNAL OF ONCOLOGY 2022; 2022:8541157. [PMID: 35368903 PMCID: PMC8975648 DOI: 10.1155/2022/8541157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is an unconventional non-small-cell lung cancer (NSCLC) that is currently managed under guidelines used for conventional NSCLC and has poor survival. Surgery is the optimal choice for resectable PSC, and the prevalence of mutations in this type of tumor laid the foundation for novel systemic therapies such as targeted therapy and immunotherapy. PSC is resistant to chemotherapy and radiotherapy, and the effects of the 2 therapies are controversial. Targeted therapies have been reported to confer survival benefits, and savolitinib, an oral selective MET tyrosine-kinase inhibitor, has been approved in metastatic patients with MET exon 14 skipping mutations. Expression and positive rate of programmed death ligand 1 in PSC are high; our previous research has also revealed a high mutational burden and a T-cell-inflamed microenvironment of PSC. Correspondingly, immune checkpoint inhibitors have shown preliminary antitumor effects (overall response rates of 40.5% (15/37) and 31.6% (6/19) in two retrospective studies, respectively) in PSC patients. In summary, patients should receive operations at an early stage and multimodality treatments are needed to maximize the benefits of patients with advanced disease.
Collapse
|
169
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
170
|
Venkataramany AS, Schieffer KM, Lee K, Cottrell CE, Wang PY, Mardis ER, Cripe TP, Chandler DS. Alternative RNA Splicing Defects in Pediatric Cancers: New Insights in Tumorigenesis and Potential Therapeutic Vulnerabilities. Ann Oncol 2022; 33:578-592. [PMID: 35339647 DOI: 10.1016/j.annonc.2022.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Compared to adult cancers, pediatric cancers are uniquely characterized by a genomically stable landscape and lower tumor mutational burden. However, alternative splicing, a global cellular process that produces different mRNA/protein isoforms from a single mRNA transcript, has been increasingly implicated in the development of pediatric cancers. DESIGN We review the current literature on the role of alternative splicing in adult cancer, cancer predisposition syndromes, and pediatric cancers. We also describe multiple splice variants identified in adult cancers and confirmed through comprehensive genomic profiling in our institutional cohort of rare, refractory and relapsed pediatric and adolescent young adult cancer patients. Finally, we summarize the contributions of alternative splicing events to neoantigens and chemoresistance and prospects for splicing-based therapies. RESULTS Published dysregulated splicing events can be categorized as exon inclusion, exon exclusion, splicing factor upregulation, or splice site alterations. We observe these phenomena in cancer predisposition syndromes (Lynch syndrome, Li-Fraumeni syndrome, CHEK2) and pediatric leukemia (B-ALL), sarcomas (Ewing sarcoma, rhabdomyosarcoma, osteosarcoma), retinoblastoma, Wilms tumor, and neuroblastoma. Within our institutional cohort, we demonstrate splice variants in key regulatory genes (CHEK2, TP53, PIK3R1, MDM2, KDM6A, NF1) that resulted in exon exclusion or splice site alterations, which were predicted to impact functional protein expression and promote tumorigenesis. Differentially spliced isoforms and splicing proteins also impact neoantigen creation and treatment resistance, such as imatinib or glucocorticoid regimens. Additionally, splice-altering strategies with the potential to change the therapeutic landscape of pediatric cancers include antisense oligonucleotides, adeno-associated virus gene transfers, and small molecule inhibitors. CONCLUSIONS Alternative splicing plays a critical role in the formation and growth of pediatric cancers, and our institutional cohort confirms and highlights the broad spectrum of affected genes in a variety of cancers. Further studies that elucidate the mechanisms of disease-inducing splicing events will contribute toward the development of novel therapeutics.
Collapse
Affiliation(s)
- A S Venkataramany
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States; Medical Scientist Training Program, The Ohio State University, Columbus, Ohio, United States
| | - K M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - K Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - C E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - P Y Wang
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - E R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - T P Cripe
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States; Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - D S Chandler
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States; Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
171
|
Milbury CA, Creeden J, Yip WK, Smith DL, Pattani V, Maxwell K, Sawchyn B, Gjoerup O, Meng W, Skoletsky J, Concepcion AD, Tang Y, Bai X, Dewal N, Ma P, Bailey ST, Thornton J, Pavlick DC, Frampton GM, Lieber D, White J, Burns C, Vietz C. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS One 2022; 17:e0264138. [PMID: 35294956 PMCID: PMC8926248 DOI: 10.1371/journal.pone.0264138] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
FoundationOne®CDx (F1CDx) is a United States (US) Food and Drug Administration (FDA)-approved companion diagnostic test to identify patients who may benefit from treatment in accordance with the approved therapeutic product labeling for 28 drug therapies. F1CDx utilizes next-generation sequencing (NGS)-based comprehensive genomic profiling (CGP) technology to examine 324 cancer genes in solid tumors. F1CDx reports known and likely pathogenic short variants (SVs), copy number alterations (CNAs), and select rearrangements, as well as complex biomarkers including tumor mutational burden (TMB) and microsatellite instability (MSI), in addition to genomic loss of heterozygosity (gLOH) in ovarian cancer. CGP services can reduce the complexity of biomarker testing, enabling precision medicine to improve treatment decision-making and outcomes for cancer patients, but only if test results are reliable, accurate, and validated clinically and analytically to the highest standard available. The analyses presented herein demonstrate the extensive analytical and clinical validation supporting the F1CDx initial and subsequent FDA approvals to ensure high sensitivity, specificity, and reliability of the data reported. The analytical validation included several in-depth evaluations of F1CDx assay performance including limit of detection (LoD), limit of blank (LoB), precision, and orthogonal concordance for SVs (including base substitutions [SUBs] and insertions/deletions [INDELs]), CNAs (including amplifications and homozygous deletions), genomic rearrangements, and select complex biomarkers. The assay validation of >30,000 test results comprises a considerable and increasing body of evidence that supports the clinical utility of F1CDx to match patients with solid tumors to targeted therapies or immunotherapies based on their tumor's genomic alterations and biomarkers. F1CDx meets the clinical needs of providers and patients to receive guideline-based biomarker testing, helping them keep pace with a rapidly evolving field of medicine.
