151
|
Shimada K, Tomita A, Minami Y, Abe A, Hind CK, Kiyoi H, Cragg MS, Naoe T. CML cells expressing the TEL/MDS1/EVI1 fusion are resistant to imatinib-induced apoptosis through inhibition of BAD, but are resensitized with ABT-737. Exp Hematol 2012; 40:724-737.e2. [PMID: 22634393 DOI: 10.1016/j.exphem.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/02/2012] [Accepted: 05/19/2012] [Indexed: 11/16/2022]
Abstract
Chronic myeloid leukemia is the first disease in which the potential of molecular targeted therapy with tyrosine kinase inhibitors (TKIs) was realized. Despite this success, a proportion of patients, particularly with advanced disease, are, or become, resistant to this treatment. Overcoming resistance and uncovering the underlying mechanisms is vital for further improvement of clinical outcomes. Here we report the identification, development, and characterization of a novel chronic myeloid leukemia cell line carrying the additional chromosomal aberration t(3;12)(q26;p13) resulting in expression of the TEL/MDS1/EVI1 fusion protein, which is resistant to TKIs. Resistance to TKIs was overcome by the co-administration of the BH3-mimetic, ABT-737. In addition, application of EVI1-specific small interfering RNA decreased expression of the TEL/MDS1/EVI1 fusion, reduced resistance to imatinib, and increased sensitivity to ABT-737. Subsequent studies revealed a role for the BH3-only protein BAD, probably via a phosphoinositide 3-kinase/AKT-dependent pathway, as pharmacological inhibition of AKT could also resensitize cells to death from TKIs. These findings indicate a novel pathway of TKI resistance regulated by EVI1 proteins and provide a promising means for overcoming resistance in chronic myeloid leukemia and other hematological malignancies displaying EVI1 overexpression.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Benzamides
- Biphenyl Compounds/pharmacology
- Cell Line, Tumor
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 3/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Imatinib Mesylate
- Immunoblotting
- K562 Cells
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MDS1 and EVI1 Complex Locus Protein
- Nitrophenols/pharmacology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Proto-Oncogenes/genetics
- Pyrimidines/pharmacology
- RNA Interference
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sulfonamides/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Translocation, Genetic
- bcl-Associated Death Protein/antagonists & inhibitors
- bcl-Associated Death Protein/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Kazuyuki Shimada
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Abraham J, Chua YX, Glover JM, Tyner JW, Loriaux MM, Kilcoyne A, Giles FJ, Nelon LD, Carew JS, Ouyang Y, Michalek JE, Pal R, Druker BJ, Rubin BP, Keller C. An adaptive Src-PDGFRA-Raf axis in rhabdomyosarcoma. Biochem Biophys Res Commun 2012; 426:363-8. [PMID: 22960170 DOI: 10.1016/j.bbrc.2012.08.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022]
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a very aggressive sarcoma of children and young adults. Our previous studies have shown that small molecule inhibition of Pdgfra is initially very effective in an aRMS mouse model. However, slowly evolving, acquired resistance to a narrow-spectrum kinase inhibitor (imatinib) was common. We identified Src family kinases (SFKs) to be potentiators of Pdgfra in murine aRMS primary cell cultures from mouse tumors with evolved resistance in vivo in comparison to untreated cultures. Treating the resistant primary cell cultures with a combination of Pdgfra and Src inhibitors had a strong additive effect on cell viability. In Pdgfra knockout tumors, however, the Src inhibitor had no effect on tumor cell viability. Sorafenib, whose targets include not only PDGFRA but also the Src downstream target Raf, was effective at inhibiting mouse and human tumor cell growth and halted progression of mouse aRMS tumors in vivo. These results suggest that an adaptive Src-Pdgfra-Raf-Mapk axis is relevant to PDGFRA inhibition in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Jinu Abraham
- Pediatric Cancer Biology Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
The deregulated tyrosine kinase activity of BCR-ABL is necessary and sufficient to induce chronic myelogenous leukemia (CML). This observation has paved the way for the development of small-molecule inhibitors specifically targeting the kinase activity of the BCR-ABL protein. Indeed, the amazing success of imatinib has revolutionized the whole area of targeted cancer therapeutics. However, enthusiasm for the striking efficacy of imatinib has been tempered by the development of clinical resistance. In essentially all cases, resistance results from kinase domain mutations and/or overexpression of the BCR-ABL gene. To overcome resistance, several novel BCR-ABL inhibitors have been developed and are in clinical trials, though it is inevitable that resistance to second-generation inhibitors will occur as well. Nonetheless, kinases represent an attractive target for therapeutic intervention in several diseases and, at present, some 50 different kinase inhibitors are in clinical trials. We anticipate that resistance to these compounds will follow mechanisms similar to those observed with imatinib. Resistance mutations cause their effect either by direct steric hindrance to drug binding or by allosterically modulating kinase dynamics. This review highlights the principal mechanisms underlying point mutations from these two different classes to confer drug resistance.
