151
|
Virag JAI, Lust RM. Coronary artery ligation and intramyocardial injection in a murine model of infarction. J Vis Exp 2011:2581. [PMID: 21673649 PMCID: PMC3197029 DOI: 10.3791/2581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mouse models are a valuable tool for studying acute injury and chronic remodeling of the myocardium in vivo. With the advent of genetic modifications to the whole organism or the myocardium and an array of biological and/or synthetic materials, there is great potential for any combination of these to assuage the extent of acute ischemic injury and impede the onset of heart failure pursuant to myocardial remodeling. Here we present the methods and materials used to reliably perform this microsurgery and the modifications involved for temporary (with reperfusion) or permanent coronary artery occlusion studies as well as intramyocardial injections. The effects on the heart that can be seen during the procedure and at the termination of the experiment in addition to histological evaluation will verify efficacy. Briefly, surgical preparation involves anesthetizing the mice, removing the fur on the chest, and then disinfecting the surgical area. Intratracheal intubation is achieved by transesophageal illumination using a fiber optic light. The tubing is then connected to a ventilator. An incision made on the chest exposes the pectoral muscles which will be cut to view the ribs. For ischemia/reperfusion studies, a 1 cm piece of PE tubing placed over the heart is used to tie the ligature to so that occlusion/reperfusion can be customized. For intramyocardial injections, a Hamilton syringe with sterile 30gauge beveled needle is used. When the myocardial manipulations are complete, the rib cage, the pectoral muscles, and the skin are closed sequentially. Line block analgesia is effected by 0.25% marcaine in sterile saline which is applied to muscle layer prior to closure of the skin. The mice are given a subcutaneous injection of saline and placed in a warming chamber until they are sternally recumbent. They are then returned to the vivarium and housed under standard conditions until the time of tissue collection. At the time of sacrifice, the mice are anesthetized, the heart is arrested in diastole with KCl or BDM, rinsed with saline, and immersed in fixative. Subsequently, routine procedures for processing, embedding, sectioning, and histological staining are performed. Nonsurgical intubation of a mouse and the microsurgical manipulations described make this a technically challenging model to learn and achieve reproducibility. These procedures, combined with the difficulty in performing consistent manipulations of the ligature for timed occlusion(s) and reperfusion or intramyocardial injections, can also affect the survival rate so optimization and consistency are critical.
Collapse
Affiliation(s)
- Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, USA.
| | | |
Collapse
|
152
|
Usui S, Maejima Y, Pain J, Hong C, Cho J, Park JY, Zablocki D, Tian B, Glass DJ, Sadoshima J. Endogenous muscle atrophy F-box mediates pressure overload-induced cardiac hypertrophy through regulation of nuclear factor-kappaB. Circ Res 2011; 109:161-71. [PMID: 21617130 DOI: 10.1161/circresaha.110.238717] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Overexpression of muscle atrophy F-box (MAFbx/atrogin-1), an E3 ubiquitin ligase, induces proteasomal degradation in cardiomyocytes. The role of endogenous MAFbx in regulating cardiac hypertrophy and failure remains unclear. OBJECTIVE We investigated the role of MAFbx in regulating cardiac hypertrophy and function in response to pressure overload. Transverse aortic constriction (TAC) was applied to MAFbx knockout (KO) and wild-type (WT) mice. METHODS AND RESULTS Expression of MAFbx in WT mice was significantly increased by TAC. TAC-induced increases in cardiac hypertrophy were significantly smaller in MAFbx KO than in WT mice. There was significantly less lung congestion and interstitial fibrosis in MAFbx KO than in WT mice. MAFbx KO also inhibited β-adrenergic cardiac hypertrophy. DNA microarray analysis revealed that activation of genes associated with the transcription factor binding site for the nuclear factor-κB family were inhibited in MAFbx KO mice compared with WT mice after TAC. Although the levels of IκB-α were significantly decreased after TAC in WT mice, they were increased in MAFbx KO mice. MAFbx regulates ubiquitination and proteasomal degradation of IκB-α in cardiomyocytes. In primary cultured rat cardiomyocytes, phenylephrine-induced activation of nuclear factor-κB and hypertrophy were significantly suppressed by MAFbx knockdown but were partially rescued by overexpression of nuclear factor-κB p65. CONCLUSIONS MAFbx plays an essential role in mediating cardiac hypertrophy in response to pressure overload. Downregulation of MAFbx inhibits cardiac hypertrophy in part through stabilization of IκB-α and inactivation of nuclear factor-κB. Taken together, inhibition of MAFbx attenuates pathological hypertrophy, thereby protecting the heart from progression into heart failure.