Collapse
Affiliation(s)
- Coren A. Milbury
- Department Product Development, Cambridge, MA, United States of America
| | - James Creeden
- Global Medical Affairs, Basel, MA, United States of America
| | - Wai-Ki Yip
- Department Product Development, Cambridge, MA, United States of America
| | - David L. Smith
- Department of Franchise Development, Cambridge, MA, United States of America
| | - Varun Pattani
- Department Product Development, Cambridge, MA, United States of America
| | - Kristi Maxwell
- Department of Health Economic and Outcomes Research & Payer Policy, Reimbursement, Cambridge, MA, United States of America
| | - Bethany Sawchyn
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Ole Gjoerup
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Wei Meng
- Department Product Development, Cambridge, MA, United States of America
| | - Joel Skoletsky
- Department Product Development, Cambridge, MA, United States of America
| | | | - Yanhua Tang
- Department Product Development, Cambridge, MA, United States of America
| | - Xiaobo Bai
- Department Product Development, Cambridge, MA, United States of America
| | - Ninad Dewal
- Department Product Development, Cambridge, MA, United States of America
| | - Pei Ma
- Department Product Development, Cambridge, MA, United States of America
| | - Shannon T. Bailey
- Department Product Development, Cambridge, MA, United States of America
| | - James Thornton
- Department Product Development, Cambridge, MA, United States of America
| | - Dean C. Pavlick
- Department of Cancer Genomics, Cambridge, MA, United States of America
| | | | - Daniel Lieber
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Jared White
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Christine Burns
- Department Product Development, Cambridge, MA, United States of America
| | - Christine Vietz
- Department Product Development, Cambridge, MA, United States of America
| |
Collapse
|
172
|
Le X, Sakai H, Felip E, Veillon R, Garassino MC, Raskin J, Cortot AB, Viteri S, Mazieres J, Smit EF, Thomas M, Iams WT, Cho BC, Kim HR, Yang JCH, Chen YM, Patel JD, Bestvina CM, Park K, Griesinger F, Johnson M, Gottfried M, Britschgi C, Heymach J, Sikoglu E, Berghoff K, Schumacher KM, Bruns R, Otto G, Paik PK. Tepotinib Efficacy and Safety in Patients with MET Exon 14 Skipping NSCLC: Outcomes in Patient Subgroups from the VISION Study with Relevance for Clinical Practice. Clin Cancer Res 2022; 28:1117-1126. [PMID: 34789481 PMCID: PMC9365370 DOI: 10.1158/1078-0432.ccr-21-2733] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE Primary analysis of VISION showed tepotinib had durable clinical activity in patients with MET exon 14 (METex14) skipping non-small cell lung cancer (NSCLC). We present updated outcomes for clinically relevant subgroups. PATIENTS AND METHODS This phase II, open-label, multi-cohort study of 500 mg (450 mg active moiety) tepotinib in patients with METex14 skipping NSCLC assessed efficacy and safety in predefined subgroups according to age, prior therapies (chemotherapy and immune checkpoint inhibitors), and brain metastases. An ad hoc retrospective analysis using Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria assessed intracranial activity. RESULTS 152 patients were evaluable for efficacy (median age: 73.1). Overall, objective response rate (ORR) was 44.7% [95% confidence interval (CI): 36.7-53.0]. Patients aged <75 (n = 84) and ≥75 (n = 68) had ORRs of 48.8% (95% CI: 37.7-60.0) and 39.7% (95% CI: 28.0-52.3), respectively. Treatment-naïve (n = 69) versus previously treated (n = 83) patients showed consistent efficacy [ORR (95% CI): 44.9% (32.9-57.4) vs. 44.6% (33.7-55.9); median duration of response (95% CI): 10.8 (6.9-not estimable) vs. 11.1 (9.5-18.5) months]. Of 15 patients analyzed by RANO-BM (12 received prior radiotherapy), 13 achieved intracranial disease control; 5 of 7 patients with measurable brain metastases had partial intracranial responses. Of 255 patients evaluable for safety, 64 (25.1%) experienced grade ≥3 treatment-related adverse events (TRAE), leading to discontinuation in 27 patients (10.6%). Rates of adverse events (AE) were broadly consistent irrespective of prior therapies. CONCLUSIONS Tepotinib showed meaningful activity across subgroups by age, prior therapies, and brain metastases, with a manageable safety profile and few treatment discontinuations. See related commentary by Rosner and Spira, p. 1055.
Collapse
Affiliation(s)
- Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Xiuning Le, Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-792-6363; E-mail:
| | - Hiroshi Sakai
- Department of Thoracic Oncology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Enriqueta Felip
- Department of Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Remi Veillon
- CHU Bordeaux, Service des Maladies Respiratoires, Bordeaux, France
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Medicine, Section of Hematology/Oncology, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, Illinois
| | - Jo Raskin
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alexis B. Cortot
- Univ. Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, UMR9020 – UMR-S 1277 - Canther, Lille, France
| | - Santiago Viteri
- Instituto Oncológico Dr. Rosell, Hospital Universitario Dexeus, Grupo Quiron Salud, Barcelona, Spain
| | - Julien Mazieres
- CHU de Toulouse, Institut Universitaire du Cancer, Toulouse, France
| | - Egbert F. Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Thomas
- Thoraxklinik, University Heidelberg and Translational Lung Research Center Heidelberg (TLRC-H), The German Center for Lung Research (DZL), Heidelberg, Germany
| | - Wade T. Iams
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Byoung Chul Cho
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - James Chih-Hsin Yang
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jyoti D. Patel
- Lurie Cancer Center, Northwestern University-Feinberg School of Medicine, Chicago, Illinois
| | | | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Frank Griesinger
- Pius-Hospital, University Medicine Oldenburg, Department of Hematology and Oncology, University Department Internal Medicine-Oncology, Oldenburg, Germany
| | - Melissa Johnson
- Department of Medicine, Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Maya Gottfried
- Department of Oncology, Meir Medical Center, Tchernichovsky St 59, Kefar Sava, Israel
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - John Heymach
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elif Sikoglu
- Calyx, Patient Technology Solutions, Medical Imaging, Billerica, Massachusetts
| | - Karin Berghoff
- Global Patient Safety, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Karl-Maria Schumacher
- Global Clinical Development, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Rolf Bruns
- Department of Biostatistics, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Gordon Otto
- Global Clinical Development, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Paul K. Paik
- Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
173
|
Claerhout S, Lehnert S, Borght SV, Spans L, Dooms C, Wauters E, Vansteenkiste J, Weynand B, Deraedt K, Bourgain C, Bempt IV. Targeted RNA sequencing for upfront analysis of actionable driver alterations in non-small cell lung cancer. Lung Cancer 2022; 166:242-249. [DOI: 10.1016/j.lungcan.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
174
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
175
|
Veillon R, Sakai H, Le X, Felip E, Cortot AB, Egbert S, Park K, Griesinger F, Britschgi C, Wu YL, Melosky B, Baijal S, Jr GDC, Sedova M, Berghoff K, Otto G, Paik PK. Safety of Tepotinib in Patients with MET Exon 14 Skipping NSCLC and Recommendations for Management. Clin Lung Cancer 2022; 23:320-332. [PMID: 35466070 PMCID: PMC10068910 DOI: 10.1016/j.cllc.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The MET inhibitor tepotinib demonstrated durable clinical activity in patients with advanced MET exon 14 (METex14) skipping NSCLC. We report detailed analyses of adverse events of clinical interest (AECIs) in VISION, including edema, a class effect of MET inhibitors. PATIENTS AND METHODS Incidence, management, and time to first onset/resolution were analyzed for all-cause AECIs, according to composite categories (edema, hypoalbuminemia, creatinine increase, and ALT/AST increase) or individual preferred terms (pleural effusion, nausea, diarrhea, and vomiting), for patients with METex14 skipping NSCLC in the phase II VISION trial. RESULTS Of 255 patients analyzed (median age: 72 years), edema, the most common AECI, was reported in 69.8% (grade 3, 9.4%; grade 4, 0%). Median time to first edema onset was 7.9 weeks (range: 0.1-58.3). Edema was manageable with supportive measures, dose reduction (18.8%), and/or treatment interruption (23.1%), and rarely prompted discontinuation (4.3%). Other AECIs were also manageable and predominantly mild/moderate: hypoalbuminemia, 23.9% (grade 3, 5.5%); pleural effusion, 13.3% (grade ≥ 3, 5.1%); creatinine increase, 25.9% (grade 3, 0.4%); nausea, 26.7% (grade 3, 0.8%), diarrhea, 26.3% (grade 3, 0.4%), vomiting 12.9% (grade 3, 1.2%), and ALT/AST increase, 12.2% (grade ≥ 3, 3.1%). GI AEs typically occurred early and resolved in the first weeks. CONCLUSION Tepotinib was well tolerated in the largest trial of a MET inhibitor in METex14 skipping NSCLC. The most frequent AEs were largely mild/moderate and manageable with supportive measures and/or dose reduction/interruption, and caused few withdrawals in this elderly population.