Collapse
Affiliation(s)
- Mohammad Azam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
154
|
Quantification of Imatinib Plasma Levels in Patients with Chronic Myeloid Leukemia: Comparison Between HPLC–UV and LC–MS/MS. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
155
|
Wöhrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P, Schramek D, Penninger JM, Laßmann S, Werner M, Waller CF, Pahl HL, Zeiser R, Daly RJ, Brummer T. Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 2012; 27:118-29. [DOI: 10.1038/leu.2012.222] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
156
|
Nasr R, Bazarbachi A. Leucémie myéloïde chronique : « archétype » de l’impact des traitements ciblés. ACTA ACUST UNITED AC 2012; 60:239-45. [DOI: 10.1016/j.patbio.2012.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
157
|
Soverini S, Martinelli G, Rosti G, Iacobucci I, Baccarani M. Advances in treatment of chronic myeloid leukemia with tyrosine kinase inhibitors: the evolving role of Bcr–Abl mutations and mutational analysis. Pharmacogenomics 2012; 13:1271-84. [DOI: 10.2217/pgs.12.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Over the last decade, the treatment of chronic myeloid leukemia has progressed tremendously. The first-generation tyrosine kinase inhibitor imatinib is now flanked by two second-generation molecules, dasatinib and nilotinib – and others are in advanced clinical development. One of the reasons for such intensive research on novel compounds is the problem of resistance, that is thought to be caused, in a proportion of cases, by point mutations in Bcr–Abl. In this article, the authors review how the biological and clinical relevance of Bcr–Abl mutations has evolved in parallel with the availability of more and more therapeutic options. The authors also discuss the practical relevance of Bcr–Abl mutation analysis and how this tool should best be integrated in the optimal clinical management of chronic myeloid leukemia patients.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Gianantonio Rosti
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Ilaria Iacobucci
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Michele Baccarani
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| |
Collapse
|
158
|
O'Hare T, Zabriskie MS, Eiring AM, Deininger MW. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 2012; 12:513-26. [PMID: 22825216 DOI: 10.1038/nrc3317] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tyrosine kinase inhibitor (TKI) therapy targeting the BCR-ABL1 kinase is effective against chronic myeloid leukaemia (CML), but is not curative for most patients. Minimal residual disease (MRD) is thought to reside in TKI-insensitive leukaemia stem cells (LSCs) that are not fully addicted to BCR-ABL1. Recent conceptual advances in both CML biology and therapeutic intervention have increased the potential for the elimination of CML cells, including LSCs, through simultaneous inhibition of BCR-ABL1 and other newly identified, crucial targets.
Collapse
Affiliation(s)
- Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|
159
|
Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 2012; 10:21. [PMID: 22805580 PMCID: PMC3464935 DOI: 10.1186/1478-811x-10-21] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/04/2012] [Indexed: 12/24/2022] Open
Abstract
Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn-/- mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. LAY To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can positively or negatively regulate the information output. This ability of Lyn to be able to both turn on and turn off the relay of information inside cells makes it difficult to fully understand its precise function in each specific circumstance. Lyn has important functions for cells involved in blood development, including different while blood cells as well as red blood cells, and in particular for the immune cells that produce antibodies (B-cells), as exemplified by the major B-cell abnormalities that mice with mutations in the Lyn gene display. Certain types of leukaemia and lymphoma appear to have too much Lyn activity that in part causes the characteristics of these diseases, suggesting it may be a good target to develop new anti-leukaemia drugs. Furthermore, some specific types, and even specific subtypes, of solid cancers, e.g. prostate, brain and breast cancer can also have abnormal regulation of Lyn. Consequently, targeting this protein in these cancers could also prove to be beneficial.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, The University of Western Australia, Rear 50 Murray Street, Perth, WA, 6000, Australia.
| |
Collapse
|
160
|
Karvela M, Helgason GV, Holyoake TL. Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev Anticancer Ther 2012; 12:381-92. [PMID: 22369329 DOI: 10.1586/era.12.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia is a stem cell-initiated but progenitor-driven disease induced by the BCR-ABL oncogene. Tyrosine kinase inhibitors (TKIs) were introduced in the late 1990s and have revolutionized the management of chronic myeloid leukemia in chronic phase. The majority of patients can now expect to live a normal life as long as they continue to comply with TKI treatment. However, in a significant proportion of cases TKI resistance develops over time, requiring a switch of therapy. The most frequent mechanism for drug resistance is the development of kinase domain mutations that reduce or completely ablate drug efficacy. Fortunately, the last 10 years have seen an impressive array of new drugs, some modeled on the mechanism of action of imatinib, others employing more novel approaches, for these patients.