Collapse
Affiliation(s)
- Soichiro Usui
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Wysong A, Couch M, Shadfar S, Li L, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, Willis MS. NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1059-68. [PMID: 21356358 DOI: 10.1016/j.ajpath.2010.12.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 12/30/2022]
Abstract
Cancer cachexia is a severe wasting syndrome characterized by the progressive loss of lean body mass and systemic inflammation. It occurs in approximately 80% of patients with advanced malignancy and is the cause of 20% to 30% of all cancer-related deaths. The mechanism by which striated muscle loss occurs is the tumor release of pro-inflammatory cytokines, such as IL-1, IL-6, and TNF-α. These cytokines interact with their cognate receptors on muscle cells to enhance NF-κB signaling, which then mediates muscle loss and significant cardiac dysfunction. Genetic inhibition of NF-κB signaling has demonstrated its predominant role in skeletal muscle loss. Therefore, we tested two novel drugs designed to specifically inhibit NF-κB by targeting the IκB kinase (IKK) complex: Compound A and NEMO binding domain (NBD) peptide. Using an established mouse model of cancer cachexia (C26 adenocarcinoma), we determined how these drugs affected the development of tumor-induced cardiac atrophy and function. Echocardiographic and histological analysis revealed that both Compound A and NBD inhibit cardiac NF-κB activity and prevent the development of tumor-induced systolic dysfunction and atrophy. This protection was independent of any effects of the tumor itself (Compound A) or tumor-secreted cytokines (NBD). This study identifies for the first time, to our knowledge, that drugs targeting the IKK complex are cardioprotective against cancer cachexia-induced cardiac atrophy and systolic dysfunction, suggesting therapies that may help reduce cardiac-associated morbidities found in patients with advanced malignancies.
Collapse
Affiliation(s)
- Ashley Wysong
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Jang JW, Lee WY, Lee JH, Moon SH, Kim CH, Chung HM. A novel Fbxo25 acts as an E3 ligase for destructing cardiac specific transcription factors. Biochem Biophys Res Commun 2011; 410:183-8. [PMID: 21596019 DOI: 10.1016/j.bbrc.2011.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 01/05/2023]
Abstract
Alterations in ubiquitin-proteasome system (UPS) have been implicated in the etiology of human cardiovascular diseases. Skp1/Cul1/F-box (SCF) ubiquitin E3 ligase complex plays a pivotal role in ubiquitination of cardiac proteins. However, a specific ubiquitin E3 ligase responsible for the destruction of cardiac transcription factors such as Nkx2-5, Isl1, Mef2C, and Tbx5 remains elusive to date. Here, we show that a novel F-box containing Fbxo25 is cardiac-specific and acts as an ubiquitin E3 ligase for cardiac transcription factors. Fbxo25 expression was nuclei-specific in vitro and cardiomyocytes. Expression level of Fbxo25 was higher in a fetal heart than an adult. Moreover, Fbxo25 expression was increased along with those of cardiac-specific genes during cardiomyocyte development from ESCs. Fbxo25 expression facilitated protein degradation of Nkx2-5, Isl1, Hand1, and Mef2C. Especially, Fbxo25 ubiquitinated Nkx2-5, Isl1, and Hand1. Altogether, Fbxo25 acts as an ubiquitin E3 ligase to target cardiac transcription factors including Nkx2-5, Isl1, and Hand1, indicating that cardiac protein homeostasis through Fbxo25 has a pivotal impact on cardiac development.
