151
|
Immune evasion in primary testicular and central nervous system lymphomas: HLA I and II loss rather than 9p24.1/PD-L1/PD-L2 alterations. Blood 2021; 138:1194-1197. [PMID: 34125179 DOI: 10.1182/blood.2021011366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
|
152
|
Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1037. [PMID: 34277837 PMCID: PMC8267255 DOI: 10.21037/atm-20-6833] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are immunomodulatory antibodies that intensify the host immune response, thereby leading to cytotoxicity. The primary targets for checkpoint inhibition have included cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death receptor-1 (PD-1) or programmed cell death ligand-1 (PD-L1). ICIs have resulted in a change in treatment landscape of various neoplasms. Among hematologic malignancies, ICIs have been most successful in certain subtypes of lymphomas such as classic Hodgkin lymphoma (cHL) and primary mediastinal B-cell lymphoma (PMBCL). However, there have been several challenges in harnessing the host immune system through ICI use in other lymphomas. The underlying reasons for the low efficacy of ICI monotherapy in most lymphomas may include defects in antigen presentation, non-inflamed tumor microenvironment (TME), immunosuppressive metabolites, genetic factors, and an overall lack of predictive biomarkers of response. In this review, we outline the existing and ongoing studies utilizing ICI therapy in various lymphomas. We also describe the challenges leading to the lack of efficacy with ICI use and discuss potential strategies to overcome those challenges including: chimeric antigen receptor T-cell therapy (CAR-T therapy), bispecific T-cell therapy (BiTE), lymphocyte activation gene-3 (LAG-3) inhibitors, T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) inhibitors, vaccines, promotion of inflammatory macrophages, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors, DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi). Tumor mutational burden and interferon-gamma release assays are potential biomarkers of ICI treatment response beyond PD-L1 expression. Further collaborations between clinicians and scientists are vital to understand the immunopathology in ICI therapy in order to improve clinical outcomes.
Collapse
|
153
|
Osataphan S, Augustynowicz A, Perrino C, Lam P. Triple-hit high-grade B-cell lymphoma presenting with ovarian torsion. BMJ Case Rep 2021; 14:14/5/e242423. [PMID: 34059546 DOI: 10.1136/bcr-2021-242423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We report a case of a previously healthy woman in her early 70s who presented with 2 weeks of episodic abdominal pain and significant weight loss. Imaging of her abdomen revealed acute right ovarian torsion associated with bilateral ovarian enlargement and an indeterminant pelvic mass. An urgent laparoscopic bilateral oophorectomy was performed with pathological results consistent with triple-hit high-grade B-cell lymphoma. She was successfully treated with dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin and rituximab, intrathecal methotrexate and venetoclax with complete remission after three cycles. Ovarian lymphoma is a rare entity and its genetic features have not been well described. We performed a literature review, describe the current knowledge regarding ovarian lymphoma and its therapeutic implication in the genomic age.
Collapse
Affiliation(s)
- Soravis Osataphan
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Aleksandra Augustynowicz
- Department of Radiology, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Carmen Perrino
- Department of Pathology, Mount Auburn Hospital, Cambridge, Massachusetts, USA
| | - Prudence Lam
- Department of Hematology and Oncology, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
154
|
Genomic landscape of cutaneous follicular lymphomas reveals 2 subgroups with clinically predictive molecular features. Blood Adv 2021; 5:649-661. [PMID: 33560380 DOI: 10.1182/bloodadvances.2020002469] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/20/2020] [Indexed: 01/14/2023] Open
Abstract
Primary cutaneous follicle center lymphomas (PCFCLs) are indolent B-cell lymphomas that predominantly remain skin restricted and manageable with skin-directed therapy. Conversely, secondary cutaneous involvement by usual systemic follicular lymphoma (secondary cutaneous follicular lymphoma [SCFL]) has a worse prognosis and often necessitates systemic therapy. Unfortunately, no histopathologic or genetic features reliably differentiate PCFCL from SCFL at diagnosis. Imaging may miss low-burden internal disease in some cases of SCFLs, leading to misclassification as PCFCL. Whereas usual systemic FL is well characterized genetically, the genomic landscapes of PCFCL and SCFL are unknown. Herein, we analyzed clinicopathologic and immunophenotypic data from 30 cases of PCFCL and 10 of SCFL and performed whole-exome sequencing on 18 specimens of PCFCL and 6 of SCFL. During a median follow-up of 7 years, 26 (87%) of the PCFCLs remained skin restricted. In the remaining 4 cases, systemic disease developed within 3 years of diagnosis. Although the SCFLs universally expressed BCL2 and had BCL2 rearrangements, 73% of the PCFCLs lacked BCL2 expression, and only 8% of skin-restricted PCFCLs had BCL2 rearrangements. SCFLs showed low proliferation fractions, whereas 75% of PCFCLs had proliferation fractions >30%. Of the SCFLs, 67% had characteristic loss-of-function CREBBP or KMT2D mutations vs none in skin-restricted PCFCL. Both SCFL and skin-restricted PCFCL showed frequent TNFRSF14 loss-of-function mutations and copy number loss at chromosome 1p36. These data together establish PCFCL as a unique entity with biological features distinct from usual systemic FL and SCFL. We propose 3 criteria based on BCL2 rearrangement, chromatin-modifying gene mutations (CREBBP, KMT2D, EZH2, and EP300), and proliferation index to classify cutaneous FL specimens based on the likelihood of concurrent or future systemic spread.
Collapse
|
155
|
Abstract
Diffuse large B-cell lymphomas (DLBCL)s, the most common type of Non-Hodgkin’s Lymphoma, constitute a heterogeneous group of disorders including different disease sites, strikingly diverse molecular features and a profound variability in the clinical behavior. Molecular studies and clinical trials have partially revealed the underlying causes for this variability and have made possible the recognition of some molecular variants susceptible of specific therapeutic approaches. The main histogenetic groups include the germinal center, activated B cells, thymic B cells and terminally differentiated B cells, a basic scheme where the large majority of DLBCL cases can be ascribed. The nodal/extranodal origin, specific mutational changes and microenvironment peculiarities provide additional layers of complexity. Here, we summarize the status of the knowledge and make some specific proposals for addressing the future development of targeted therapy for DLBC cases.
Collapse
|
156
|
Primary central nervous system lymphoma: status and advances in diagnosis, molecular pathogenesis, and treatment. Chin Med J (Engl) 2021; 133:1462-1469. [PMID: 32452898 PMCID: PMC7339152 DOI: 10.1097/cm9.0000000000000844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare group of extra-nodal non-Hodgkin lymphoma which is confined to the central nervous system or eyes. This article aims to present a brief profile of PCNSL diagnosis and treatment in immunocompetent patients. The authors retrieved information from the PubMed database up to September 2019. The annual incidence of PCNSL increased over the last four decades. The prognosis of PCNSL has improved mainly due to the introduction and wide-spread use of high-dose methotrexate, which is now the backbone of all first-line treatment polychemotherapy regimens. Gene expression profiling and next-generation sequencing analyses have revealed mutations that induce activation of nuclear factor-κB, B cell antigen receptor, and Janus kinases/signal transducer and activator of transcription proteins signal pathways. Some novel agents are investigated in the treatment of relapsed PCNSL including immunotherapy and targeted therapy. In particular, lenalidomide and ibrutinib have demonstrated durable efficiency. Treatment of PCNSL has evolved in the last 40 years and survival outcomes have improved in most patient groups, but there is still room to improve outcome by optimizing current chemotherapy and novel agents.
Collapse
|
157
|
Abstract
Central nervous system lymphoma (CNSL) is a rare form of extranodal non-Hodgkin lymphoma. Central nervous system lymphoma can be primary (isolated to the central nervous space) or secondary in the setting of systemic disease. Treatment of CNSL has improved since the introduction of high-dose methotrexate and aggressive consolidation regimens. However, results after treatment are durable in only half of patients, and long-term survivors may experience late neurotoxicity, impacting quality of life. Given the rarity of this disease, few randomized prospective trials exist. This leaves many questions unanswered regarding optimal first-line and salvage treatments. Recent advances in the knowledge of pathophysiology of CNSL will hopefully help the development of future treatments. This review gives an overview of the epidemiology, pathophysiology, clinical presentation, diagnosis, and treatment of immunocompetent patients with CNSL.
Collapse
|
158
|
Role of Microenvironment in Non-Hodgkin Lymphoma: Understanding the Composition and Biology. ACTA ACUST UNITED AC 2021; 26:206-216. [PMID: 32496454 DOI: 10.1097/ppo.0000000000000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphoma microenvironment is a dynamic and well-orchestrated network of various immune and stromal cells that is indispensable for tumor cell survival, growth, migration, immune escape, and drug resistance. Recent progress has enhanced our knowledge of the pivotal role of microenvironment in lymphomagenesis. Understanding the characteristics, functions, and contributions of various components of the tumor niche, along with its bidirectional interactions with tumor cells, is paramount. It offers the potential to identify new therapeutic targets with the ability to restore antitumor immune surveillance and eliminate the protumoral factors contributed by the tumor niche.
Collapse
|
159
|
Tobin JWD, Bednarska K, Campbell A, Keane C. PD-1 and LAG-3 Checkpoint Blockade: Potential Avenues for Therapy in B-Cell Lymphoma. Cells 2021; 10:cells10051152. [PMID: 34068762 PMCID: PMC8151045 DOI: 10.3390/cells10051152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The dependence of cancer on an immunotolerant tumor microenvironment (TME) is well established. Immunotherapies that overcome tumor-induced immune suppression have been central to recent advancements in oncology. This is highlighted by the success of agents that interrupt PD-1 mediated immune suppression in a range of cancers. However, while PD-1 blockade has been paradigm-shifting in many malignancies, the majority of cancers show high rates of primary resistance to this approach. This has led to a rapid expansion in therapeutic targeting of other immune checkpoint molecules to provide combination immune checkpoint blockade (ICB), with one such promising approach is blockade of Lymphocyte Activation Gene 3 (LAG-3). Clinically, lymphoproliferative disorders show a wide spectrum of responses to ICB. Specific subtypes including classical Hodgkin lymphoma have demonstrated striking efficacy with anti-PD-1 therapy. Conversely, early trials of ICB have been relatively disappointing in common subtypes of Non-Hodgkin lymphoma. In this review, we describe the TME of common lymphoma subtypes with an emphasis on the role of prominent immune checkpoint molecules PD-1 and LAG3. We will also discuss current clinical evidence for ICB in lymphoma and highlight key areas for further investigation where synergistic dual checkpoint blockade of LAG-3 and PD-1 could be used to overcome ICB resistance.