Collapse
Affiliation(s)
- Maria Karvela
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 OYN, UK
| | | | | |
Collapse
|
161
|
Kim JH, Song M, Kang GH, Lee ER, Choi HY, Lee C, Kim JH, Kim Y, Koo BN, Cho SG. Combined treatment of 3-hydroxyflavone and imatinib mesylate increases apoptotic cell death of imatinib mesylate-resistant leukemia cells. Leuk Res 2012; 36:1157-64. [PMID: 22770910 DOI: 10.1016/j.leukres.2012.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 05/07/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
Abstract
Imatinib mesylate, a Bcr/Abl tyrosine kinase inhibitor, is widely used in treating chronic myeloid leukemia. However, drug-resistance of leukemia cells becomes an emergent problem. Herein, various flavonoids were screened for applicability in leukemia treatment, and 3-hydroxyflavone (3-HF) was found to be most effective in reducing cancer cell viability. The combination of 3-HF and imatinib mesylate resulted in significant apoptotic cell death in imatinib mesylate-resistant leukemia cells. Combined treatment resulted in apparent activation of caspases and decrease of the oncoprotein phosphor-Bcr/Abl in leukemia cells. Our results suggest that this combined treatment is beneficial in imatinib mesylate-resistant chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Animal Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Vázquez-Franco JE, Reyes-Maldonado E, Vela-Ojeda J, Domínguez-López ML, Lezama RA. Src, Akt, NF-κB, BCL-2 and c-IAP1 may be involved in an anti-apoptotic effect in patients with BCR-ABL positive and BCR-ABL negative acute lymphoblastic leukemia. Leuk Res 2012; 36:862-7. [DOI: 10.1016/j.leukres.2012.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/22/2012] [Accepted: 03/25/2012] [Indexed: 12/28/2022]
|
163
|
Thomas X. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy. World J Stem Cells 2012; 4:44-52. [PMID: 22993661 PMCID: PMC3443711 DOI: 10.4252/wjsc.v4.i6.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 02/06/2023] Open
Abstract
Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph(+)). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph(+) ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph(+) leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph(+) ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph(+) ALL.
Collapse
Affiliation(s)
- Xavier Thomas
- Xavier Thomas, Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, 69495 Pierre Benite, France
| |
Collapse
|
164
|
Cofre J, Menezes JRL, Pizzatti L, Abdelhay E. Knock-down of Kaiso induces proliferation and blocks granulocytic differentiation in blast crisis of chronic myeloid leukemia. Cancer Cell Int 2012; 12:28. [PMID: 22709531 PMCID: PMC3461418 DOI: 10.1186/1475-2867-12-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Kaiso protein has been identified as a new member of the POZ-ZF subfamily of transcription factors that are involved in development and cancer. There is consistent evidence of the role of Kaiso and its involvement in human tumorigenesis but there is no evidence about its role in hematopoietic differentiation or establishment of chronic myeloid leukemia (CML). We used, normal K562 cell line, established from a CML patient in blast crisis, and imatinib-resistant K562 cell line, to investigate the specific distribution of Kaiso and their contribution to the cell differentiation status of the blast crisis of CML (CML-BP). Results We found cytoplasmic expression of Kaiso, in K562 cells and patients, confirmed by immunofluorescence, immunohistochemistry and western blot of cytoplasmic protein fraction. Kaiso was weakly expressed in the imatinib-resistant K562 cell line confirmed by immunofluorescence and western blot. The cytoplasmic expression of Kaiso was not modified when the K562 cells were treated for 16 h with imatinib 0.1 and 1 μM. In our study, small interfering RNA (siRNA) was introduced to down regulate the expression of Kaiso and p120ctn in K562 cell line. Kaiso and p120ctn were down regulated individually (siRNA-Kaiso or siRNA-p120ctn) or in combination using a simultaneous co-transfection (siRNA-Kaiso/p120ctn). We next investigated whether knockdown either Kaiso or p120ctn alone or in combination affects the cell differentiation status in K562 cells. After down regulation we analyzed the expression of hematopoietic cell differentiation and proliferation genes: SCF, PU-1, c-MyB, C/EBPα, Gata-2 and maturation markers of hematopoietic cells expressed in the plasma membrane: CD15, CD11b, CD33, CD117. The levels of SCF and c-MyB were increased by 1000% and 65% respectively and PU-1, Gata-2 and C/EBPα were decreased by 66%, 50% and 80% respectively, when Kaiso levels were down regulated by siRNA. The results were similar when both Kaiso and p120ctn