Collapse
Affiliation(s)
- Jae-Woo Jang
- Stem Cell Research Laboratory, Department of Developmental Biology, CHA University, Seoul 135-907, Republic of Korea
| | | | | | | | | | | |
Collapse
|
155
|
Baskin KK, Taegtmeyer H. Taking pressure off the heart: the ins and outs of atrophic remodelling. Cardiovasc Res 2011; 90:243-50. [PMID: 21354996 DOI: 10.1093/cvr/cvr060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our work on atrophic remodelling of the heart has led us to appreciate the simple principles in biology: (i) the dynamic nature of intracellular protein turnover, (ii) the return to the foetal gene programme when the heart remodels, and (iii) the adaptive changes of cardiac metabolism. Although the molecular mechanisms of cardiac hypertrophy are many, much less is known regarding the molecular mechanisms of cardiac atrophy. We state the case that knowing more about mechanisms of atrophic remodelling may provide insights into cellular consequences of metabolic and haemodynamic unloading of the stressed heart. Overall we strive to find an answer to the question: 'What makes the failing heart shrink and become stronger?' We speculate that signals arising from intermediary metabolism of energy-providing substrates are likely candidates.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Internal Medicine, Division of Cardiology, The University of Texas School of Medicine at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030, USA
| | | |
Collapse
|
156
|
Amanso AM, Debbas V, Laurindo FRM. Proteasome inhibition represses unfolded protein response and Nox4, sensitizing vascular cells to endoplasmic reticulum stress-induced death. PLoS One 2011; 6:e14591. [PMID: 21297867 PMCID: PMC3027620 DOI: 10.1371/journal.pone.0014591] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 12/06/2010] [Indexed: 12/21/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.
Collapse
Affiliation(s)
- Angélica M. Amanso
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Victor Debbas
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
157
|
Abstract
During the last 15 years, the perception of the cardiac z-disc has undergone substantial changes. Initially viewed as a structural component at the lateral boundaries of the sarcomere, the cardiac z-disc has increasingly become recognized as a nodal point in cardiomyocyte signal transduction and disease. This minireview thus focuses on novel components and recent developments in z-disc biology and their role in cardiac signaling and disease.
Collapse
Affiliation(s)
- Derk Frank
- Internal Medicine III/Cardiology, University of Kiel, 24105 Kiel, Germany
| | | |
Collapse
|
158
|
Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 2011; 122:2727-35. [PMID: 21173361 DOI: 10.1161/circulationaha.110.942268] [Citation(s) in RCA: 435] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Izhak Kehat
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | |
Collapse
|
159
|
Willis MS, Patterson C. Hold me tight: Role of the heat shock protein family of chaperones in cardiac disease. Circulation 2010; 122:1740-51. [PMID: 20975010 DOI: 10.1161/circulationaha.110.942250] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7126, USA
| | | |
Collapse
|
160
|
Su H, Li J, Menon S, Liu J, Kumarapeli AR, Wei N, Wang X. Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ Res 2010; 108:40-50. [PMID: 21051661 DOI: 10.1161/circresaha.110.230607] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Ubiquitin-proteasome system (UPS) dysfunction has been implicated in cardiac pathogenesis. Understanding how cardiac UPS function is regulated will facilitate delineating the pathophysiological significance of UPS dysfunction and developing new therapeutic strategies. The COP9 (constitutive photomorphogenesis mutant 9) signalosome (CSN) may regulate the UPS, but this has not been tested in a critical vertebrate organ. Moreover, the role of CSN in a postmitotic organ and the impact of cardiomyocyte-restricted UPS dysfunction on the heart have not been reported. OBJECTIVE We sought to determine the role of CSN-mediated deneddylation in UPS function and postnatal cardiac development and function. METHODS AND RESULTS Cardiomyocyte-restricted Csn8 gene knockout (CR-Csn8KO) in mice was achieved using a Cre-LoxP system. CR-Csn8KO impaired CSN holocomplex formation and cullin deneddylation and resulted in decreases in F-box proteins. Probing with a surrogate misfolded protein revealed severe impairment of UPS function in CR-Csn8KO hearts. Consequently, CR-Csn8KO mice developed cardiac hypertrophy, which rapidly progressed to heart failure and premature death. Massive cardiomyocyte necrosis rather than apoptosis appears to be the primary cause of the heart failure. This is because (1) massive necrotic cell death and increased infiltration of leukocytes were observed before increased apoptosis; (2) increased apoptosis was not detectable until