Collapse
Affiliation(s)
- Joshua W. D. Tobin
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
| | - Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
| | - Ashlea Campbell
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
| | - Colm Keane
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
- Correspondence: ; Tel.: +617-3443-7912
| |
Collapse
|
160
|
Current and emerging therapies for primary central nervous system lymphoma. Biomark Res 2021; 9:32. [PMID: 33957995 PMCID: PMC8101140 DOI: 10.1186/s40364-021-00282-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Primary central nervous system (CNS) lymphoma (PCNSL) is a rare type of extranodal lymphoma exclusively involving the CNS at the onset, with diffuse large B-cell lymphoma (DLBCL) as the most common histological subtype. As PCNSL is a malignancy arising in an immune-privileged site, suboptimal delivery of systemic agents into tumor tissues results in poorer outcomes in PCNSL than in non-CNS DLBCLs. Commonly used regimens for PCNSL include high-dose methotrexate-based chemotherapy with rituximab for induction therapy and intensive chemotherapy followed by autologous hematopoietic stem cell transplantation or whole-brain radiotherapy for consolidation therapy. Targeted agents against the B-cell receptor signaling pathway, microenvironment immunomodulation and blood-brain barrier (BBB) permeabilization appear to be promising in treating refractory/relapsed patients. Chimeric antigen receptor-T cells (CAR-T cells) have been shown to penetrate the BBB as a potential tool to manipulate this disease entity while controlling CAR-T cell-related encephalopathy syndrome. Future approaches may stratify patients according to age, performance status, molecular biomarkers and cellular bioinformation. This review summarizes the current therapies and emerging agents in clinical development for PCNSL treatment.
Collapse
|
161
|
Choi YS. Immuno-oncology for B-cell lymphomas. Blood Res 2021; 56:S70-S74. [PMID: 33935038 PMCID: PMC8094003 DOI: 10.5045/br.2021.2021032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
The goal of cancer immunotherapy is to restore and optimize the immune response against malignant clones through several stages, from recognition of tumor antigens to establishment of long-lived memory cell populations. Boosting the intrinsic anti-tumor immune responses of the patients’ own, several types of “active immunotherapies” have been tried in many types of malignancies, inspired by successful experiences of immune checkpoint inhibition even in Hodgkin lymphoma. However, in B-cell non-Hodgkin lymphomas, clinical usefulness of such “active immunotherapies” is relatively unsatisfactory considering the remarkable advances in “passive immunotherapy,” including CD19-targeting chimeric antigen receptor T-cell therapy. Understanding how tumor cells and immune cells interact and contribute to immune evasion processes in the tumor microenvironment (TME) is an important prerequisite for the successful restoration of anti-tumor immune responses. In this review, a recent understanding of the biology of the immune tumor microenvironment surrounding B-cell non-Hodgkin lymphomas will be introduced. In addition, novel therapeutic approaches targeting the immune microenvironment other than immune checkpoint blockade are discussed.
Collapse
Affiliation(s)
- Yoon Seok Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
162
|
Tao K, Wang X, Tian X. Relapsed Primary Central Nervous System Lymphoma: Current Advances. Front Oncol 2021; 11:649789. [PMID: 33996566 PMCID: PMC8118624 DOI: 10.3389/fonc.2021.649789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma is an invasive malignant lymphoma confined to the central nervous system. Although patients undergoing first-line treatment can achieve complete response, most of them still relapse within two years. Relapsed lymphoma is derived from occult lymphoma cells, and B cell receptor pathway activation and immune escape are the key mechanisms for the pathogenesis of PCNSL. Most relapses are in the central nervous system, a small number of relapses are isolated systemic relapses, and clinical symptoms occur early and vary. Current treatments for relapse include high-dose methotrexate rechallenge and other regimens of chemotherapy, whole-brain radiation therapy, hematopoietic stem-cell transplantation, targeted therapy and immunotherapy, which have become promising treatments. The overall prognosis of relapsed PCNSL is very poor, although it is affected by many factors. This article summarizes the mechanisms, related factors, clinical features, follow-up, treatment and prognosis of relapsed primary central nervous system lymphoma.
Collapse
Affiliation(s)
- Kaiyan Tao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
163
|
Narita Y, Nagane M, Mishima K, Terui Y, Arakawa Y, Yonezawa H, Asai K, Fukuhara N, Sugiyama K, Shinojima N, Kitagawa J, Aoi A, Nishikawa R. Phase I/II study of tirabrutinib, a second-generation Bruton's tyrosine kinase inhibitor, in relapsed/refractory primary central nervous system lymphoma. Neuro Oncol 2021; 23:122-133. [PMID: 32583848 PMCID: PMC7850159 DOI: 10.1093/neuonc/noaa145] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The safety, tolerability, efficacy, and pharmacokinetics of tirabrutinib, a second-generation, highly selective oral Bruton’s tyrosine kinase inhibitor, were evaluated for relapsed/refractory primary central nervous system lymphoma (PCNSL). Methods Patients with relapsed/refractory PCNSL, Karnofsky performance status ≥70, and normal end-organ function received tirabrutinib 320 and 480 mg once daily (q.d.) in phase I to evaluate dose-limiting toxicity (DLT) within 28 days using a 3 + 3 dose escalation design and with 480 mg q.d. under fasted conditions in phase II. Results Forty-four patients were enrolled; 20, 7, and 17 received tirabrutinib at 320, 480, and 480 mg under fasted conditions, respectively. No DLTs were observed, and the maximum tolerated dose was not reached at 480 mg. Common grade ≥3 adverse events (AEs) were neutropenia (9.1%), lymphopenia, leukopenia, and erythema multiforme (6.8% each). One patient with 480 mg q.d. had grade 5 AEs (pneumocystis jirovecii pneumonia and interstitial lung disease). Independent review committee assessed overall response rate (ORR) at 64%: 60% with 5 complete responses (CR)/unconfirmed complete responses (CRu) at 320 mg, 100% with 4 CR/CRu at 480 mg, and 53% with 6 CR/CRu at 480 mg under fasted conditions. Median progression-free survival was 2.9 months: 2.1, 11.1, and 5.8 months at 320, 480, and 480 mg under fasted conditions, respectively. Median overall survival was not reached. ORR was similar among patients harboring CARD11, MYD88, and CD79B mutations, and corresponding wild types. Conclusion These data indicate favorable efficacy of tirabrutinib in patients with relapsed/refractory PCNSL. Trial registration JapicCTI-173646.
Collapse
Affiliation(s)
- Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasuhito Terui
- Department of Hematology and Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Hospital, Kagoshima, Japan
| | - Katsunori Asai
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuhiko Sugiyama
- Department of Medical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | | | - Arata Aoi
- Ono Pharmaceutical Co, Ltd, Osaka, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
164
|
Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Rev 2021; 50:100832. [PMID: 33896649 DOI: 10.1016/j.blre.2021.100832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade therapies targeting the PD-1 axis with monoclonal antibodies to reinstate host immune function have revolutionized the clinical management of some cancers but have had minimal impact on others. This dichotomy is exemplified by B cell lymphomas. Whilst striking results are observed in classical Hodgkin Lymphoma (cHL) and Primary Mediastinal B Cell Lymphoma (PMBL), responses in other B cell lymphomas are infrequent. Even with cHL and PMBL, responses are not always durable and adverse effects can result in treatment discontinuation. A more nuanced approach to manipulate the PD-1 axis is required before the full benefits of PD-1 axis blockade can be realised. In this review, we provide an outline of PD-1 axis biology, including the range of cellular expression, the molecular mechanisms underlying regulation and the impacts of downstream signalling. These may permit the development of alternate strategies to PD-1 axis blockade to enhance the therapeutic efficacy in B cell lymphomas.
Collapse
|
165
|
Ollikainen RK, Kotkaranta PH, Kemppainen J, Teppo HR, Kuitunen H, Pirinen R, Turpeenniemi-Hujanen T, Kuittinen O, Kuusisto MEL. Different chemokine profile between systemic and testicular diffuse large B-cell lymphoma. Leuk Lymphoma 2021; 62:2151-2160. [PMID: 33856274 DOI: 10.1080/10428194.2021.1913150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although treatment for diffuse large B-cell lymphoma (DLBCL) has taken some notable steps in the 2000s, there are still subgroups of patients suffering from high mortality and relapse rates. To further improve treatment outcomes, it is essential to discover new mechanisms of chemotherapy resistance and create new treatment approaches to overcome them. In the present study, we analyzed the expression of chemokines and their ligands in systemic and testicular DLBCL. From our biopsy sample set of 21 testicular and 28 systemic lymphomas, we were able to demonstrate chemokine profile differences and identify associations with clinical risk factors. High cytoplasmic CXCL13 expression had correlations with better treatment response, lower disease-related mortality, and limited stage. This study suggests that active CXCR5/CXCL13 signaling could overtake the CXCR4/CXCL12 axis, resulting in a better prognosis.