were down regulated by siRNA. The increased expression of SCF and decreased expression of GATA-2 could be responsible by the higher cell viability detected in K562 cells double knock-down of both Kaiso and p120ctn. Finally, we studied the effect of knock-down either Kaiso or p120ctn, alone or in combination on CD15, CD11b, CD33 and Cd117 expression. Using siRNA approach a reduction of 35%, 8% and 13% in CD15, CD33 and CD117 levels respectively, were achieved in all transfections, when compared to scrambled knock-down cells. Conclusion These results suggest that both Kaiso and p120ctn, contributes to maintaining the differentiated state of the K562 cells and similar to other cancers, cytoplasmic localization of Kaiso is related to a poor prognosis in CML-BP. By the broad and profound effects on the expression of genes and markers of hematopoietic differentiation produced by Kaiso knock-down, these findings reveal Kaiso as a potential target for selective therapy of CML.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, CEP 88040-900, Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
165
|
Jalkanen SE, Lahesmaa-Korpinen AM, Heckman CA, Rantanen V, Porkka K, Hautaniemi S, Mustjoki S. Phosphoprotein profiling predicts response to tyrosine kinase inhibitor therapy in chronic myeloid leukemia patients. Exp Hematol 2012; 40:705-714.e3. [PMID: 22659387 DOI: 10.1016/j.exphem.2012.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically improved treatment outcomes in chronic myeloid leukemia (CML), but a proportion of patients fail to achieve optimal molecular response. By using a phosphoproteomic approach, we aimed to discover aberrant signaling pathways and putative biomarkers in bone marrow samples of suboptimally responding patients, which could be used to guide treatment selection at the diagnosis. The study consisted of 20 chronic-phase CML patients (10 optimal and 10 suboptimal response patients based on 18 months European-Leukemia-Net criteria) and healthy bone marrow cells, and CML cell lines were used as controls. The phosphorylation profile of normal bone marrow cells diverged from CML patients expectedly but, interestingly, CML cell lines (such as K562) also showed marked difference with primary CML cells. Several phosphoproteins were elevated in suboptimal patients compared to optimal response group. Most prominent differences were seen in signal transducers and activators of transcription 5b, phospholipase C γ-1, proline-rich tyrosine kinase 2, Hck, and Paxillin. These phosphoproteins were also increased in three additional nonresponder patients studied, but each of them also had unique phosphorylation patterns, such as highly active HSP27 protein in one patient. In conclusion, suboptimal imatinib response is related to increased phosphorylation of several proteins at diagnosis, which might guide the selection of TKI therapy. Furthermore, the activation of additional BCR-ABL-independent pathways in nonresponder patients (such as the anti-apoptotic HSP27 pathway) may reveal novel therapy targets.
Collapse
Affiliation(s)
- Sari E Jalkanen
- Hematology Research Unit Helsinki, Department of Medicine, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
166
|
Ohanian M, Cortes J, Kantarjian H, Jabbour E. Tyrosine kinase inhibitors in acute and chronic leukemias. Expert Opin Pharmacother 2012; 13:927-38. [PMID: 22519766 DOI: 10.1517/14656566.2012.672974] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Since the initial approval of imatinib much has been learned about its resistance mechanisms, and efforts have continued to improve upon BCR-ABL tyrosine kinase inhibitor therapy. Targeted therapy with TKIs has continued to be an area of active research and development in the care of acute and chronic leukemia patients. AREAS COVERED This article reviews current approved and investigational TKI treatments for chronic myelogenous leukemia (CML), Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph + ALL) and acute myelogenous leukemia (AML). EXPERT OPINION There are now more potent BCR-ABL TKIs approved, which allow for additional options when determining front-line and second-line CML and Ph + ALL treatments. The T315I mutation is an ever-present challenge. Ponatinib, a pan BCR-ABL TKI, while still under investigation, is very hopeful with its ability to overcome T315I mutations in resistant CML and Ph + ALL patients. Because nilotinib and dasatinib have not been directly compared, at present we recommend selecting one or the other based on the side-effect profile, drug interactions, patient comorbidities, and mutational status. FLT-3 inhibition is of particular interest in AML patients with FLT-3 internal tandem duplication mutations; this type of targeted therapy continues to be studied.