Collapse
|
176
|
Asad Zadeh Vosta Kolaei F, Cai B, Kanakamedala H, Kim J, Doban V, Zhang S, Shi M. Biomarker Testing Patterns and Treatment Outcomes in Patients With Advanced Non-Small Cell Lung Cancer and MET Exon 14 Skipping Mutations: A Descriptive Analysis From the US. Front Oncol 2022; 12:786124. [PMID: 35280795 PMCID: PMC8915293 DOI: 10.3389/fonc.2022.786124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background MET exon 14 skipping mutation (METex14) is observed in ~3% of non-small cell lung cancer (NSCLC) cases and has been shown to be an independent poor prognostic factor associated with shorter overall disease-specific survival. Broad molecular testing can identify this biomarker in patients with advanced NSCLC (aNSCLC) and allow patients to be matched with the appropriate targeted therapy. This study examines biomarker testing patterns and clinical outcomes of chemotherapy and immuno-oncology (IO) monotherapy in aNSCLC patients with METex14. Methods A descriptive retrospective study was conducted using the Flatiron Health-Foundation Medicine Inc. (FMI) clinico-genomic database. Patients with METex14 aNSCLC treated with systemic therapies were included in the biomarker testing analysis. The duration from specimen collection to reported results was assessed for PD-L1- and METex14-tested patients. Clinical outcomes were assessed in patients treated with chemotherapy or IO monotherapy. First-line (1L) and second-line (2L) real-world progression-free survival (rw-PFS) were estimated using Kaplan-Meier analysis. Results Of 91 METex14 patients eligible for the biomarker testing analysis, 77% and 60% received PD-L1 and FMI next-generation sequencing (NGS) testing within 3 months post aNSCLC diagnosis. Of those assessed for both PD-L1 and METex14 (n=9), the median duration between specimen collection and reporting was 1 week shorter for PD-L1 than for FMI NGS. Median 1L rw-PFS was 5.7 months (95% CI, 4.6-7.1) and 2.4 months (95% CI, 1.4-3.2) in patients receiving 1L chemotherapy (n=59) and IO monotherapy (n=18), with 3-month 1L rw-PFS rates of 78% and 33%. Median 2L rw-PFS was 3.5 months (95% CI, 1.9-11.1) and 4.7 months (95% CI, 2.8-12.9) in patients receiving 2L chemotherapy (n=16) and IO monotherapy (n=23), with 3-month 2L rw-PFS rates of 54% and 67%. Conclusions The median time from biopsy to test results appears 1 week shorter for PD-L1 than for FMI NGS. Chemotherapy and IO monotherapy were the most common regimens utilized but with limited PFS.
Collapse
Affiliation(s)
| | - Beilei Cai
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | - Julia Kim
- Genesis Research, Hoboken, NJ, United States
| | - Vitalii Doban
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - Shiyu Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - Michael Shi
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| |
Collapse
|
177
|
Targeted Therapy for Older Patients with Non-Small Cell Lung Cancer: Systematic Review and Guidelines from the French Society of Geriatric Oncology (SoFOG) and the French-Language Society of Pulmonology (SPLF)/French-Language Oncology Group (GOLF). Cancers (Basel) 2022; 14:cancers14030769. [PMID: 35159036 PMCID: PMC8834005 DOI: 10.3390/cancers14030769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Targeted therapy has become essential in the treatment of non-small cell lung cancer (NSCLC). There are currently no guidelines for older patients who are frailer with regard to this type of treatment. Two learned societies, the French Society of Geriatric Oncology (SoFOG) and the French-language Society of Pulmonology (SPLF)/French-language Oncology Group (GOLF), joined forces to conduct a systematic review of the literature from May 2010 to May 2021 regarding the efficacy, toxicity, and feasibility of targeted therapy in older patients with NSCLC. Guidelines were then drawn up to enable clinicians to adapt the type of targeted therapy proposed according to the oncological and geriatric profile of the older patient with NSCLC. Abstract Systematic molecular profiling and targeted therapy (TKI) have changed the face of Non-Small Cell Lung Cancer (NSCLC) treatment. However, there are no specific recommendations to address the prescription of TKI for older patients. A multidisciplinary task force from the French Society of Geriatric Oncology (SoFOG) and the French Society of Pulmonology/Oncology Group (SPLF/GOLF) conducted a systematic review from May 2010 to May 2021. Protocol registered in Prospero under number CRD42021224103. Three key questions were selected for older patients with NSCLC: (1) to whom TKI can be proposed, (2) for whom monotherapy should be favored, and (3) to whom a combination of TKI can be proposed. Among the 534 references isolated, 52 were included for the guidelines. The expert panel analysis concluded: (1) osimertinib 80 mg/day is recommended as a first-line treatment for older patients with the EGFR mutation; (2) full-dose first generation TKI, such as erlotinib or gefitinib, is feasible; (3) ALK and ROS1 rearrangement studies including older patients were too scarce to conclude on any definitive recommendations; and (4) given the actual data, TKI should be prescribed as monotherapy. Malnutrition, functional decline, and the number of comorbidities should be assessed primarily before TKI initiation.