Collapse
Affiliation(s)
- Riina K Ollikainen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Pyry H Kotkaranta
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Janette Kemppainen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Hanna-Riikka Teppo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Hanne Kuitunen
- Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Risto Pirinen
- Department of Pathology, North Karelia Central Hospital, Joensuu, Finland
| | - Taina Turpeenniemi-Hujanen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Outi Kuittinen
- Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Oncology, Faculty of Health Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Milla E L Kuusisto
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Hematology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
166
|
Ababneh E, Saad AM, Crane GM. The role of EBV in haematolymphoid proliferations: emerging concepts relevant to diagnosis and treatment. Histopathology 2021; 79:451-464. [PMID: 33829526 DOI: 10.1111/his.14379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus with >90% of the adult population worldwide harbouring latent infection. A small subset of those infected develop EBV-associated neoplasms, including a range of lymphoproliferative disorders (LPD). The diagnostic distinction of these entities appears increasingly relevant as our understanding of EBV-host interactions and mechanisms of EBV-driven lymphomagenesis improves. EBV may lower the mutational threshold for malignant transformation, create potential vulnerabilities related to viral alteration of cell metabolism and allow for improved immune targeting. However, these tumours may escape immune surveillance by affecting their immune microenvironment, limiting viral gene expression or potential loss of the viral episome. Methods to manipulate the latency state of the virus to enhance immunogenicity are emerging as well as the potential to detect so-called 'hit and run' cases where EBV has been lost. Finally, measurement of EBV DNA remains an important biomarker for screening and monitoring of LPD. Methods to distinguish EBV DNA derived from virions during lytic activation from latent, methylated EBV DNA present in EBV-associated neoplasms may broaden the utility of this testing, particularly in patients with compromised immune function. We highlight some of these emerging areas relevant to the diagnosis and treatment of EBV-associated LPD with potential applicability to other EBV-associated neoplasms.
Collapse
Affiliation(s)
- Emad Ababneh
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| | - Anas M Saad
- Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Genevieve M Crane
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| |
Collapse
|
167
|
The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs. Blood 2021; 136:2263-2274. [PMID: 32932517 DOI: 10.1182/blood.2020005857] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell (ABC)-diffuse large B-cell lymphomas (DLBCLs) are clinically aggressive and phenotypically complex malignancies, whose transformation mechanisms remain unclear. Partially differentiated antigen-secreting cells (plasmablasts) have long been regarded as cells-of-origin for these tumors, despite lack of definitive experimental evidence. Recent DLBCL reclassification based on mutational landscapes identified MCD/C5 tumors as specific ABC-DLBCLs with unfavorable clinical outcome, activating mutations in the signaling adaptors MYD88 and CD79B, and immune evasion through mutation of antigen-presenting genes. MCD/C5s manifest prominent extranodal dissemination and similarities with primary extranodal lymphomas (PENLs). In this regard, recent studies on TBL1XR1, a gene recurrently mutated in MCD/C5s and PENLs, suggest that aberrant memory B cells (MBs), and not plasmablasts, are the true cells-of-origin for these tumors. Moreover, transcriptional and phenotypic profiling suggests that MCD/C5s, as a class, represent bona fide MB tumors. Based on emerging findings we propose herein a generalized stepwise model for MCD/C5 and PENLs pathogenesis, whereby acquisition of founder mutations in activated B cells favors the development of aberrant MBs prone to avoid plasmacytic differentiation on recall and undergo systemic dissemination. Cyclic reactivation of these MBs through persistent antigen exposure favors their clonal expansion and accumulation of mutations, which further facilitate their activation. As a result, MB-like clonal precursors become trapped in an oscillatory state of semipermanent activation and phenotypic sway that facilitates ulterior transformation and accounts for the extranodal clinical presentation and biology of these tumors. In addition, we discuss diagnostic and therapeutic implications of a MB cell-of-origin for these lymphomas.
Collapse
|
168
|
Garcia-Reyero J, Martinez Magunacelaya N, Gonzalez de Villambrosia S, Loghavi S, Gomez Mediavilla A, Tonda R, Beltran S, Gut M, Pereña Gonzalez A, d'Ámore E, Visco C, Khoury JD, Montes-Moreno S. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica 2021; 106:1120-1128. [PMID: 32273478 PMCID: PMC8018103 DOI: 10.3324/haematol.2020.251579] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The mutational profile of plasmablastic lymphoma has not been described. We performed a targeted, exonic next-generation sequencing analysis of 30 plasmablastic lymphoma cases with a Bcell lymphoma-dedicated panel and fluorescence in situ hybridization for the detection of MYC rearrangements. Complete phenotyping of the neoplastic and microenvironmental cell populations was also performed. We identified an enrichment in recurrent genetic events in MYC (69% with MYC translocation or amplification and three cases with missense point mutations), PRDM1/Blimp1 and STAT3 mutations. These gene mutations were more frequent in Epstein-Barr virus (EBV)-positive disease. Other genetic events included mutations in BRAF, EP300, BCR (CD79A and CD79B), NOTCH pathway (NOTCH2, NOTCH1 and SGK1) and MYD88pL265P. Immunohistochemical analysis showed consistent MYC expression, which was higher in cases with MYC rearrangements, together with phospho-STAT3 (Tyr705) overexpression in cases with STAT3 SH2 domain mutations. Microenvironmental cell populations were heterogeneous and unrelated to EBV, with enrichment of tumor-associated macrophages (TAM) and PD1-positive T cells. PD-L1 was expressed in all cases in the TAM population but only in the neoplastic cells in five cases (4 of 14 EBV-positive cases). HLA expression was absent in the majority of cases of plasmablastic lymphoma. In summary, the mutational profile of plasmablastic lymphoma is heterogeneous and related to EBV infection. Genetic events in MYC, STAT3 and PRDM1/Blimp1 are more frequent in EBV-positive disease. An enrichment in TAM and PD1 reactive T lymphocytes is found in the microenvironment of plasmablastic lymphoma and a fraction of the neoplastic cells express PD-L1.
Collapse
Affiliation(s)
- Julia Garcia-Reyero
- Anatomic Pathology Service, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | | | | | - Sanam Loghavi
- Hematopathology Department, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raul Tonda
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Emanuele d'Ámore
- Departments of Pathology and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, San Bortolo Hospital, Italy
| | - Joseph D Khoury
- Hematopathology Department, MD Anderson Cancer Center, Houston, TX, USA
| | - Santiago Montes-Moreno
- Anatomic Pathology Service, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| |
Collapse
|
169
|
Gomes Candido Reis D, Levy D, Lage LADPC, Culler HF, Rocha V, Bydlowski SP, Nogueira Zerbini MC, Pereira J. New genetic prognostic biomarkers in primary central nervous system lymphoma (PCNSL). Brain Behav 2021; 11:e02061. [PMID: 33591648 PMCID: PMC8035458 DOI: 10.1002/brb3.2061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/16/2020] [Accepted: 01/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PCNSL is a rare extranodal NHL with poor prognosis. Tumorigenesis has been associated with hyperactivation of BCR downstream and NFkB pathways. We studied the prognosis of the relative expression profile of target genes of NFkB pathway (MYC, BCL2), the essential transcriptional regulator in hematopoiesis LMO2, the checkpoint regulation pathway MGMT, the transcription factor POU2F1, the immune checkpoint gene PDCD1, and the proto-oncogene and transcriptional repressor gene BCL6 and its proteins in PCNSL. METHODS This study is a retrospective cohort study; 35 immunocompetent PCNSL-DLBCL patients had their gene expression (RT-qPCR) normalized to internal control gene GUSB. RESULTS Median patient age was 62 years, median OS was 42.6 months (95% CI: 26.6-58.6), PFS was 41 months (95% CI: 19.7-62.4), and DFS was 59.2 months (95% CI 31.9-86.6). A moderate correlation was found between the gene/protein expressions of MYC (kappa = 0.596, p = .022) and of BCL2 (kappa = 0.426, p = .042). Relative gene expression of MYC ≥ 0.201 (HR 6.117; p = .003) was associated with worse 5-year OS. Relative gene expression of MYC ≥ 0.201 (HR 3.96; p = .016) and MGMT ≥ 0.335 (HR 3.749; p = .056) was associated with worse PFS. Age > 60 years and IELSG score moderate/high were also associated with worse prognosis. CONCLUSIONS Overexpression of MYC and overexpression of MGMT were prognostic markers associated with unfavorable clinical outcomes in PCNSL.
Collapse
Affiliation(s)
- Diego Gomes Candido Reis
- Department of Hematology, Hemotherapy and Cell Therapy, Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Débora Levy
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.,Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Hebert Fabrício Culler
- Department of Hematology, Hemotherapy and Cell Therapy, Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Vanderson Rocha
- Department of Hematology, Hemotherapy and Cell Therapy, Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.,Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil.,Churchill Hospital, Oxford University, Oxford, UK
| | - Sérgio Paulo Bydlowski
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Juliana Pereira
- Department of Hematology, Hemotherapy and Cell Therapy, Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.,Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| |
Collapse
|
170
|
Abdulla M, Alexsson A, Sundström C, Ladenvall C, Mansouri L, Lindskog C, Berglund M, Cavelier L, Enblad G, Hollander P, Amini RM. PD-L1 and IDO1 are potential targets for treatment in patients with primary diffuse large B-cell lymphoma of the CNS. Acta Oncol 2021; 60:531-538. [PMID: 33579170 DOI: 10.1080/0284186x.2021.1881161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2, as well as Indoleamine 2,3-deoxygenase (IDO1) can be expressed both by tumor and microenvironmental cells and are crucial for tumor immune escape. We aimed to evaluate the role of PD-1, its ligands and IDO1 in a cohort of patients with primary diffuse large B-cell lymphoma of the CNS (PCNSL). MATERIAL AND METHODS Tissue microarrays (TMAs) were constructed in 45 PCNSL cases. RNA extraction from whole tissue sections and RNA sequencing were successfully performed in 33 cases. Immunohistochemical stainings for PD-1, PD-L1/paired box protein 5 (PAX-5), PD-L2/PAX-5 and IDO1, and Epstein-Barr virus encoding RNA (EBER) in situ hybridization were analyzed. RESULTS High proportions of PD-L1 and PD-L2 positive tumor cells were observed in 11% and 9% of cases, respectively. High proportions of PD-L1 and PD-L2 positive leukocytes were observed in 55% and 51% of cases, respectively. RNA sequencing revealed that gene expression of IDO1 was high in patients with high proportion of PD-L1 positive leukocytes (p = .01). Protein expression of IDO1 in leukocytes was detected in 14/45 cases, in 79% of these cases a high proportion of PD-L1 positive leukocytes was observed. Gene expression of IDO1 was high in EBER-positive cases (p = .0009) and protein expression of IDO1 was detected in five of six EBER-positive cases. CONCLUSION Our study shows a significant association between gene and protein expression of IDO1 and protein expression of PD-L1 in the tumor microenvironment of PCNSL, possibly of importance for prediction of response to immunotherapies.