Collapse
Affiliation(s)
- Maro Ohanian
- The University of Texas, M. D. Anderson Cancer Center, Department of Leukemia, 1515 Holcombe Blvd, Box 428, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
167
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
168
|
Breccia M, Alimena G. How to treat CML patients in the tyrosine kinase inhibitors era? From imatinib standard dose to second generation drugs front-line: unmet needs, pitfalls and advantages. Cancer Lett 2012; 322:127-32. [PMID: 22450750 DOI: 10.1016/j.canlet.2012.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/18/2012] [Accepted: 03/20/2012] [Indexed: 11/26/2022]
Abstract
Imatinib has revolutionized treatment strategies for chronic myeloid leukemia patients: long-term overall survival was reported to be up to 80% at 8 years of follow-up in respondent patients. Despite the straightforward results obtained, it has been estimated a failure rate per year of 2-4%. Several attempts to improve response have been made with high-dose of imatinib and with combination of standard dose with interferon, but both failed to ameliorate cytogenetic and molecular responses and long-term event-free and overall survival and no advantages were reported in high-risk patients. The introduction of second generation tyrosine kinase inhibitors in clinical practice allowed to rescue more than 50% of patients resistant or intolerant to imatinib. Both dasatinib and nilotinib were tested as single agent in first-line and then tested against imatinib standard dose: the results of phases II and III trials showed early and maintained complete cytogenetic response, rapid reduction of molecular burden and significant reduction of progression rate. At the present time, after FDA approval of both agents in first-line, several points of discussion are still unresolved.
Collapse
Affiliation(s)
- Massimo Breccia
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy.
| | | |
Collapse
|
169
|
Targeting Lyn tyrosine kinase through protein fusions encompassing motifs of Cbp (Csk-binding protein) and the SOCS box of SOCS1. Biochem J 2012; 442:611-20. [DOI: 10.1042/bj20111485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.
Collapse
|
170
|
Mycophenolic Acid overcomes imatinib and nilotinib resistance of chronic myeloid leukemia cells by apoptosis or a senescent-like cell cycle arrest. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:861301. [PMID: 23213550 PMCID: PMC3504262 DOI: 10.1155/2012/861301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/16/2011] [Indexed: 01/29/2023]
Abstract
We used K562 cells sensitive or generated resistant to imatinib or nilotinib to investigate their response to mycophenolic acid (MPA). MPA induced DNA damage leading to cell death with a minor contribution of apoptosis, as revealed by annexin V labeling (up to 25%). In contrast, cell cycle arrest and positive staining for senescence-associated β-galactosidase activity were detected for a large cell population (80%). MPA-induced cell death was potentialized by the inhibition of autophagy and this is associated to the upregulation of apoptosis. In contrast, senescence was neither decreased nor abrogated in autophagy deficient K562 cells. Primary CD34 cells from CML patients sensitive or resistant to imatinib or nilotinib respond to MPA although apoptosis is mainly detected. These results show that MPA is an interesting tool to overcome resistance in vitro and in vivo mainly in the evolved phase of the disease.
Collapse
|
171
|
Nam S, Scuto A, Yang F, Chen W, Park S, Yoo HS, Konig H, Bhatia R, Cheng X, Merz KH, Eisenbrand G, Jove R. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol Oncol 2012; 6:276-83. [PMID: 22387217 DOI: 10.1016/j.molonc.2012.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/23/2012] [Accepted: 02/08/2012] [Indexed: 01/05/2023] Open
Abstract
Indirubin is the major active anti-tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). While previous studies indicate that indirubin is a promising therapeutic agent for CML, the molecular mechanism of action of indirubin is not fully understood. We report here that indirubin derivatives (IRDs) potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells. Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib-resistant human KCL-22 CML cells expressing the T315I mutant Bcr-Abl (KCL-22M), and CD34-positive primary CML cells from patients. Autophosphorylation of Src family kinases (SFKs) was strongly inhibited in K562 and KCL-22M cells at 5 μM E804, and in primary CML cells at 10 μM E804, although higher concentrations partially inhibited autophosphorylation of Bcr-Abl. Previous studies indicate that SFKs cooperate with Bcr-Abl to activate downstream Stat5 signaling. Activation of Stat5 was strongly blocked by E804 in CML cells. E804 down-regulated expression of Stat5 target proteins Bcl-x(L) and Mcl-1, associated with induction of apoptosis. In sum, our findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr-Abl, leading to apoptosis of K562, KCL-22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr-Abl-positive CML patients.
Collapse
Affiliation(s)
- Sangkil Nam
- Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
|
173
|
Smith CC, Shah NP. Mechanisms of resistance to targeted therapies in acute myeloid leukemia and chronic myeloid leukemia. Am Soc Clin Oncol Educ Book 2012:685-689. [PMID: 24451819 DOI: 10.14694/edbook_am.2012.32.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small molecule kinase inhibitors of BCR-ABL in chronic myeloid leukemia (CML) and of FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) in acute myeloid leukemia (AML) have been successful at achieving remissions in these diseases as monotherapy, but these leukemias do not initially respond in a subset of patients (primary resistance) and they progress in an additional group of patients after an initial response (secondary resistance). Resistance to these agents can be divided into mechanisms that allow reactivation kinase activity and those that bypass reliance on oncogenic signaling mediated by the target kinase. Elucidation of clinical resistance mechanisms to targeted therapies for patients can provide important insights into disease pathogenesis and signaling.