Collapse
|
178
|
Cortot A, Le X, Smit E, Viteri S, Kato T, Sakai H, Park K, Camidge DR, Berghoff K, Vlassak S, Paik PK. Safety of MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14 Skipping Non-small Cell Lung Cancer: A Clinical Review. Clin Lung Cancer 2022; 23:195-207. [DOI: 10.1016/j.cllc.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
|
179
|
Wang A, Yang W, Li Y, Zhang Y, Zhou J, Zhang R, Zhang W, Zhu J, Zeng Y, Liu Z, Huang JA. CPNE1 promotes non-small cell lung cancer progression by interacting with RACK1 via the MET signaling pathway. Cell Commun Signal 2022; 20:16. [PMID: 35101055 PMCID: PMC8802424 DOI: 10.1186/s12964-021-00818-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the most lethal tumour worldwide. Copine 1 (CPNE1) was identified as a novel oncogene in NSCLC in our previous study. However, its specific function and relative mechanisms remain poorly understood. Methods The biological role of CPNE1 and RACK1 in NSCLC was investigated using gene expression knockdown and overexpression, cell proliferation assays, clonogenic assays, and Transwell assays. The expression levels of CPNE1, RACK1 and other proteins were determined by western blot analysis. The relationship between CPNE1 and RACK1 was predicted and investigated by mass spectrometry analysis, immunofluorescence staining, and coimmunoprecipitation. NSCLC cells were treated with a combination of a MET inhibitor and gefitinib in vitro and in vivo. Results We found that CPNE1 facilitates tumorigenesis in NSCLC by interacting with RACK1, which further induces activation of MET signaling. CPNE1 overexpression promoted cell proliferation, migration, invasion and MET signaling in NSCLC cells, whereas CPNE1 knockdown produced the opposite effects. In addition, the suppression of the enhancing effect of CPNE1 overexpression on tumorigenesis and MET signaling by knockdown of RACK1 was verified. Moreover, compared to single-agent treatment, dual blockade of MET and EGFR resulted in enhanced reductions in the tumour volume and downstream signaling in vivo. Conclusions Our findings show that CPNE1 promotes tumorigenesis by interacting with RACK1 and activating MET signaling. The combination of a MET inhibitor with an EGFR-TKI attenuated tumour growth more significantly than either single-drug treatment. These findings may provide new insights into the biological function of CPNE1 and the development of novel therapeutic strategies for NSCLC. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00818-8.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Wen Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jieqi Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Ruochen Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
180
|
Wang F, Liu Y, Qiu W, Shum E, Feng M, Zhao D, Zheng D, Borczuk A, Cheng H, Halmos B. Functional analysis of MET exon 14 skipping alteration in cancer invasion and metastatic dissemination. Cancer Res 2022; 82:1365-1379. [PMID: 35078819 DOI: 10.1158/0008-5472.can-21-1327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
MET exon 14 skipping alteration (MET∆14Ex) is an actionable oncogenic driver that occurs in 2-4% of non-small cell lung cancer (NSCLC) cases. The precise role of MET∆14Ex in tumor progression of NSCLC is poorly understood. Using multiple isogenic MET∆14Ex cell models established with CRISPR editing, we demonstrate that MET∆14Ex expression increases receptor kinase activity and downstream signaling by impairing receptor internalization and endocytic degradation, significantly boosting cell scatter, migration, and invasion capacity in vitro as well as metastasis in vivo. RNA sequencing analysis revealed that MET∆14Ex preferentially activates biological processes associated with cell movement, providing novel insights into its unique molecular mechanism of action. Activation of PI3K/Akt/Rac1 signaling and upregulation of multiple matrix metallopeptidases (MMPs) by MET∆14Ex induced cytoskeleton remodeling and extracellular matrix disassembly, which are critical functional pathways that facilitate cell invasion and metastasis. Therapeutically, MET inhibitors dramatically repressed MET∆14Ex-mediated tumor growth and metastasis in vivo, indicating potential therapeutic options for MET∆14Ex-altered NSCLC patients. These mechanistic insights into MET∆14Ex-mediated invasion and metastasis provide a deeper understanding of the role of MET∆14Ex in NSCLC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine
| | - Wanglong Qiu
- Irving Cancer Research Center, Columbia University Medical Center
| | - Elaine Shum
- Medicine/Division of Hematology and Medical Oncology, Perlmutter Cancer Institute at NYU Langone Health
| | - Monica Feng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale School of Medicine
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine
| | | | | | | |
Collapse
|
181
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
182
|
Fogli S, Tabbò F, Capuano A, Re MD, Passiglia F, Cucchiara F, Scavone C, Gori V, Novello S, Schmidinger M, Danesi R. The expanding family of c-Met inhibitors in solid tumors: a comparative analysis of their pharmacologic and clinical differences. Crit Rev Oncol Hematol 2022; 172:103602. [DOI: 10.1016/j.critrevonc.2022.103602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
|
183
|
Batra U, Nathany S. MET: A narrative review of exon 14 skipping mutation in non-small-cell lung carcinoma. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_158_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
184
|
Garcia-Robledo JE, Rosell R, Ruíz-Patiño A, Sotelo C, Arrieta O, Zatarain-Barrón L, Ordoñez C, Jaller E, Rojas L, Russo A, de Miguel-Pérez D, Rolfo C, Cardona AF. KRAS and MET in non-small-cell lung cancer: two of the new kids on the 'drivers' block. Ther Adv Respir Dis 2022; 16:17534666211066064. [PMID: 35098800 PMCID: PMC8808025 DOI: 10.1177/17534666211066064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a heterogeneous disease, and therapeutic management has advanced to identify various critical oncogenic mutations that promote lung cancer tumorigenesis. Subsequent studies have developed targeted therapies against these oncogenes in the hope of personalized treatment based on the tumor's molecular genomics. This review presents a comprehensive review of the biology, new therapeutic interventions, and resistance patterns of two well-defined subgroups, tumors with KRAS and MET alterations. We also discuss the status of molecular testing practices for these two key oncogenic drivers, considering the progressive introduction of next-generation sequencing (NGS) and RNA sequencing in regular clinical practice.
Collapse
Affiliation(s)
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP)/Dr. Rosell Oncology Institute (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Alejandro Ruíz-Patiño
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Elvira Jaller
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Department of Clinical Oncology, Clínica Colsanitas, Bogotá, Colombia Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Alessandro Russo
- Medical Oncology Unit, A.O. Papardo, Messina, Italy Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Diego de Miguel-Pérez
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
185
|
To KKW, Cho WCS. Mesenchymal Epithelial Transition (MET): A Key Player in Chemotherapy Resistance and an Emerging Target for Potentiating Cancer Immunotherapy. Curr Cancer Drug Targets 2022; 22:269-285. [PMID: 35255791 DOI: 10.2174/1568009622666220307105107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
The MET protein is a cell surface receptor tyrosine kinase predominately expressed in epithelial cells. Upon binding of its only known ligand, hepatocyte growth factor (HGF), MET homodimerizes, phosphorylates, and stimulates intracellular signalling to drive cell proliferation. Amplification or hyperactivation of MET is frequently observed in various cancer types and it is associated with poor response to conventional and targeted chemotherapy. More recently, emerging evidence also suggests that MET/HGF signalling may play an immunosuppressive role and it could confer resistance to cancer immunotherapy. In this review, we summarized the preclinical and clinical evidence of MET's role in drug resistance to conventional chemotherapy, targeted therapy, and immunotherapy. Previous clinical trials investigating MET-targeted therapy in unselected or METoverexpressing cancers yielded mostly unfavourable results. More recent clinical studies focusing on MET exon 14 alterations and MET amplification have produced encouraging treatment responses to MET inhibitor therapy. The translational relevance of MET inhibitor therapy to overcome drug resistance in cancer patients is discussed.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
186
|
Coleman N, Harbery A, Heuss S, Vivanco I, Popat S. Targeting un-MET needs in advanced non-small cell lung cancer. Lung Cancer 2021; 164:56-68. [PMID: 35033939 DOI: 10.1016/j.lungcan.2021.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Lung cancer classification has been radically transformed in recent years as genomic profiling has identified multiple novel therapeutic targets including MET exon 14 (METex14) alterations and MET amplification. Utilizing targeted therapies in patients with molecularly-defined NSCLC leads to remarkable objective response rates and improved progression-free survival. However, acquired resistance is inevitable. Several recent phase II trials have confirmed that METex14 NSCLC can be treated effectively with MET kinase inhibitors, such as crizotinib, capmatinib, tepotinib, and savolitinib. However, response rates for many MET TKIs are modest relative to the activity of targeted therapy in other oncogene-driven lung cancers, where ORRs are more consistently greater than 60%. In spite of significant gains in the field of MET inhibition in NSCLC, challenges remain: the landscape of resistance mechanisms to MET TKIs is not yet well characterized, and there may be intrinsic and acquired resistance mechanisms that require further characterization to enable increased MET TKI activity. In this review, we overview MET pathway dysregulation in lung cancer, methods of detection in the clinic, recent clinical trial data, and discuss current mechanisms of TKI resistance, exploring emerging strategies to overcome resistance.