Collapse
Affiliation(s)
- Maysaa Abdulla
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Andrei Alexsson
- Clinical Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Sundström
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Claes Ladenvall
- Clinical Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mattias Berglund
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Clinical Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunilla Enblad
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Hollander
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Rose-Marie Amini
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| |
Collapse
|
171
|
|
172
|
Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021; 22:3302. [PMID: 33804869 PMCID: PMC8038124 DOI: 10.3390/ijms22073302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed.
Collapse
Affiliation(s)
| | - Stephen M. Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
173
|
Li P, Chai J, Chen Z, Liu Y, Wei J, Liu Y, Zhao D, Ma J, Wang K, Li X, Shao Y, Gong L, Zhang W, Guo S, Yan Q, Li M, Fan L, Wang Z. Genomic Mutation Profile of Primary Gastrointestinal Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:622648. [PMID: 33747936 PMCID: PMC7973209 DOI: 10.3389/fonc.2021.622648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Primary gastrointestinal diffuse large B-cell lymphoma (GI-DLBCL) is the most common gastrointestinal lymphoma, but its genetic features are poorly understood. We performed whole-exome sequencing of 25 primary tumor samples from patients with GI-DLBCL and 23 matched normal tissue samples. Oncogenic mutations were screened, and the correlations between genetic mutations and clinicopathological characteristics were analyzed. Twenty-five patients with GI-DLBCL were enrolled in the genetic mutation analysis with a median of 184 (range 79–382) protein-altering variants per patient. We identified recurrent oncogenic mutations in GI-DLBCL, including those in TP53, MUC16, B2M, CCND3, HIST1H1C, NEB, and ID3. Compared with nodal DLBCL, GI-DLBCL exhibited an increased mutation frequency of TP53 and reduced mutation frequencies of PIM1, CREBBP, BCL2, KMT2D, and EZH2. Moreover, GI-DLBCL exhibited fewer MYD88 and CD79B mutations than DLBCL in the testis and central nervous system. GI-DLBCLs with HLA-B, MEF2A, RHOA, and NAV3 mutations exhibited a tendency toward a high proliferation index. MUC16 and ETV6 mutations often occurred in tumors with early clinical staging. Our data provide a comprehensive understanding of the landscape of mutations in a small subset of GI-DLBCLs. The genetic mutation profiles of GI-DLBCL differ from those of nodal DLBCL and DLBCL in immune-privileged sites. The different mutated genes are related to the NF-κB and JAK-STAT pathways, and the different pathogenetic mechanisms leading to the development of DLBCL may be influenced by the tissue microenvironment. Differences in genetic alterations might influence the clinicopathological characteristics of GI-DLBCL.
Collapse
Affiliation(s)
- Peifeng Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of Pathology, The 960th Hospital of the Chinese People's Liberation Army, Jinan, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yang Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of Oral Mucosa, Affiliated Stomatological Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wei
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Danhui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Kaijing Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qingguo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
174
|
Schaff LR, Ambady P, Doolittle ND, Grommes C. Primary central nervous system lymphoma: a narrative review of ongoing clinical trials and goals for future studies. ACTA ACUST UNITED AC 2021; 5. [PMID: 33912868 PMCID: PMC8078860 DOI: 10.21037/aol-20-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare disease of the brain, spine, cerebrospinal fluid (CSF) and/or vitreoretinal space. PCNSL is chemo and radiosensitive but relapse is common even years after initial treatment. Outside of consensus regarding the use of high-dose methotrexate (HD-MTX) for first line treatment, there is little uniformity in the management of newly diagnosed or relapsed PCNSL. The lack of consensus is driven by a paucity of randomized trials in this disease. Prospective studies are troubled by low enrollment, the lack of a standard induction regimen, and a varied approach to consolidation strategies. Moreover, the PCNSL patient population is heterogeneous and includes a high proportion of elderly or frail patients and consists of patients manifesting disease in varied compartments of the central nervous system (CNS). As a result, current treatment strategies vary widely and are often dictated by physician and institutional preference or regional practice. This review provides an overview of recently completed and ongoing therapeutic studies for patients with newly diagnosed and recurrent or refractory PCNSL. It discusses the existing evidence behind common approaches to induction and consolidation or maintenance regimens as well as the recent data regarding management of recurrent disease. Finally, it highlights the complexity of trial design in this disease and provides a framework for the design of future studies, which are needed to identify patient populations likely to benefit from specific induction, consolidation, or maintenance therapies.
Collapse
Affiliation(s)
- Lauren R Schaff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prakash Ambady
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Nancy D Doolittle
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
175
|
Lim JK, Kuss B, Talaulikar D. Role of cell-free DNA in haematological malignancies. Pathology 2021; 53:416-426. [PMID: 33648721 DOI: 10.1016/j.pathol.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Cell-free DNA (cfDNA) consists of fragments of double stranded DNA that are found in the circulation. They are released from the apoptosis of both normal haemopoietic cells and malignant cells. The use of cfDNA from easily accessible peripheral blood samples has created a new strategy in studying molecular genomics in haematological malignancies. Its use in diagnosis, prognosis and monitoring potentially precludes the need for repeated tissue samples, i.e., bone marrow biopsy or primary tissue biopsy. It also potentially provides a more comprehensive analysis of the disease as cfDNA are released from tumours from multiple sites of the body. While cfDNA research is still in its infancy, given its potential and the expansion in next generation sequencing (NGS) it has attracted a lot of attention in recent years. This review will focus on acute leukaemia, multiple myeloma and lymphoma and the potential diagnostic and prognostic implications of cfDNA, its role in response assessment and in detection of disease relapse.
Collapse
Affiliation(s)
- Jun K Lim
- Department of Haematology, The Canberra Hospital, Canberra, ACT, Australia
| | - Bryone Kuss
- Department of Molecular Medicine and Genetics, Flinders University/Flinders Medical Centre, SA Pathology Laboratories, Adelaide, SA, Australia
| | - Dipti Talaulikar
- Department of Haematology, The Canberra Hospital, Canberra, ACT, Australia; College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
176
|
Bittner A, Radke J, Eurich D, Wiener E, Denker S, Anagnostopoulos I, Na IK, Heppner FL, Bullinger L, Schmitt CA. Cerebral EBV-positive PTLD controlled by PD-1 checkpoint blockade in a liver transplant patient. Leuk Lymphoma 2021; 62:2026-2029. [PMID: 33612072 DOI: 10.1080/10428194.2021.1889537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aitomi Bittner
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dennis Eurich
- Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Edzard Wiener
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophy Denker
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Il-Kang Na
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Berlin, Germany.,BIH Centre for Regenerative Therapies, Berlin, Germany
| | - Frank L Heppner
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Clemens A Schmitt
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| |
Collapse
|
177
|
Greve P, Meyer-Wentrup FAG, Peperzak V, Boes M. Upcoming immunotherapeutic combinations for B-cell lymphoma. IMMUNOTHERAPY ADVANCES 2021; 1:ltab001. [PMID: 35919738 PMCID: PMC9326875 DOI: 10.1093/immadv/ltab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 01/09/2021] [Indexed: 11/13/2022] Open
Abstract
After initial introduction for B-cell lymphomas as adjuvant therapies to established cancer treatments, immune checkpoint inhibitors and other immunotherapies are now integrated in mainstream regimens, both in adult and pediatric patients. We here provide an overview of the current status of combination therapies for B-cell lymphoma, by in-depth analysis of combination therapy trials registered between 2015–2020. Our analysis provides new insight into the rapid evolution in lymphoma treatment, as propelled by new additions to the treatment arsenal. We conclude with prospects on upcoming clinical trials which will likely use systematic testing approaches of more combinations of established chemotherapy regimens with new agents, as well as new combinations of immunotherapy and targeted therapy. Future trials will be set up as basket or umbrella-type trials to facilitate the evaluation of new drugs targeting specific genetic changes in the tumor or associated immune microenvironment. As such, lymphoma patients will benefit by receiving more tailored treatment that is based on synergistic effects of chemotherapy combined with new agents targeting specific aspects of tumor biology and the immune system.
Collapse
Affiliation(s)
- Patrick Greve
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematology-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
178
|
Lakhotia R, Roschewski M. Circulating tumour DNA in B-cell lymphomas: current state and future prospects. Br J Haematol 2021; 193:867-881. [PMID: 33550600 DOI: 10.1111/bjh.17251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Circulating tumour DNA (ctDNA) is a highly versatile analyte and an emerging biomarker for detection of tumour-specific sequences in lymphoid malignancies. Since ctDNA is derived from tumour cells throughout the body, it overcomes fundamental limitations of tissue biopsies by capturing the complete molecular profile of tumours, including those from inaccessible anatomic locations. Assays for ctDNA are minimally invasive and serial sampling monitors the effectiveness of therapy and identifies minimal residual disease below the detection limit of standard imaging scans. Dynamic changes in ctDNA levels measure real-time tumour kinetics, and early reductions in ctDNA during treatment correlate with clinical outcomes in multiple B-cell lymphomas. After therapy, ctDNA can effectively discriminate between patients who achieved a complete molecular remission from those with residual treatment-resistant disease. Serial monitoring of ctDNA after therapy can detect early molecular relapse and identify drug-resistant clones that harbour targetable mutations. In order for ctDNA to reach its full potential, the standardization and harmonization of the optimal pre-analytical and analytical techniques for B-cell lymphomas is a critically necessary requirement. Prospective validation of ctDNA within clinical studies is also required to determine its clinical utility as an adjunctive decision-making tool.