Collapse
Affiliation(s)
- Catherine C Smith
- From the Division of Hematology/Oncology, University of California, San Francisco, CA
| | - Neil P Shah
- From the Division of Hematology/Oncology, University of California, San Francisco, CA
| |
Collapse
|
174
|
Juan WC, Ong ST. The role of protein phosphorylation in therapy resistance and disease progression in chronic myelogenous leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:107-42. [PMID: 22340716 DOI: 10.1016/b978-0-12-396456-4.00007-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review focuses on the central role that protein phosphorylation plays in the pathogenesis of chronic myelogenous leukemia (CML). It will cover the signaling pathways that are dysregulated by the oncogenic tyrosine kinase, BCR-ABL1, which both defines and drives the disease, and the barriers to disease control. These will include the mechanisms that underlie drug resistance, as well as the features of CML that prevent its cure by tyrosine kinase inhibitors. In the second section, we will cover the proteins and pathways that lead to the transformation of early chronic-phase CML to the more advanced blast phase of the disease. Here, we will outline the key pathophysiologic differences between the chronic and the blast phase, the mechanisms that contribute to these differences, and how these might be therapeutically targeted in patients. In the final section, we will summarize the major lessons learnt from the CML clinic. We will focus on how these observations have impacted our understanding of the therapeutic potential of modulating protein phosphorylation in human diseases and areas in which future research in CML pathophysiology may be important.
Collapse
Affiliation(s)
- Wen Chun Juan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | |
Collapse
|
175
|
Doki N, Kitaura J, Uchida T, Inoue D, Kagiyama Y, Togami K, Isobe M, Ito S, Maehara A, Izawa K, Kato N, Oki T, Harada Y, Nakahara F, Harada H, Kitamura T. Fyn is not essential for Bcr-Abl-induced leukemogenesis in mouse bone marrow transplantation models. Int J Hematol 2011; 95:167-75. [DOI: 10.1007/s12185-011-0994-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/12/2023]
|
176
|
Packer LM, Rana S, Hayward R, O'Hare T, Eide CA, Rebocho A, Heidorn S, Zabriskie MS, Niculescu-Duvaz I, Druker BJ, Springer C, Marais R. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell 2011; 20:715-27. [PMID: 22169110 PMCID: PMC3951999 DOI: 10.1016/j.ccr.2011.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/15/2011] [Accepted: 11/02/2011] [Indexed: 01/07/2023]
Abstract
We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Cell Line, Tumor
- Dasatinib
- Drug Resistance, Neoplasm
- Drug Synergism
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genes, ras
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- MAP Kinase Signaling System
- Mice
- Mice, Nude
- Piperazines/pharmacology
- Proto-Oncogene Proteins B-raf/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Thiazoles/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- raf Kinases/metabolism
Collapse
Affiliation(s)
- Leisl M. Packer
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Sareena Rana
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Robert Hayward
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112-5550, UT
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Christopher A. Eide
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Ana Rebocho
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Sonja Heidorn
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Matthew S. Zabriskie
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Ion Niculescu-Duvaz
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Brian J. Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Caroline Springer
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Richard Marais
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
- Address for correspondence: Professor Richard Marais, Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom, Tel: +44 207 153 5171
| |
Collapse
|
177
|
Kharas MG, Daley GQ. From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes Cancer 2011; 1:1164-9. [PMID: 21779439 DOI: 10.1177/1947601911407327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the Src oncogene was the first step on a long journey toward improved cancer chemotherapy. In this review, we explore Src and BCR-ABL, signal transduction, and recent advances in oncogene addiction and celebrate Hidesaboro Hanafusa and the many researchers who ushered in the age of target-directed therapy against tyrosine kinase oncoproteins.