Collapse
Affiliation(s)
- Niamh Coleman
- Lung Unit. The Royal Marsden Hospital, 203 Fulham Rd, Chelsea, London SW3 6JJ, UK; Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK; University of Texas MD Anderson Cancer Center, Texas, USA.
| | - Alice Harbery
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sara Heuss
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Igor Vivanco
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Sanjay Popat
- Lung Unit. The Royal Marsden Hospital, 203 Fulham Rd, Chelsea, London SW3 6JJ, UK; Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| |
Collapse
|
187
|
Liu Z, Xiao Y, Liu X, Li Q, Liu T, Zhu F, Wu G, Zhang L. Case Report: Long-Term Response to Radiotherapy Combined With Targeted Therapy in Histiocytic Sarcoma Harboring Mutations in MAPK and PI3K/AKT Pathways. Front Oncol 2021; 11:755893. [PMID: 34938656 PMCID: PMC8685210 DOI: 10.3389/fonc.2021.755893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
Background Histiocytic sarcoma (HS) is a rare hematopoietic malignancy with an aggressive clinical presentation associated with a poor overall survival. To date, surgical resection, radiation therapy, and chemotherapy were often utilized for HS, but curative effects are rather disappointing. Case Presentation A 19-year-old female was referred to our hospital with a pathologic diagnosis of HS in December 2017. The patient had a severe airway obstruction resulting from a large mass (6.0 cm × 4.4 cm) arising from the left parapharyngeal space. She did not respond to cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide (CHOEP) chemotherapy, then she was switched to radiotherapy and crizotinib according to next-generation sequencing (NGS) results (mutations in MET and MAP2K1). The patient got a partial response after radiotherapy and crizotinib, then she switched to imatinib combined with thalidomide treatment. The patient got a long-term complete response from the treatment and is alive 44 months after initial diagnosis without disease progression. Further KEGG pathway enrichment analysis of NGS results from patient’s tissue revealed that phosphatidylinositol 3′ kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) pathways were activated in this HS patient. We further performed experiments in vitro in a canine histiocytic sarcoma cell line DH82, in order to explore the possible mechanism of imatinib plus thalidomide in HS. Results of cell counting kit-8 (CCK8) assays showed that the proliferation activity of DH82 was significantly inhibited by imatinib but not thalidomide. Combined thalidomide and imatinib treatment did not improve the inhibitory effects of imatinib to DH82. Results of Western blot confirmed the inhibitory effects of imatinib on DH82 by targeting activation of MAPK and PI3K/AKT pathways. Conclusion Radiotherapy combined with targeted therapy guided by NGS may be promising, and further perspective clinical trial is warranted for the localized HS.
Collapse
Affiliation(s)
- Zijian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxiu Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhui Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
188
|
Damalanka VC, Voss JJLP, Mahoney MW, Primeau T, Li S, Klampfer L, Janetka JW. Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. J Med Chem 2021; 64:18158-18174. [PMID: 34902246 DOI: 10.1021/acs.jmedchem.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jorine J L P Voss
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew W Mahoney
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - Tina Primeau
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lidija Klampfer
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| |
Collapse
|
189
|
Ritu K, Kumar P, Singh A, Nupur K, Spalgias S, Mrigpuri P, Rajkumar. Untangling the KRAS mutated lung cancer subsets and its therapeutic implications. MOLECULAR BIOMEDICINE 2021; 2:40. [PMID: 34918209 PMCID: PMC8677854 DOI: 10.1186/s43556-021-00061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The Kirsten rat sarcoma virus transforming protein (KRAS) mutations (predominate in codons 12, 13, and 61) and genomically drive nearly one-third of lung carcinomas. These mutations have complex functions in tumorigenesis, and influence the tumor response to chemotherapy and tyrosine kinase inhibitors resulting in a poorer patient prognosis. Recent attempts using targeted therapies against KRAS alone have met with little success. The existence of specific subsets of lung cancer based on KRAS mutations and coexisting mutations are suggested. Their interactions need further elaboration before newer promising targeted therapies for KRAS mutant lung cancers can be used as earlier lines of therapy. We summarize the existing knowledge of KRAS mutations and their coexisting mutations that is relevant to lung cancer treatment, in this review. We elaborate on the prognostic impact of clinical and pathologic characteristics of lung cancer patients associated with KRAS mutations. We briefly review the currently available techniques for KRAS mutation detection on biopsy and cytology samples. Finally, we discuss the new therapeutic strategies for targeting KRAS-mutant non-small cell lung cancer (NSCLC). These may herald a new era in the treatment of KRASG12Cmutated NSCLC as well as be helpful to develop demographic subsets to predict targeted therapies and prognosis of lung cancer patients.
Collapse
|
190
|
Desai A, Abdayem P, Adjei AA, Planchard D. Antibody-drug conjugates: A promising novel therapeutic approach in lung cancer. Lung Cancer 2021; 163:96-106. [PMID: 34942494 DOI: 10.1016/j.lungcan.2021.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are rapidly establishing their place and have shown promising preliminary data in lung cancer with impressive response rates and survival outcomes in previously treated patients.There are several ADCs currently in clinical trials for NSCLC and small cell lung cancer (SCLC). These ADCs often have different targets which include HER2, HER3, TROP2, CEACAM5, and MET in NSCLC and DLL3 in SCLC.Here we review the safety, and efficacy of newer ADCs in lung cancer including ado-trastuzumab emtansine, trastuzumab deruxetecan, patritomab deruxetecan, datopotamab deruxetecan, sacituzumab govitecan, SAR408701, Telisotuzumab vedotin, rovalpituzumab tesirine, lorvotuzumab mertansine, and sacituzumab govitecan. Several novel methods are underway to improve the safety and efficacy of ADCs which include increasing the drug to antibody ratio (DAR), the potency of the payload, using more innovative payloads and replacing the antibody.