Collapse
Affiliation(s)
- Rahul Lakhotia
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
179
|
Liu Y, Yao Q, Zhang F. Diagnosis, prognosis and treatment of primary central nervous system lymphoma in the elderly population (Review). Int J Oncol 2021; 58:371-387. [PMID: 33650642 PMCID: PMC7864151 DOI: 10.3892/ijo.2021.5180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare subtype of extranodal non-Hodgkin lymphoma that is unique and different from systemic diffuse large B-cell lymphomas. The median age at diagnosis of PCNSL is 65 years and its incidence is rising rapidly in the elderly population. A total of ≥20% of all patients with PCNSL are ≥80 years old. Notably, age has been identified as an independent poor prognostic factor for PCNSL. Elderly patients have an inferior prognosis to that of younger patients and are more severely affected by iatrogenic toxicity; therefore, elderly patients represent a unique and vulnerable treatment subgroup. The present review summarized the available literature to provide an improved understanding of the epidemiology, clinical characteristics, diagnosis, prognosis and management of PCNSL in the elderly population. Notably, the incidence of PCNSL in immunocompetent elderly patients, predominantly in men, is increasing. For the diagnosis of CNSL, imaging-guided stereotactic biopsy is considered the gold standard. When stereotactic biopsy is not possible or conclusive, certain biomarkers have been described that can help establish a diagnosis. PCNSL has a very poor prognosis in the elderly, even though several prognostic scoring systems exist and several prognostic markers have been reported in patients with PCNSL. Furthermore, the treatment of elderly patients remains challenging; it is unlikely that a novel agent could be used as a curative monotherapy; however, a combination of novel agents with polychemotherapy or its combination with other novel drugs may have therapeutic potential.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qingmin Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Feng Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
180
|
Kaulen LD, Erson-Omay EZ, Henegariu O, Karschnia P, Huttner A, Günel M, Baehring JM. Exome sequencing identifies SLIT2 variants in primary CNS lymphoma. Br J Haematol 2021; 193:375-379. [PMID: 33481259 DOI: 10.1111/bjh.17319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
SLIT2 constitutes a known tumour suppressor gene, which has not yet been implicated in the pathogenesis of primary central nervous system lymphoma (PCNSL). Performing exome sequencing on paired blood and tumour DNA samples from six treatment-naïve PCNSL patients, we identified novel SLIT2 variants (p.N63S, p.T590M, p.T732S) that were associated with shorter progression-free survival in our cohort and shorter overall survival in a large validation cohort of lymphoid malignancies from the cBio Cancer Genomics Portal. WNT- and NF-κB-reporter luciferase assays suggest detected alterations are loss-of-function variants. Given the possible prognostic implications, the role of SLIT2 in PCNSL pathogenesis and progression warrants further investigation.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, Yale School of Medicine, New Haven, USA.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neurosurgery, Yale School of Medicine, New Haven, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Philipp Karschnia
- Department of Neurology, Yale School of Medicine, New Haven, USA.,Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Munich, Germany
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Joachim M Baehring
- Department of Neurology, Yale School of Medicine, New Haven, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, USA
| |
Collapse
|
181
|
Alame M, Cornillot E, Cacheux V, Rigau V, Costes-Martineau V, Lacheretz-Szablewski V, Colinge J. The immune contexture of primary central nervous system diffuse large B cell lymphoma associates with patient survival and specific cell signaling. Am J Cancer Res 2021; 11:3565-3579. [PMID: 33664848 PMCID: PMC7914352 DOI: 10.7150/thno.54343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Primary central nervous system diffuse large B-cell lymphoma (PCNSL) is a rare and aggressive entity that resides in an immune-privileged site. The tumor microenvironment (TME) and the disruption of the immune surveillance influence lymphoma pathogenesis and immunotherapy resistance. Despite growing knowledge on heterogeneous therapeutic responses, no comprehensive description of the PCNSL TME is available. We hence investigated the immune subtypes of PCNSL and their association with molecular signaling and survival. Methods: Analysis of PCNSL transcriptomes (sequencing, n = 20; microarrays, n = 34). Integrated correlation analysis and signaling pathway topology enabled us to infer intercellular interactions. Immunohistopathology and digital imaging were used to validate bioinformatic results. Results: Transcriptomics revealed three immune subtypes: immune-rich, poor, and intermediate. The immune-rich subtype was associated to better survival and characterized by hyper-activation of STAT3 signaling and inflammatory signaling, e.g., IFNγ and TNF-α, resembling the hot subtype described in primary testicular lymphoma and solid cancer. WNT/β-catenin, HIPPO, and NOTCH signaling were hyper-activated in the immune-poor subtype. HLA down-modulation was clearly associated with a low or intermediate immune infiltration and the absence of T-cell activation. Moreover, HLA class I down-regulation was also correlated with worse survival with implications on immune-intermediate PCNSL that frequently feature reduced HLA expression. A ligand-receptor intercellular network revealed high expression of two immune checkpoints, i.e., CTLA-4/CD86 and TIM-3/LAGLS9. TIM-3 and galectin-9 proteins were clearly upregulated in PCNSL. Conclusion: Altogether, our study reveals that patient stratification according to immune subtypes, HLA status, and immune checkpoint molecule quantification should be considered prior to immune checkpoint inhibitor therapy. Moreover, TIM-3 protein should be considered an axis for future therapeutic development.
Collapse
|
182
|
Jeong AR, Ball ED, Goodman AM. Predicting Responses to Checkpoint Inhibitors in Lymphoma: Are We Up to the Standards of Solid Tumors? CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 14:1179554920976366. [PMID: 33447123 PMCID: PMC7780174 DOI: 10.1177/1179554920976366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
Treatment of cancer has transformed with the introduction of checkpoint inhibitors. However, the majority of solid tumor patients do not respond to checkpoint blockade. In contrast, the response rate to programmed cell death 1 (PD-1) blockade in relapsed/refractory classical Hodgkin lymphoma (cHL) is 65% to 84% which is the highest among all cancers. Currently, checkpoint inhibitors are only approved for cHL and primary mediastinal B-cell lymphoma as the responses to single-agent checkpoint blockade in other hematologic malignancies is disappointingly low. Various established biomarkers such as programmed cell death 1 ligand 1 (PD-L1) protein surface expression, mismatch repair (MMR) status, and tumor mutational burden (TMB) are routinely used in clinical decision-making in solid tumors. In this review, we will explore these biomarkers in the context of hematologic malignancies. We review characteristic 9p24.1 structural alteration in cHL and primary mediastinal B-cell lymphoma (PMBCL) as a basis for response to PD-1 inhibition, as well as the role of antigen presentation pathways. We also explore the reported frequencies of MMR deficiency in various hematologic malignancies and investigate TMB as a predictive marker.
Collapse
Affiliation(s)
- Ah-Reum Jeong
- Division of Hematology and Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edward D Ball
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aaron Michael Goodman
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
183
|
Tan WJ, Wang MM, Ricciardi-Castagnoli P, Chan ASY, Lim TS. Cytologic and Molecular Diagnostics for Vitreoretinal Lymphoma: Current Approaches and Emerging Single-Cell Analyses. Front Mol Biosci 2021; 7:611017. [PMID: 33505989 PMCID: PMC7832476 DOI: 10.3389/fmolb.2020.611017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Vitreoretinal lymphoma (VRL) is a rare ocular malignancy that manifests as diffuse large B-cell lymphoma. Early and accurate diagnosis is essential to prevent mistreatment and to reduce the high morbidity and mortality associated with VRL. The disease can be diagnosed using various methods, including cytology, immunohistochemistry, cytokine analysis, flow cytometry, and molecular analysis of bulk vitreous aspirates. Despite these options, VRL diagnosis remains challenging, as samples are often confounded by low cellularity, the presence of debris and non-target immunoreactive cells, and poor cytological preservation. As such, VRL diagnostic accuracy is limited by both false-positive and false-negative outcomes. Missed or inappropriate diagnosis may cause delays in treatment, which can have life-threatening consequences for patients with VRL. In this review, we summarize current knowledge and the diagnostic modalities used for VRL diagnosis. We also highlight several emerging molecular techniques, including high-resolution single cell-based analyses, which may enable more comprehensive and precise VRL diagnoses.
Collapse
Affiliation(s)
- Wei Jian Tan
- A. Menarini Biomarkers Singapore Pte. Ltd., Singapore, Singapore
| | - Mona Meng Wang
- Translational Ophthalmic Pathology Platform, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Anita Sook Yee Chan
- Translational Ophthalmic Pathology Platform, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| | - Tong Seng Lim
- A. Menarini Biomarkers Singapore Pte. Ltd., Singapore, Singapore
| |
Collapse
|
184
|
Immune-Checkpoint Inhibitors in B-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13020214. [PMID: 33430146 PMCID: PMC7827333 DOI: 10.3390/cancers13020214] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immune-based treatment strategies, which include immune checkpoint inhibition, have recently become a new frontier for the treatment of B-cell-derived lymphoma. Whereas checkpoint inhibition has given oncologists and patients hope in specific lymphoma subtypes like Hodgkin lymphoma, other entities do not benefit from such promising agents. Understanding the factors that determine the efficacy and safety of checkpoint inhibition in different lymphoma subtypes can lead to improved therapeutic strategies, including combinations with various chemotherapies, biologics and/or different immunologic agents with manageable safety profiles. Abstract For years, immunotherapy has been considered a viable and attractive treatment option for patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached the market thanks to the simultaneous identification of inhibitory signals that dampen an effective antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways. These approaches have found a promising testing ground in both Hodgkin lymphoma and non-Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune system and commonly provide signals that regulate immune function. Although several trials have already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma, many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid malignancies. In this sense, the mechanisms of effective antitumor responses are different between the different lymphoma subtypes, while the reasons for this substantial difference remain partially unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular, we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches with chemotherapeutics, biological agents and/or different immunologic therapies.