Collapse
Affiliation(s)
- Michael G Kharas
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
178
|
Samanta AK, Chakraborty SN, Wang Y, Schlette E, Reddy EP, Arlinghaus RB. Destabilization of Bcr-Abl/Jak2 Network by a Jak2/Abl Kinase Inhibitor ON044580 Overcomes Drug Resistance in Blast Crisis Chronic Myelogenous Leukemia (CML). Genes Cancer 2011; 1:346-59. [PMID: 20798787 DOI: 10.1177/1947601910372232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bcr-Abl is the predominant therapeutic target in chronic myeloid leukemia (CML), and tyrosine kinase inhibitors (TKIs) that inhibit Bcr-Abl have been successful in treating CML. With progression of CML disease especially in blast crisis stage, cells from CML patients become resistant to imatinib mesylate (IM) and other TKIs, resulting in relapse. Because Bcr-Abl is known to drive multiple signaling pathways, the study of the regulation of stability of Bcr-Abl in IM-resistant CML cells is a critical issue as a possible therapeutic strategy. Here, we report that a new dual-kinase chemical inhibitor, ON044580, induced apoptosis of Bcr-Abl+ IM-sensitive, IM-resistant cells, including the gatekeeper Bcr-Abl mutant, T315I, and also cells from blast crisis patients. In addition, IM-resistant K562-R cells, cells from blast crisis CML patients, and all IM-resistant cell lines tested had reduced ability to form colonies in soft agar in the presence of 0.5 µM ON044580. In in vitro kinase assays, ON044580 inhibited the recombinant Jak2 and Abl kinase activities when the respective Jak2 and Abl peptides were used as substrates. Incubation of the Bcr-Abl+ cells with ON044580 rapidly reduced the levels of the Bcr-Abl protein and also reduced the expression of HSP90 and its client protein levels. Lysates of Bcr-Abl+ cell lines were found to contain a large signaling network complex composed of Bcr-Abl, Jak2, HSP90, and its client proteins as detected by a gel filtration column chromatography, which was rapidly disrupted by ON044580. Therefore, targeting Jak2 and Bcr-Abl kinases is an effective way to destabilize Bcr-Abl and its network complex, which leads to the onset of apoptosis in IM-sensitive and IM-resistant Bcr-Abl+ cells. This inhibitory strategy has potential to manage all types of drug-resistant CML cells, especially at the terminal blast crisis stage of CML, where TKIs are not clinically useful.
Collapse
Affiliation(s)
- Ajoy K Samanta
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
179
|
Abstract
Because each cancer is a heterogeneous mix of cancer cells at different stages of development, we are faced with trying to treat many different diseased cells all at once. An authentic approach is to build a genomic and proteomic profile of a patient, identify the target oncogenes, and prescribe the combination of targeted drugs tailored for that patient. However, there are many practical problems with this personalized medicine approach: (i) cancers often generate treatment-resistant phenotypes, (ii) the treatment could be enormously expensive, and (iii) most of the targeted drugs have not been developed yet. We propose a different approach: therapies that combine 2-deoxyglucose (2DG) with Bcl-2 antagonist such as ABT-263/737 (ABT). Proapoptotic protein Bak is normally sequestered by Mcl-1 and Bcl-xL. Only when Bak is released from both Mcl-1 and Bcl-xL can it induce apoptosis. 2DG can prime highly glycolytic cells by dissociating Bak-Mcl-1 complex. Some brain cells and most cancer cells are primed by 2DG. ABT can bind to Bcl-xL, dissociating Bak-Bcl-xL complex, freeing Bak and inducing apoptosis. Because ABT cannot cross blood-brain barrier, the only cells exposed to both agents are highly glycolytic cancer cells located outside the brain. Because ABT directly triggers apoptosis at the step very near the terminal point of apoptosis, 2DG-ABT combination therapies are applicable to many types of cancer at all stages of development, with little side effect.
Collapse
|
180
|
Abstract
The clinical outcome for patients with chronic myelogenous leukemia (CML) has changed dramatically in the past 15 years. This has been due to the development of tyrosine kinase inhibitors (TKIs), compounds that inhibit the activity of the oncogenic BCR-ABL1 protein. Imatinib was the first TKI developed for CML, and it led to high rates of complete cytogenetic responses and improved survival for patients with this disease. However, approximately 35% of patients in chronic phase treated with imatinib will develop resistance or intolerance to this drug. The recognition of the problem of imatinib failure led to the design of second-generation TKI (dasatinib, nilotinib, and bosutinib). These drugs are highly active in the scenario of imatinib resistance or intolerance. More recently, both nilotinib and dasatinib were approved for frontline use in patients with chronic phase CML. Ponatinib represents the last generation of TKI, and this drug has been developed with the aim of targeting a specific BCR-ABL1 mutation (T315I), which arises in the setting of prolonged TKI therapy and leads to resistance to all commercially available TKI. Parallel to the development of specific drugs for treating CML, major advances were made in the field of disease monitoring and standardization of response criteria. In this review, we summarize how therapy with TKI for CML has evolved during the last decade.
Collapse
Affiliation(s)
- Fabio P S Santos
- Hematology and Stem Cell Transplantation Department, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Alfonso Quintás-Cardama
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Jorge Cortes
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
181
|
[A therapeutic improvement: second generation tyrosine kinase inhibitors (TKI 2) in the treatment of chronic myelogenous leukemia]. Bull Cancer 2011; 98:859-66. [PMID: 21816704 DOI: 10.1684/bdc.2011.1408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Second-generation tyrosine kinase inhibitors (TKI 2) represent a recent important improvement in the treatment of Philadelphia positive leukemias. These agents are a suitable major option if resistance or significant imatinib intolerance occurs in chronic and accelerated phase CML. They are now introduced as first line therapy in chronic phase CML where they induce cytogenetic and molecular response rates never seen to date, which is promising for long-term survival. We propose here an analysis of the main current data available for the use of TKI 2 in CML.