Collapse
Affiliation(s)
- Aakash Desai
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Pamela Abdayem
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Planchard
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
191
|
Brain penetration and efficacy of tepotinib in orthotopic patient-derived xenograft models of MET-driven non-small cell lung cancer brain metastases. Lung Cancer 2021; 163:77-86. [PMID: 34942492 DOI: 10.1016/j.lungcan.2021.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022]
Abstract
Central nervous system-penetrant therapies with intracranial efficacy against non-small cell lung cancer (NSCLC) brain metastases are urgently needed. We report preclinical studies investigating brain penetration and intracranial activity of the MET inhibitor tepotinib. After intravenous infusion of tepotinib in Wistar rats (n = 3), mean (±standard deviation) total tepotinib concentration was 2.87-fold higher in brain (505 ± 22 ng/g) than plasma (177 ± 20 ng/mL). In equilibrium dialysis experiments performed in triplicate, mean tepotinib unbound fraction was 0.35% at 0.3 and 3.0 µM tepotinib in rat brain tissue, and 4.0% at 0.3 and 1.0 µM tepotinib in rat plasma. The calculated unbound brain-to-plasma ratio was 0.25, indicating brain penetration sufficient for intracranial target inhibition. Of 20 screened subcutaneous patient-derived xenograft (PDX) models from lung cancer brain metastases (n = 1), two NSCLC brain metastases models (LU5349 and LU5406) were sensitive to the suboptimal dose of tepotinib of 30 mg/kg/qd (tumor volume change [%TV]: -12% and -88%, respectively). Molecular profiling (nCounter®; NanoString) revealed high-level MET amplification in both tumors (mean MET gene copy number: 11.2 and 24.2, respectively). Tepotinib sensitivity was confirmed for both subcutaneous models at a clinically relevant dose (125 mg/kg/qd; n = 5). LU5349 and LU5406 were orthotopically implanted into brains of mice and monitored by magnetic resonance imaging (MRI). Tepotinib 125 mg/kg/qd induced pronounced tumor regression, including complete or near-complete regressions, compared with vehicle in both orthotopic models (n = 10; median %TV: LU5349, -84%; LU5406, -63%). Intracranial antitumor activity of tepotinib did not appear to correlate with blood-brain barrier leakiness assessed in T1-weighted gadolinium contrast-enhanced MRI.
Collapse
|
192
|
Seegobin K, Majeed U, Wiest N, Manochakian R, Lou Y, Zhao Y. Immunotherapy in Non-Small Cell Lung Cancer With Actionable Mutations Other Than EGFR. Front Oncol 2021; 11:750657. [PMID: 34926258 PMCID: PMC8671626 DOI: 10.3389/fonc.2021.750657] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
While first line targeted therapies are the current standard of care treatment for non-small cell lung cancer (NSCLC) with actionable mutations, the cancer cells inevitably acquire resistance to these agents over time. Immune check-point inhibitors (ICIs) have improved the outcomes of metastatic NSCLC, however, its efficacy in those with targetable drivers is largely unknown. In this manuscript, we reviewed the published data on ICI therapies in NSCLC with ALK, ROS1, BRAF, c-MET, RET, NTRK, KRAS, and HER2 (ERBB2) alterations. We found that the objective response rates (ORRs) associated with ICI treatments in lung cancers harboring the BRAF (0-54%), c-MET (12-49%), and KRAS (18.7-66.7%) alterations were comparable to non-mutant NSCLC, whereas the ORRs in RET fusion NSCLC (less than10% in all studies but one) and ALK fusion NSCLC (0%) were relatively low. The ORRs reported in small numbers of patients and studies of ROS1 fusion, NTRK fusion, and HER 2 mutant NSCLC were 0-17%, 50% and 7-23%, respectively, making the efficacy of ICIs in these groups of patients less clear. In most studies, no significant correlation between treatment outcome and PD-L1 expression or tumor mutation burden (TMB) was identified, and how to select patients with NSCLC harboring actionable mutations who will likely benefit from ICI treatment remains unknown.
Collapse
Affiliation(s)
- Karan Seegobin
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Umair Majeed
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Nathaniel Wiest
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Rami Manochakian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yujie Zhao
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
193
|
Chu C, Rao Z, Pan Q, Zhu W. An updated patent review of small-molecule c-Met kinase inhibitors (2018-present). Expert Opin Ther Pat 2021; 32:279-298. [PMID: 34791961 DOI: 10.1080/13543776.2022.2008356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION c-Met tyrosine kinase receptor is a high-affinity ligand of hepatocyte growth factor (HGF). c-Met is widely expressed in a variety of normal human tissues, but shows abnormally high expression, amplification or mutation in tumour tissues such as lung, gastric and breast cancers. Therefore, the use of c-Met as a target can achieve the inhibition of a series of abnormal physiological processes such as tumourigenesis, development and metastasis. A number of small molecule tyrosine kinase inhibitors targeting c-Met have been successfully marketed. AREAS COVERED This article reviews recent advances in patented c-Met small molecule inhibitors and their inhibitory activity against various cancer cells from 2018 to date. EXPERT OPINION To date, small molecule inhibitors targeting c-Met have demonstrated impressive therapeutic efficacy in the clinical setting. Most recent patents have focused on addressing the direction of c-Met amplification and overexpression. Despite the great success in the development of selective c-Met inhibitors, the effects of bypass secretion and mutagenesis have led to a need for new c-Met small molecule inhibitors that are safe, efficient, selective and less toxic with novel structures and effective against other targets.
Collapse
Affiliation(s)
- Cilong Chu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Zixuan Rao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
194
|
Chai RC, Liu X, Pang B, Liu YQ, Li JJ, Li YF, Zhao Z, Du J, Bao ZS, Jiang T. Recurrent PTPRZ1-MET fusion and a high occurrence rate of MET exon 14 skipping in brain metastases. Cancer Sci 2021; 113:796-801. [PMID: 34812554 PMCID: PMC8819346 DOI: 10.1111/cas.15211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022] Open
Abstract
Identifying molecular features is an essential component of the management and targeted therapy of brain metastases (BMs). The molecular features are different between primary lung cancers and BMs of lung cancer. Here we report the DNA and RNA mutational profiles of 43 pathological samples of BMs. In addition to previously reported mutational events associated with targeted therapy, PTPRZ1‐MET, which was previously exclusively identified in glioma, was present in two cases of BMs of lung cancer. Furthermore, MET exon 14 skipping may be more common (6/37 cases) in BMs of lung cancer than the frequency previously reported in lung cancer. These findings highlight the clinical significance of targeted DNA plus RNA sequencing for BMs and suggest PTPRZ1‐MET and MET exon 14 skipping as critical molecular events that may serve as targets of targeted therapy in BMs.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bo Pang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jing-Jun Li
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yang-Fang Li
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiang Du
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhao Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
195
|
Bahcall M, Paweletz CP, Kuang Y, Taus LJ, Sim T, Kim ND, Dholakia KH, Lau CJ, Gokhale PC, Chopade PR, Hong F, Wei Z, Köhler J, Kirschmeier PT, Guo J, Guo S, Wang S, Janne PA. Combination of type I and type II MET tyrosine kinase inhibitors as therapeutic approach to prevent resistance. Mol Cancer Ther 2021; 21:322-335. [PMID: 34789563 DOI: 10.1158/1535-7163.mct-21-0344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
MET targeted therapies are clinically effective in MET amplified and MET exon 14 deletion mutant (METex14) non-small cell lung cancers (NSCLC) but their efficacy is limited by the development of drug resistance. Structurally distinct MET tyrosine kinase inhibitors (TKIs) (type I/II) have been developed or are under clinical evaluation, which may overcome MET mediated drug resistance mechanisms. In this study, we assess secondary MET mutations likely to emerge in response to treatment with single-agent or combinations of type I/type II MET TKIs using TPR-MET transformed Ba/F3 cell mutagenesis assays. We found that these inhibitors gave rise to distinct secondary MET mutant profiles. However, a combination of type I/II TKI inhibitors (capmatinib and merestinib) yielded no resistant clones in vitro. The combination of capmatinib/merestinib was evaluated in vivo and led to a significant reduction in tumor outgrowth compared to either MET inhibitor alone. Our findings demonstrate in vitro and in vivo that a simultaneous treatment with a type I and type II MET TKI may be a clinically viable approach to delay and/or diminish the emergence of on target MET mediated drug resistance mutations.