Collapse
|
185
|
Xie W, Medeiros LJ, Li S, Yin CC, Khoury JD, Xu J. PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas. Curr Hematol Malig Rep 2020; 15:372-381. [PMID: 32394185 DOI: 10.1007/s11899-020-00589-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Programmed cell death protein-1 (PD-1) is currently the most extensively studied inhibitory checkpoint molecule. Many malignant neoplasms express the PD-1 ligands, PD-L1, and/or PD-L2, which bind to PD-1 on T cells and induce T cell "exhaustion." By doing so, the malignant cells escape from an antitumor immune response (immune evasion). Blockade of the PD-1/PD-L1 pathway releases T cells from the inhibitory effects exerted by tumor cells and restores a T cell-mediated antitumor immune response. Here, we focus on understanding the immune biology of the PD-1/PD-L1 pathway in large-cell lymphomas, including classic Hodgkin lymphoma (CHL), diffuse large B cell lymphoma (DLBCL), and anaplastic large-cell lymphoma (ALCL), and the current status of PD-1 blockade immunotherapy in treating patients with these lymphomas. RECENT FINDINGS PD-1/PD-L1 pathway and PD-1 inhibitors have been widely tested in patients with a variety of lymphomas. Nivolumab and pembrolizumab have been approved by the U.S. Food and Drug Administration for treating patients with some types of relapsed or refractory (R/R) lymphomas. The highest response rate has been achieved in patients with CHL, due to a high frequency of genetic alterations of 9p24.1 and high expression of PD-1 ligands. The frequency of alterations of chromosome 9p24.1 and expression of PD-L1/PD-L1 in DLBCL (except some specific subtypes) is low; therefore, it is not recommended to treat unselected DLBCL patients with PD-1 inhibitors. Studies have shown a high frequency of PD-L1 expression in ALCL, especially in anaplastic lymphoma kinase (ALK)+ type. Several cases reports have described a dramatic and durable response to PD-1 blockade in patients with R/R ALCL, suggesting that patients with R/R ALCL may be potential candidates for PD-1 blockade immunotherapy. Understanding the immune biology of lymphoid neoplasms has helped us identify the specific lymphoma types that are vulnerable to PD-1 inhibitors, such as CHL, and specific subtypes of DLBCL. However, our knowledge of many other lymphomas, including ALCL, in this area is still very limited and the future of PD-1 inhibitors in treating those lymphomas remains unclear.
Collapse
Affiliation(s)
- Wei Xie
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA.
| |
Collapse
|
186
|
Bhavsar T, Crane GM. Immunodeficiency-Related Lymphoid Proliferations: New Insights With Relevance to Practice. Curr Hematol Malig Rep 2020; 15:360-371. [PMID: 32535851 DOI: 10.1007/s11899-020-00594-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Our understanding of risk factors and mechanisms underlying immunosuppression-related lymphoproliferative disorders continues to evolve. An increasing number of patients are living with altered immune status due to HIV, solid organ or hematopoietic stem cell transplant, treatment of autoimmune disease, or advanced age. This review covers advances in understanding, emerging trends, and revisions to diagnostic guidelines. RECENT FINDINGS The tumor microenvironment, including interactions between the host immune system and tumor cells, is of increasing interest in the setting of immunosuppression. While some forms of lymphoproliferative disease are associated with unique risk factors, common mechanisms are also emerging. Indolent forms, such as Epstein-Barr virus positive mucocutaneous ulcer, are important to recognize. As methods to modulate the immune system evolve, more data are needed to understand and minimize lymphoproliferative disease risk. A better understanding of individual risk factors and common mechanisms underlying immunosuppression-related lymphoproliferations will ultimately enable improved prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Tapan Bhavsar
- Department of Pathology and Laboratory Medicine, George Washington School of Medicine, Washington, DC, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
187
|
Elgaafary S, Nagel I, López C, Bens S, Szczepanowski M, Wagener R, Klapper W, Siebert R. Double-hit lymphoma of the male breast: a case report. J Med Case Rep 2020; 14:245. [PMID: 33339535 PMCID: PMC7747391 DOI: 10.1186/s13256-020-02526-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/04/2022] Open
Abstract
Background Whereas lymphoma of the female breast is already rare, lymphoma of the male breast has only anecdotally been reported. Within a study of 32 lymphoma of the breast reported between 1973 and 2014 as Burkitt lymphoma, we observed a single male case, which we report here. Case presentation A 72-years-old Caucasian man presented with a mass in his left breast. Clinical history included prior basal cell carcinoma, leiomyosarcoma, and administration of spironolactone. The reference pathology diagnosis at presentation was Burkitt lymphoma according to the Kiel Classification. The present re-investigation using fluorescence in situ hybridization revealed an IGH-MYC translocation and a break in the BCL2 locus in the tumor cells. Thus, in light of the current WHO classification, the diagnosis was revised to high-grade B-cell lymphoma with MYC and BCL2 rearrangement, Burkitt morphology (so-called “double-hit” lymphoma). Genome-wide chromosomal imbalance mapping revealed a complex pattern of aberrations in line with this diagnosis. The aberrations, including copy-number gains in chromosomes 3q and 18 and focal homozygous loss in 9p21.3, resembled typical changes of lymphomas affecting “immune-privileged” sites. Conclusion The present case adds to the understanding of the pathogenesis of male breast lymphomas, about which hardly any molecular characterization has been published yet.
Collapse
Affiliation(s)
- Shaymaa Elgaafary
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, D-89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany.,Division of Human Genetics and Genome Research, Department of Human Cytogenetic, Cairo, 12622, Egypt
| | - Inga Nagel
- Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany.,Institute of Experimental and Clinical Pharmacology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, D-89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, D-89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany
| | - Monika Szczepanowski
- Department of Internal Medicine II (Hematology), Laboratory of Hematology, University Hospital, Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.,Hematopathology Section and Lymph Node Registry, Institute of Pathology Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, D-89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Institute of Pathology Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, D-89081, Ulm, Germany. .,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, D-24105, Kiel, Germany.
| |
Collapse
|
188
|
Chihara D, Dunleavy K. Primary Central Nervous System Lymphoma: Evolving Biologic Insights and Recent Therapeutic Advances. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:73-79. [PMID: 33288483 DOI: 10.1016/j.clml.2020.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 11/17/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and clinically aggressive disease entity associated with poor survival. Though high-dose methotrexate-based immunochemotherapy approaches are effective at inducing responses, few patients experience long-term durable remissions. Recently, novel insights into the biology of this unique disease have been elucidated and have paved the way for the investigation of rational approaches such as Bruton tyrosine kinase inhibition and immunomodulation. Although these strategies can induce high response rates in PCNSL, remissions are short lived, with median progression-free survivals in the range of 6 months or less. Moving forward, understanding the mechanisms of treatment resistance with these and other novel agents is key to developing optimal combinatorial strategies. New approaches such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapy are under investigation for PCNSL and thus far demonstrate activity in anecdotal clinical experiences. Future trials should focus on investigating novel rational combinations designed to optimally target the biology of PCNSL and simultaneously investigate mechanisms of resistance leading to treatment failure.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Antineoplastic Combined Chemotherapy Protocols/antagonists & inhibitors
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/immunology
- Central Nervous System Neoplasms/mortality
- Central Nervous System Neoplasms/therapy
- Combined Modality Therapy/methods
- Drug Resistance, Neoplasm
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy, Adoptive/methods
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/therapy
- Mutation
- Progression-Free Survival
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Dai Chihara
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer, Houston, TX
| | - Kieron Dunleavy
- Division of Hematology & Oncology, George Washington University Cancer Center, Washington, DC.
| |
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW Primary central nervous system (CNS) lymphoma is a rare, aggressive extranodal non-Hodgkin lymphoma confined to the brain, eyes, CSF, or spinal cord without systemic, non-CNS involvement. This article reviews the clinical presentation, imaging characteristics, diagnostic workup, novel pathophysiologic insights, and treatment of immunocompetent patients with primary CNS lymphoma. RECENT FINDINGS The prognosis of primary CNS lymphoma has significantly improved over the past few decades because of the introduction of and widespread use of high-dose methotrexate, which is now the backbone of all first-line combination chemotherapy treatments. Despite this progress, durable remission is still observed in only approximately 50% of patients. Novel insights into the pathophysiology of primary CNS lymphoma have identified the B-cell receptor pathway as well as the suppressed tumor immune microenvironment and immune evasion as key mechanisms in the pathogenesis of primary CNS lymphoma. Novel, small molecules and agents targeting these aberrant pathways have been introduced into clinical trials of recurrent/refractory primary CNS lymphomas. Agents such as the Bruton tyrosine kinase (BTK) inhibitor ibrutinib or immunomodulatory drugs such as lenalidomide and pomalidomide have shown promising response rates in the relapsed setting. SUMMARY Diagnosis of primary CNS lymphoma requires a high level of suspicion because clinical signs and deficits can vary and depend on the involved CNS compartments. Rapid initiation of therapy is essential for recovery and prognosis. The optimal treatment regimen has not been defined, but methotrexate-based chemotherapy regimens are considered the standard treatment approach for induction treatment. Novel, targeted agents have recently been introduced into the therapeutic arsenal.
Collapse
|
190
|
Jiang S, Qin Y, Gui L, Liu P, Jiang H, Liu B, Yang J, Yang S, He X, Zhou S, Du X, Yi Y, Lin J, Shi Y. Genomic Alterations and MYD88 MUT Variant Mapping in Patients with Diffuse Large B-Cell Lymphoma and Response to Ibrutinib. Target Oncol 2020; 15:221-230. [PMID: 32239385 DOI: 10.1007/s11523-020-00710-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous malignancy. Following front-line immunochemotherapy, 30-40% of DLBCL patients develop relapsed or refractory (r/r) disease, which can be treated with ibrutinib. It has been previously reported that MYD88MUT affects the response to ibrutinib in patients with r/r DLBCL. OBJECTIVE Here, we aimed to gather understanding of MYD88MUT in r/r DLBCL patients and to evaluate its influence on response to ibrutinib. PATIENTS AND METHODS In this study, tissue samples from DLBCL patients (n = 212) were retrospectively collected and sequenced by target-capturing panels of either 413 or 112 genes that are frequently mutated in non-Hodgkin's lymphoma. Sixty patients with MYD88 mutations and available clinical information were included for further analysis. RESULTS Seven MYD88MUT variants were identified, L265P (65.0%, n = 39), S219C (13.3%, n = 8), S243N (8.3%, n = 5), P258L (6.7%, n = 4), F283V (1.7%, n = 1), P141R (1.7%, n = 1), and V217F (1.7%, n = 1). One patient had MYD88 amplification. In addition, mutations in PIM1 (67%, n = 40), IGH fusion (48%, n = 29), CD79B (43%, n = 26), KMT2D (30%, n = 18), and TP53 (27%, n = 17) were identified. For patients with L265P, IRF4 (p = 0.011) was frequently mutated. Otherwise, TET2 (p = 0.016), NOTCH2 (p = 0.044), MET (p = 0.037), SOCS1 (p = 0.011), TNFRSF14 (p = 0.011), EZH2 (p = 0.037), and BCL6 (p < 0.001) mutations were associated with MYD88MUT non-L265P variants. The incidence rate of MYD88MUT L265P was significantly higher with central nervous system involvement (p = 0.034). Four out of nine MYD88MUT patients responded to ibrutinib containing treatment, and this included those with MYD88MUT/CD79BWT. CONCLUSIONS This study adds clinical observations with MYD88MUT patients, further helping to understand the genetic features and possible correlation of MYD88MUT with response to ibrutinib.