overt heart failure was observed; and (3) cardiac overexpression of Bcl2 failed to ameliorate CR-Csn8KO mouse premature death. CONCLUSIONS Csn8/CSN plays an essential role in cullin deneddylation, UPS-mediated degradation of a subset of proteins, and the survival of cardiomyocytes and, therefore, is indispensable in postnatal development and function of the heart. Cardiomyocyte-restricted UPS malfunction can cause heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, 57069, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Baker TA, Geng Q, Romero J, Picken MM, Gamelli RL, Majetschak M. Prolongation of myocardial viability by proteasome inhibition during hypothermic organ preservation. Biochem Biophys Res Commun 2010; 401:548-53. [PMID: 20875792 DOI: 10.1016/j.bbrc.2010.09.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/22/2010] [Indexed: 12/28/2022]
Abstract
Recently, we provided evidence for a possible role of the cardiac proteasome during ischemia, suggesting that a subset of 26S proteasomes is a cell-destructive protease, which is activated as the cellular energy supply declines. Although proteasome inhibition during cold ischemia (CI) reduced injury of ischemic hearts, it remains unknown whether these beneficial effects are maintained throughout reperfusion, and thus, may have pathophysiological relevance. Therefore, we evaluated the effects of epoxomicin (specific proteasome inhibitor) in a rat heterotopic heart transplantation model. Donor hearts were arrested with University of Wisconsin solution (UW) and stored for 12 h/24 h in 4 °C UW±epoxomicin, followed by transplantation. Efficacy of epoxomicin was confirmed by proteasome peptidase activity measurements and analyses of myocardial ubiquitin pools. After 12hCI, troponin I content of UW was lower with epoxomicin. Although all hearts after 12hCI started beating spontaneously, addition of epoxomicin to UW during CI reduced cardiac edema and preserved the ultrastructural integrity of the post-ischemic cardiomyocyte. After 24hCI in UW±epoxomicin, hearts did not regain contractility. When hearts were perfused with epoxomicin during cardioplegia, the cardiac proteasome was inhibited immediately, all of these hearts started beating after 24hCI in UW plus epoxomicin and cardiac edema and myocardial ultrastructure were comparable to hearts after 12hCI. Epoxomicin did not affect markers of lipid peroxidation or neutrophil infiltration in post-ischemic hearts. These data further support the concept that proteasome activation during ischemia is of pathophysiological relevance and suggest proteasome inhibition as a promising approach to improve organ preservation strategies.
Collapse
Affiliation(s)
- Todd A Baker
- Burn and Shock Trauma Institute, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | | | | | | | | | | |
Collapse
|
162
|
Tang M, Li J, Huang W, Su H, Liang Q, Tian Z, Horak KM, Molkentin JD, Wang X. Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc Res 2010; 88:424-33. [PMID: 20601385 DOI: 10.1093/cvr/cvq217] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Proteasome functional insufficiency (PFI) may play an important role in the progression of congestive heart failure but the underlying molecular mechanism is poorly understood. Calcineurin and nuclear factor of activated T-cells (NFAT) are degraded by the proteasome, and the calcineurin-NFAT pathway mediates cardiac remodelling. The present study examined the hypothesis that PFI activates the calcineurin-NFAT pathway and promotes maladaptive remodelling of the heart. METHODS AND RESULTS Using a reporter gene assay, we found that pharmacological inhibition of 20S proteasomes stimulated NFAT transactivation in both mouse hearts and cultured adult mouse cardiomyocytes. Proteasome inhibition stimulated NFAT nuclear translocation in a calcineurin-dependent manner and led to a maladaptive cell shape change in cultured neonatal rat ventricular myocytes. Proteasome inhibition facilitated left ventricular dilatation and functional decompensation and increased fatality in mice with aortic constriction while causing cardiac hypertrophy in the sham surgery group. It was further revealed that both calcineurin protein levels and NFAT transactivation were markedly increased in the mouse hearts with desmin-related cardiomyopathy and severe PFI. Expression of an aggregation-prone mutant desmin also directly increased calcineurin protein levels in cultured cardiomyocytes. CONCLUSIONS The calcineurin-NFAT pathway in the heart can be activated by proteasome inhibition and is activated in the heart of a mouse model of desmin-related cardiomyopathy that is characterized by severe PFI. The interplay between PFI and the calcineurin-NFAT pathway may contribute to the pathological remodelling of cardiomyocytes characteristic of congestive heart failure.
Collapse
Affiliation(s)
- Mingxin Tang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|