Collapse
Affiliation(s)
- Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute
| | - Luke J Taus
- Medical Oncology, Dana-Farber Cancer Institute
| | - Taebo Sim
- Severance Biomedical Science Institute, Yonsei University College of Medicine
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation
| | | | - Christie J Lau
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute
| | | | - Pratik R Chopade
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute
| | | | - Zihan Wei
- Biostatistics, Dana-Farber Cancer Institute
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | | | - Sujuan Guo
- Fralin Biomedical Research Institute, Virginia Tech
| | - Stephen Wang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School
| | - Pasi A Janne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute
| |
Collapse
|
196
|
Cheema PK, Banerji SO, Blais N, Chu QSC, Desmeules P, Juergens RA, Leighl NB, Sheffield BS, Wheatley-Price PF, Melosky BL. Canadian Consensus Recommendations on the Management of MET-Altered NSCLC. Curr Oncol 2021; 28:4552-4576. [PMID: 34898564 PMCID: PMC8628757 DOI: 10.3390/curroncol28060386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
In Canada, the therapeutic management of patients with advanced non-small cell lung cancer (NSCLC) with rare actionable mutations differs between provinces, territories, and individual centres based on access to molecular testing and funded treatments. These variations, together with the emergence of several novel mesenchymal-epithelial transition (MET) factor-targeted therapies for the treatment of NSCLC, warrant the development of evidence-based consensus recommendations for the use of these agents. A Canadian expert panel was convened to define key clinical questions, review evidence, discuss practice recommendations and reach consensus on the treatment of advanced MET-altered NSCLC. Questions addressed by the panel include: 1. How should the patients most likely to benefit from MET-targeted therapies be identified? 2. What are the preferred first-line and subsequent therapies for patients with MET exon 14 skipping mutations? 3. What are the preferred first-line and subsequent therapies for advanced NSCLC patients with de novo MET amplification? 4. What is the preferred therapy for patients with advanced epidermal growth factor receptor (EGFR)-mutated NSCLC with acquired MET amplification progressing on EGFR inhibitors? 5. What are the potential strategies for overcoming resistance to MET inhibitors? Answers to these questions, along with the consensus recommendations herein, will help streamline the management of MET-altered NSCLC in routine practice, assist clinicians in therapeutic decision-making, and help ensure optimal outcomes for NSCLC patients with MET alterations.
Collapse
Affiliation(s)
- Parneet K. Cheema
- Medical Oncology/Hematology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shantanu O. Banerji
- CancerCare Manitoba Research Institute, Department of Medical Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Department of Medicine, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada;
| | - Quincy S.-C. Chu
- Cross Cancer Institute, Alberta Health Services, Edmonton, AB T6G 1Z2, Canada;
| | - Patrice Desmeules
- Service d’Anatomopathologie et de Cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Rosalyn A. Juergens
- Department of Medical Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Natasha B. Leighl
- Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Brandon S. Sheffield
- Department of Laboratory Medicine, William Osler Health System, Brampton, ON L6R 3J7, Canada;
| | - Paul F. Wheatley-Price
- Department of Medicine, The Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Barbara L. Melosky
- Department of Medical Oncology, BC Cancer-Vancouver Centre, Vancouver, BC V5Z 4E6, Canada;
| |
Collapse
|
197
|
Chua KP, Teng YHF, Tan AC, Takano A, Alvarez JJS, Nahar R, Rohatgi N, Lai GGY, Aung ZW, Yeong JPS, Lim KH, Naeini MM, Kassam I, Jain A, Tan WL, Gogna A, Too CW, Kanesvaran R, Ng QS, Ang MK, Rajasekaran T, Anantham D, Phua GC, Tan BS, Lee YY, Wang L, Teo ASM, Khng AJ, Lim MJ, Suteja L, Toh CK, Lim WT, Iyer NG, Tam WL, Tan EH, Zhai W, Hillmer AM, Skanderup AJ, Tan DSW. Integrative Profiling of T790M-Negative EGFR-Mutated NSCLC Reveals Pervasive Lineage Transition and Therapeutic Opportunities. Clin Cancer Res 2021; 27:5939-5950. [PMID: 34261696 PMCID: PMC9401458 DOI: 10.1158/1078-0432.ccr-20-4607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite the established role of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutated NSCLC, drug resistance inevitably ensues, with a paucity of treatment options especially in EGFR T790M-negative resistance. EXPERIMENTAL DESIGN We performed whole-exome and transcriptome analysis of 59 patients with first- and second-generation EGFR TKI-resistant metastatic EGFR-mutated NSCLC to characterize and compare molecular alterations mediating resistance in T790M-positive (T790M+) and -negative (T790M-) disease. RESULTS Transcriptomic analysis revealed ubiquitous loss of adenocarcinoma lineage gene expression in T790M- tumors, orthogonally validated using multiplex IHC. There was enrichment of genomic features such as TP53 alterations, 3q chromosomal amplifications, whole-genome doubling and nonaging mutational signatures in T790M- tumors. Almost half of resistant tumors were further classified as immunehot, with clinical outcomes conditional on immune cell-infiltration state and T790M status. Finally, using a Bayesian statistical approach, we explored how T790M- and T790M+ disease might be predicted using comprehensive genomic and transcriptomic profiles of treatment-naïve patients. CONCLUSIONS Our results illustrate the interplay between genetic alterations, cell lineage plasticity, and immune microenvironment in shaping divergent TKI resistance and outcome trajectories in EGFR-mutated NSCLC. Genomic and transcriptomic profiling may facilitate the design of bespoke therapeutic approaches tailored to a tumor's adaptive potential.