Collapse
Affiliation(s)
- Shiyu Jiang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Qin
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hongxin Jiang
- Department of Medical Oncology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, Jiangsu Province, China
| | - Biao Liu
- Department of Pathology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, Jiangsu Province, China
| | - Jianliang Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xinhua Du
- Geneplus-Beijing, Beijing, 102206, China
| | - Yuting Yi
- Geneplus-Beijing, Beijing, 102206, China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
191
|
Current Immunotherapy Approaches in Non-Hodgkin Lymphomas. Vaccines (Basel) 2020; 8:vaccines8040708. [PMID: 33260966 PMCID: PMC7768428 DOI: 10.3390/vaccines8040708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are lymphoid malignancies of B- or T-cell origin. Despite great advances in treatment options and significant improvement of survival parameters, a large part of NHL patients either present with a chemotherapy-refractory disease or experience lymphoma relapse. Chemotherapy-based salvage therapy of relapsed/refractory NHL is, however, capable of re-inducing long-term remissions only in a minority of patients. Immunotherapy-based approaches, including bispecific antibodies, immune checkpoint inhibitors and genetically engineered T-cells carrying chimeric antigen receptors, single-agent or in combination with therapeutic monoclonal antibodies, immunomodulatory agents, chemotherapy or targeted agents demonstrated unprecedented clinical activity in heavily-pretreated patients with NHL, including chemotherapy-refractory cases with complex karyotype changes and other adverse prognostic factors. In this review, we recapitulate currently used immunotherapy modalities in NHL and discuss future perspectives of combinatorial immunotherapy strategies, including patient-tailored approaches.
Collapse
|
192
|
Activating the Antitumor Immune Response in Non-Hodgkin Lymphoma Using Immune Checkpoint Inhibitors. J Immunol Res 2020; 2020:8820377. [PMID: 33294467 PMCID: PMC7690999 DOI: 10.1155/2020/8820377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
Non-Hodgkin lymphomas comprise a heterogenous group of disorders which differ in biology. Although response rates are high in some groups, relapsed disease can be difficult to treat, and newer approaches are needed for this patient population. It is increasingly apparent that the immune system plays a significant role in the propagation and survival of malignant cells. Immune checkpoint blocking agents augment cytotoxic activity of the adaptive and innate immune systems and enhance tumor cell killing. Anti-PD-1 and anti-CTLA-4 antibodies have been tested as both single agents and combination therapy. Although success rates with anti-PD-1 antibodies are high in patients with Hodgkin lymphoma, the results are yet to be replicated in those with non-Hodgkin lymphomas. Some lymphoma histologies, such as primary mediastinal B cell lymphoma (PMBL), central nervous system, and testicular lymphomas and gray zone lymphoma, respond favorably to PD-1 blockade, but the response rates in most lymphoma subtypes are low. Other agents including those targeting the adaptive immune system such as TIM-3, TIGIT, and BTLA and innate immune system such as CD47 and KIR are therefore in trials to test alternative ways to activate the immune system. Patient selection based on tumor biology is likely to be a determining factor in treatment response in patients, and further research exploring optimal patient populations, newer targets, and combination therapy as well as identifying biomarkers is needed.
Collapse
|
193
|
Expression of the Immune Checkpoint Regulators LAG-3 and TIM-3 in Classical Hodgkin Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:257-266.e3. [PMID: 33277223 DOI: 10.1016/j.clml.2020.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The role of the programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis is well established in classical Hodgkin lymphoma (HL), where PD-1 blockade demonstrated spectacular efficacy in relapsed/refractory disease. However, little is known about the frequency and cellular distribution of other immune checkpoints in HL samples. PATIENTS AND METHODS Using immunohistochemistry, we investigated, along with PD-L1 and PD-1, the expression of lymphocyte-activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin-domain containing 3 (TIM-3) in 57 biopsy samples of patients with classical HL. RESULTS Hodgkin and Reed/Sternberg (HRS) cells were strongly positive for PD-L1 in nearly all cases. HRS cells were TIM-3 positive in 36% of samples, whereas LAG-3 was rarely expressed (5.2%). In the microenvironment, PD-1, LAG-3, and TIM-3 were expressed by ≥ 5% of cells in 65%, 98%, and 96% of cases, respectively. T-cell rosettes surrounding HRS cells consisted of CD4+ FoxP3- helper T cells expressing both PD-1 and LAG-3, with a variable expression of TIM-3. CONCLUSION This study demonstrates for the first time that LAG-3 and TIM-3 are nearly always expressed in the microenvironment of classical HL. This may constitute the basis for targeting LAG-3 or TIM-3 in combination with anti-PD-1 antibodies in the treatment of relapsed/refractory HL.
Collapse
|
194
|
Bewarder M, Kiefer M, Moelle C, Goerens L, Stilgenbauer S, Christofyllakis K, Kaddu-Mulindwa D, Fadle N, Regitz E, Neumann F, Hoth M, Preuss KD, Pfreundschuh M, Thurner L. Integration of the B-Cell Receptor Antigen Neurabin-I/SAMD14 Into an Antibody Format as New Therapeutic Approach for the Treatment of Primary CNS Lymphoma. Front Oncol 2020; 10:580364. [PMID: 33282736 PMCID: PMC7689012 DOI: 10.3389/fonc.2020.580364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Recently, neurabin-I and SAMD14 have been described as the autoantigenic target of approximately 66% of B-cell receptors (BCRs) of primary central nervous system lymphomas (PCNSL). Neurabin-I and SAMD14 share a highly homologous SAM domain that becomes immunogenic after atypical hyper-N-glycosylation (SAMD14 at ASN339 and neurabin-I at ASN1277). This post-translational modification of neurabin-I and SAMD14 seems to lead to a chronic immune reaction with B-cell receptor activation contributing to lymphoma genesis of PCNSLs. The selective tropism of PCNSL to the CNS corresponds well to the neurabin-I and SAMD14 protein expression pattern. When conjugated to Pseudomonas Exotoxin A (ETA´), the PCNSL reactive epitope exerts cytotoxic effects on lymphoma cells expressing a SAMD14/neurabin-I reactive BCR. Thus, the reactive epitopes of SAMD14/neurabin-I might be useful to establish additional therapeutic strategies against PCNSL. To test this possibility, we integrated the PCNSL-reactive epitope of SAMD14/neurabin-I into a heavy-chain-only Fab antibody format in substitution of the variable region. Specific binding of the prokaryotically produced SAMD14/neurabin-I Fab-antibody to lymphoma cells and their internalization were determined by flow cytometry. Since no established EBV-negative PCNSL cell line exists, we used the ABC-DLBCL cell lines OCI-Ly3 and U2932, which were transfected to express a SAMD14/neurabin-I reactive BCR. The SAMD14/neurabin-I Fab antibody bound specifically to DLBCL cells expressing a BCR with reactivity to SAMD14/neurabin-I and not to unmanipulated DLBCL cell lines. Eukaryotically produced full-length IgG antibodies are well established as immunotherapy format. Therefore, the PCNSL-reactive epitope of SAMD14/neurabin-I was cloned into a full-length IgG1 format replacing the variable domains of the light and heavy chains. The IgG1-format SAMD14/neurabin-I construct was found to specifically bind to target lymphoma cells expressing a SAMD14/neurabin-I reactive B cell receptor. In addition, it induced dose-dependent relative cytotoxicity against these lymphoma cells when incubated with PBMCs. Control DLBCL cells are not affected at any tested concentration. When integrated into the Fab-format and IgG1-format, the PCNSL-reactive epitope of SAMD14/neurabin-I functions as B-cell receptor Antigen for Reverse targeting (BAR). In particular, the IgG1-format BAR-body approach represents a very attractive therapeutic format for the treatment of PCNSLs, considering its specificity against SAMD14/neurabin-I reactive BCRs and the well-known pharmacodynamic properties of IgG antibodies.
Collapse
Affiliation(s)
- Moritz Bewarder
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany.,Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | - Maximilian Kiefer
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Clara Moelle
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Lisa Goerens
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Stephan Stilgenbauer
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany.,Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | | | | | - Natalie Fadle
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Evi Regitz
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Frank Neumann
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Markus Hoth
- Biophysics, CIPMM, Saarland University, Homburg, Germany
| | - Klaus-Dieter Preuss
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Michael Pfreundschuh
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany.,Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | - Lorenz Thurner
- José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical Center, Homburg, Germany.,Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
195
|
Holdhoff M, Mrugala MM, Grommes C, Kaley TJ, Swinnen LJ, Perez-Heydrich C, Nayak L. Challenges in the Treatment of Newly Diagnosed and Recurrent Primary Central Nervous System Lymphoma. J Natl Compr Canc Netw 2020; 18:1571-1578. [PMID: 33152700 DOI: 10.6004/jnccn.2020.7667] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Primary central nervous system lymphomas (PCNSLs) are rare cancers of the central nervous system (CNS) and are predominantly diffuse large B-cell lymphomas of the activated B-cell (ABC) subtype. They typically present in the sixth and seventh decade of life, with the highest incidence among patients aged >75 years. Although many different regimens have demonstrated efficacy in newly diagnosed and relapsed or refractory PCNSL, there have been few randomized prospective trials, and most recommendations and treatment decisions are based on single-arm phase II trials or even retrospective studies. High-dose methotrexate (HD-MTX; 3-8 g/m2) is the backbone of preferred standard induction regimens. Various effective regimens with different toxicity profiles can be considered that combine other chemotherapies and/or rituximab with HD-MTX, but there is currently no consensus for a single preferred regimen. There is controversy about the role of various consolidation therapies for patients who respond to HD-MTX-based induction therapy. For patients with relapsed or refractory PCNSL who previously experienced response to HD-MTX, repeat treatment with HD-MTX-based therapy can be considered depending on the timing of recurrence. Other more novel and less toxic regimens have been developed that show efficacy in recurrent disease, including ibrutinib, or lenalidomide ± rituximab. There is uniform agreement to delay or avoid whole-brain radiation therapy due to concerns for significant neurotoxicity if a reasonable systemic treatment option exists. This article aims to provide a clinically practical approach to PCNSL, including special considerations for older patients and those with impaired renal function. The benefits and risks of HD-MTX or high-dose chemotherapy with autologous stem cell transplantation versus other, better tolerated strategies are also discussed. In all settings, the preferred treatment is always enrollment in a clinical trial if one is available.
Collapse
Affiliation(s)
- Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Thomas J Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Lode J Swinnen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | - Lakshmi Nayak
- Center for CNS Lymphoma, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
196
|
Bailey NG, Elenitoba-Johnson KSJ. Impact of Genetics on Mature Lymphoid Leukemias and Lymphomas. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035444. [PMID: 31932467 DOI: 10.1101/cshperspect.a035444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recurrent genetic aberrations have long been recognized in mature lymphoid leukemias and lymphomas. As conventional karyotypic and molecular cloning techniques evolved in the 1970s and 1980s, multiple cytogenetic aberrations were identified in lymphomas, often balanced translocations that juxtaposed oncogenes to the immunoglobulin (IG) or T-cell receptor (TR) loci, leading to dysregulation. However, genetic characterization and classification of lymphoma by conventional cytogenetic methods is limited by the infrequent occurrence of recurrent karyotypic abnormalities in many lymphoma subtypes and by the frequent difficulty in growing clinical lymphoma specimens in culture to obtain informative karyotypes. As higher-resolution genomic techniques developed, such as array comparative genomic hybridization and fluorescence in situ hybridization, many recurrent copy number changes were identified in lymphomas, and copy number assessment of interphase cells became part of routine clinical practice for a subset of diseases. Platforms to globally examine mRNA expression led to major insights into the biology of several lymphomas, although these techniques have not gained widespread application in routine clinical settings. With the advent of next-generation sequencing (NGS) techniques in the early 2000s, numerous insights into the genetic landscape of lymphomas were obtained. In contrast to the myeloid malignancies, most common lymphomas exhibit an at least somewhat mutationally complex genome, with few single driver mutations in the majority of patients. However, many recurrently mutated pathways have been identified across lymphoma subtypes, informing targeted therapeutic approaches that are beginning to make meaningful changes in the treatment of lymphoma. In addition to the ability to identify possible therapeutic targets, NGS techniques are highly amenable to the tracking of residual lymphoma following therapy, because of the presence of unique genetic "fingerprints" in lymphoma cells due to V(D)-J recombination at the antigen receptor loci. This review will provide an overview of the impact of novel genetic technologies on lymphoma classification, biology, and therapy.
Collapse
Affiliation(s)
- Nathanael G Bailey
- Division of Hematopathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19102, USA
| |
Collapse
|
197
|
Apostolidis J, Sayyed A, Darweesh M, Kaloyannidis P, Al Hashmi H. Current Clinical Applications and Future Perspectives of Immune Checkpoint Inhibitors in Non-Hodgkin Lymphoma. J Immunol Res 2020; 2020:9350272. [PMID: 33178841 PMCID: PMC7647776 DOI: 10.1155/2020/9350272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cells escape immune recognition by exploiting the programmed cell-death protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1) immune checkpoint axis. Immune checkpoint inhibitors that target PD-1/PD-L1 unleash the properties of effector T cells that are licensed to kill cancer cells. Immune checkpoint blockade has dramatically changed the treatment landscape of many cancers. Following the cancer paradigm, preliminary results of clinical trials in lymphoma have demonstrated that immune checkpoint inhibitors induce remarkable responses in specific subtypes, most notably classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma, while in other subtypes, the results vary considerably, from promising to disappointing. Lymphomas that respond to immune checkpoint inhibitors tend to exhibit tumor cells that reside in a T-cell-rich immune microenvironment and display constitutive transcriptional upregulation of genes that facilitate innate immune resistance, such as structural variations of the PD-L1 locus, collectively referred to as T-cell-inflamed lymphomas, while those lacking such characteristics are referred to as noninflamed lymphomas. This distinction is not necessarily a sine qua non of response to immune checkpoint inhibitors, but rather a framework to move the field forward with a more rational approach. In this article, we provide insights on our current understanding of the biological mechanisms of immune checkpoint evasion in specific subtypes of B-cell and T-cell non-Hodgkin lymphomas and summarize the clinical experience of using inhibitors that target immune checkpoints in these subtypes. We also discuss the phenomenon of hyperprogression in T-cell lymphomas, related to the use of such inhibitors when T cells themselves are the target cells, and consider future approaches to refine clinical trials with immune checkpoint inhibitors in non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- John Apostolidis
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ayman Sayyed
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohammed Darweesh
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Hani Al Hashmi
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
198
|
Clinicopathologic significance of MYD88 L265P mutation and expression of TLR4 and P-STAT3 in primary central nervous system diffuse large B-cell lymphomas. Brain Tumor Pathol 2020; 38:50-58. [PMID: 33079297 DOI: 10.1007/s10014-020-00386-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Patients with primary central nervous system lymphoma (PCNSL) have a prognosis poorer than that of systemic lymphoma patients. In patients with this condition, TLR4/STAT3 pathway alterations and the MYD88 L265P mutation may be viable targets for therapeutic intervention. The present study was, therefore, designed to identify clinicopathologic correlates of MYD88 mutations and TLR4/STAT3 pathway alterations in PCNSL. We detected TLR4 and p-STAT3 in 41.5% (22/53) and 43.4% (23/53) of PCNSL patients, respectively, while 60.4% of these patients (32/53) were found to harbor the MYD88 L265P mutation. TLR4 expression was found to be significantly associated with the presence of multiple brain lesions, while p-STAT3 expression was significantly linked to advanced age, the presence of multiple brain lesions, non-GCB histological findings, and non-CR status. The presence of the MYD88 L265P mutation was significantly linked to advanced age, the presence of multiple brain lesions, and DLBCL molecular subtype. Multivariate analyses additionally confirmed that elevated TLR4 and p-STAT3 expression levels are associated with a poorer PCNSL patient prognosis. Based on these findings, we hypothesize that signaling through the TLR4/MYD88/STAT3 pathway plays a key role in the pathogenesis of PCNSL.
Collapse
|
199
|
Tateishi K, Miyake Y, Kawazu M, Sasaki N, Nakamura T, Sasame J, Yoshii Y, Ueno T, Miyake A, Watanabe J, Matsushita Y, Shiba N, Udaka N, Ohki K, Fink AL, Tummala SS, Natsumeda M, Ikegaya N, Nishi M, Ohtake M, Miyazaki R, Suenaga J, Murata H, Aoki I, Miller JJ, Fujii Y, Ryo A, Yamanaka S, Mano H, Cahill DP, Wakimoto H, Chi AS, Batchelor TT, Nagane M, Ichimura K, Yamamoto T. A Hyperactive RelA/p65-Hexokinase 2 Signaling Axis Drives Primary Central Nervous System Lymphoma. Cancer Res 2020; 80:5330-5343. [PMID: 33067267 DOI: 10.1158/0008-5472.can-20-2425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is an isolated type of lymphoma of the central nervous system and has a dismal prognosis despite intensive chemotherapy. Recent genomic analyses have identified highly recurrent mutations of MYD88 and CD79B in immunocompetent PCNSL, whereas LMP1 activation is commonly observed in Epstein-Barr virus (EBV)-positive PCNSL. However, a lack of clinically representative preclinical models has hampered our understanding of the pathogenic mechanisms by which genetic aberrations drive PCNSL disease phenotypes. Here, we establish a panel of 12 orthotopic, patient-derived xenograft (PDX) models from both immunocompetent and EBV-positive PCNSL and secondary CNSL biopsy specimens. PDXs faithfully retained their phenotypic, metabolic, and genetic features, with 100% concordance of MYD88 and CD79B mutations present in PCNSL in immunocompetent patients. These models revealed a convergent functional dependency upon a deregulated RelA/p65-hexokinase 2 signaling axis, codriven by either mutated MYD88/CD79B or LMP1 with Pin1 overactivation in immunocompetent PCNSL and EBV-positive PCNSL, respectively. Notably, distinct molecular alterations used by immunocompetent and EBV-positive PCNSL converged to deregulate RelA/p65 expression and to drive glycolysis, which is critical for intracerebral tumor progression and FDG-PET imaging characteristics. Genetic and pharmacologic inhibition of this key signaling axis potently suppressed PCNSL growth in vitro and in vivo. These patient-derived models offer a platform for predicting clinical chemotherapeutics efficacy and provide critical insights into PCNSL pathogenic mechanisms, accelerating therapeutic discovery for this aggressive disease. SIGNIFICANCE: A set of clinically relevant CNSL xenografts identifies a hyperactive RelA/p65-hexokinase 2 signaling axis as a driver of progression and potential therapeutic target for treatment and provides a foundational preclinical platform. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5330/F1.large.jpg.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan. .,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurosurgery, Kyorin University Graduate School of Medicine, Mitaka, Tokyo, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akio Miyake
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Norio Shiba
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Alexandria L Fink
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Shilpa S Tummala
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mayuko Nishi
- Department of Microbiology, Graduate School of Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Makoto Ohtake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryohei Miyazaki
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jun Suenaga
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Julie J Miller
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Papas Center for Neuro-Oncology, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Ryo
- Department of Microbiology, Graduate School of Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
200
|
Younes S, Natkunam Y. FOXes at play in the lymphoma landscape. Leuk Lymphoma 2020; 62:5-7. [PMID: 33064049 DOI: 10.1080/10428194.2020.1834099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sheren Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|