Collapse
Affiliation(s)
- Khi Pin Chua
- Genome Institute of Singapore, Singapore, Singapore
| | - Yvonne H F Teng
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Center Singapore, Singapore, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore
| | - Angela Takano
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Rahul Nahar
- Genome Institute of Singapore, Singapore, Singapore
| | - Neha Rohatgi
- Genome Institute of Singapore, Singapore, Singapore
| | - Gillianne G Y Lai
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Zaw Win Aung
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Joe P S Yeong
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kiat Hon Lim
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | | | | | - Amit Jain
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Wan Ling Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Apoorva Gogna
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore, Singapore
| | - Chow Wei Too
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Tanujaa Rajasekaran
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Devanand Anantham
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Ghee Chee Phua
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Bien Soo Tan
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore, Singapore
| | - Yin Yeng Lee
- Genome Institute of Singapore, Singapore, Singapore
| | - Lanying Wang
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | | | | | - Ming Jie Lim
- Genome Institute of Singapore, Singapore, Singapore
| | - Lisda Suteja
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Chee Keong Toh
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore
- IMCB NCC MPI Singapore Oncogenome Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Center Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore
- Division of Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eng-Huat Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore, Singapore, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Axel M Hillmer
- Genome Institute of Singapore, Singapore, Singapore
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Daniel S W Tan
- Genome Institute of Singapore, Singapore, Singapore.
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Center Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore
| |
Collapse
|
198
|
Gupta R, Smalley M, Anusim N, Jindal V, Singh Rahi M, Gupta S, Gupta S, Jaiyesimi I. Paradigm shift in the management of metastatic nonsmall cell lung cancer. Int J Clin Pract 2021; 75:e14533. [PMID: 34129744 DOI: 10.1111/ijcp.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of cancer mortality in the United States. The use of precision medicine in the past 10 years has significantly changed the therapeutic landscape of lung cancer. Management of advanced nonsmall cell lung cancer (NSCLC) has transitioned from a chemotherapeutic approach to targeted treatments and immunotherapeutic agents. Several tyrosine kinase inhibitors (TKIs) have been approved for patients with targeted mutations and patients who do not have driver mutations; immunotherapy has been recently approved as frontline therapy, which has resulted in marked improvement in overall survival and added a new tool in our armamentarium. AIMS The purpose of this review is to highlight recent advancements in diagnostic approach and management strategies in patients with metastatic NSCLC. MATERIALS AND METHODS A literature search was conducted on Medline (via PubMed) and National Comprehensive Cancer Network Guidelines using the keywords "precision diagnosis," "advanced non-small cell lung cancer," "target therapies," and "immunotherapy." CONCLUSION The use of next-generation sequencing has significantly changed our understanding of molecular oncogenic mechanisms of lung cancer. These advancements have created a paradigm shift in the treatment strategies of metastatic lung cancer from primarily chemotherapeutic approach to increasing use of targeted therapies and immune checkpoint inhibitors (ICI) leading to better survival rates and lesser toxicity.
Collapse
Affiliation(s)
- Ruby Gupta
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Melanie Smalley
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Nwabundo Anusim
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Vishal Jindal
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Mandeep Singh Rahi
- Division of Pulmonary Diseases and Critical Care, Yale-New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Sorab Gupta
- Department of Hematology and Medical Oncology, BronxCare Hospital, Bronx, NY, USA
| | - Sachin Gupta
- Department of Internal Medicine, Tower Health Reading Hospital, Reading, PA, USA
| | - Ishmael Jaiyesimi
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| |
Collapse
|
199
|
Liu H, Dong Z. Cancer Etiology and Prevention Principle: "1 + X". Cancer Res 2021; 81:5377-5395. [PMID: 34470778 DOI: 10.1158/0008-5472.can-21-1862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Cancer was previously thought to be an inevitable aspect of human health with no effective treatments. However, the results of in-depth cancer research suggest that most types of cancer may be preventable. Therefore, a comprehensive understanding of the disparities in cancer burden caused by different risk factors is essential to inform and improve cancer prevention and control. Here, we propose the cancer etiology and prevention principle "1 + X," where 1 denotes the primary risk factor for a cancer and X represents the secondary contributing risk factors for the cancer. We elaborate upon the "1 + X" principle with respect to risk factors for several different cancer types. The "1 + X" principle can be used for precise prevention of cancer by eliminating the main cause of a cancer and minimizing the contributing factors at the same time.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
200
|
Song Y, Li G, Ju K, Ran W, Zhao H, Liu X, Hou M, He Y, Chen Y, Zang G, Xing X. Mesenchymal-Epithelial Transition Exon 14 Skipping Mutation and Amplification in 5,008 Patients With Lung Cancer. Front Oncol 2021; 11:755031. [PMID: 34660325 PMCID: PMC8515048 DOI: 10.3389/fonc.2021.755031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lung cancer is a major health concern worldwide because of its increasing incidence and mortality. This study aimed to clarify the association between mesenchymal-epithelial transition (MET) genomic alterations and clinical characteristics of lung cancer. Method We collected data from 5,008 patients with lung cancer diagnosed and treated between January 2017 and July 2021 at the Affiliated Hospital of Qingdao University. Genomic alterations in the MET gene, including the exon 14 skipping mutation and amplification, were detected using amplification refractory mutation system-polymerase chain reaction (2,057 cases) and next-generation sequencing (2,951 cases). Clinical characteristics such as age, sex, tumor location, tumor stage, smoking, pleural invasion, and histology were statistically analyzed for MET exon 14 skipping mutation and amplification. The DNA splicing sites causing the MET exon 14 skipping mutation at the mRNA level were also investigated. Results The incidence of the MET exon 14 skipping mutation was 0.90% (41/4,564) in adenocarcinoma, 1.02% (3/294) in squamous cell carcinoma, and 8.33% (1/12) in sarcomatoid carcinoma specimens. It was more frequently observed in patients over 60 years of age than the MET exon 14 skipping mutation wildtype. The MET exon 14 skipping mutation co-occurred with epidermal growth factor receptor (EGFR) L858R, EGFR 19-Del, and BRAF V600E mutations. At the DNA level, single nucleotide mutation and small fragment deletion (1-38 base pairs) upstream and downstream of MET exon 14 led to MET exon 14 skipping mutation at the mRNA level. MET amplification occurred in 0.78% (21/2,676) adenocarcinoma and 1.07% (2/187) squamous cell carcinoma specimens and was significantly associated with advanced tumor stages (III + IV) compared to the MET amplification wildtype. MET amplification primarily co-occurred with the EGFR mutation. Conclusions Our study found that MET genomic alterations were statistically related to age and tumor stage and co-existed with mutations of other oncogenic driver genes, such as EGFR and BRAF. Moreover, various splicing site changes at the DNA level led to the exon 14 skipping mutation at the mRNA level. Further studies are required to clarify the association between MET genomic alterations and prognosis.
Collapse
Affiliation(s)
- Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Ju
- Department of Emergency, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglan Liu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyu Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulu He
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoliang Zang
- Department of Technical, Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|