Collapse
|
182
|
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder that affects 5000 new patients per year in the United States. Prior to 10 years ago, durable remission was rare and patients often underwent bone marrow transplantation with substantial morbidity and mortality. Fortunately, CML has been the epicenter of exciting advances in cancer therapy with the discovery of the Bcr-Abl gene fusion and the subsequent development of imatinib mesylate, a small molecule tyrosine kinase inhibitor, to target the kinase activity of the bcr-abl protein product. Despite unprecedented durability for complete hematologic, cytogenetic, and molecular responses seen with front-line imatinib therapy, many patients require alternative therapy because of drug intolerance, suboptimal response, primary resistance, secondary resistance, or progression to advanced phase disease. Further, up to 5% of patients present with advanced disease that does not sustain a durable response to tyrosine kinase inhibitors. Thus, up to one third of CML patients require alternate therapy. Chronic myeloid leukemia has become an exemplary model system for understanding molecular targeting and overcoming mechanisms of drug resistance. This review will discuss potential mechanisms of resistance and ongoing research into novel targets and agents for CML resistant to standard of care.
Collapse
Affiliation(s)
- Sameek Roychowdhury
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
183
|
Yamaguchi R, Janssen E, Perkins G, Ellisman M, Kitada S, Reed JC. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One 2011; 6:e24102. [PMID: 21949692 PMCID: PMC3176271 DOI: 10.1371/journal.pone.0024102] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/31/2011] [Indexed: 01/30/2023] Open
Abstract
As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Program of Cell Death and Apoptosis, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | |
Collapse
|
184
|
Kim TM, Ha SA, Kim HK, Yoo J, Kim S, Yim SH, Jung SH, Kim DW, Chung YJ, Kim JW. Gene expression signatures associated with the in vitro resistance to two tyrosine kinase inhibitors, nilotinib and imatinib. Blood Cancer J 2011; 1:e32. [PMID: 22829191 PMCID: PMC3255246 DOI: 10.1038/bcj.2011.32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/07/2011] [Indexed: 01/12/2023] Open
Abstract
The use of selective inhibitors targeting Bcr-Abl kinase is now established as a standard protocol in the treatment of chronic myelogenous leukemia; however, the acquisition of drug resistance is a major obstacle limiting the treatment efficacy. To elucidate the molecular mechanism of drug resistance, we established K562 cell line models resistant to nilotinib and imatinib. Microarray-based transcriptome profiling of resistant cells revealed that nilotinib- and imatinib-resistant cells showed the upregulation of kinase-encoding genes (AURKC, FYN, SYK, BTK and YES1). Among them, the upregulation of AURKC and FYN was observed both in nilotinib- and imatinib-resistant cells irrespective of exposure doses, while SYK, BTK and YES1 showed dose-dependent upregulation of expression. Upregulation of EGF and JAG1 oncogenes as well as genes encoding ATP-dependent drug efflux pump proteins such as ABCB1 was also observed in the resistant cells, which may confer alternative survival benefits. Functional gene set analysis revealed that molecular categories of ‘ATPase activity', ‘cell adhesion' or ‘tyrosine kinase activity' were commonly activated in the resistant clones. Taken together, the transcriptome analysis of tyrosine kinase inhibitors (TKI)-resistant clones provides the insights into the mechanism of drug resistance, which can facilitate the development of an effective screening method as well as therapeutic intervention to deal with TKI resistance.
Collapse
|
185
|
SHP-1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia. Blood 2011; 118:3634-44. [PMID: 21821701 DOI: 10.1182/blood-2011-03-341073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We prove that the SH2-containing tyrosine phosphatase 1 (SHP-1) plays a prominent role as resistance determinant of imatinib (IMA) treatment response in chronic myelogenous leukemia cell lines (sensitive/KCL22-S and resistant/KCL22-R). Indeed, SHP-1 expression is significantly lower in resistant than in sensitive cell line, in which coimmunoprecipitation analysis shows the interaction between SHP-1 and a second tyrosine phosphatase SHP-2, a positive regulator of RAS/MAPK pathway. In KCL22-R SHP-1 ectopic expression restores both SHP-1/SHP-2 interaction and IMA responsiveness; it also decreases SHP-2 activity after IMA treatment. Consistently, SHP-2 knocking-down in KCL22-R reduces either STAT3 activation or cell viability after IMA exposure. Therefore, our data suggest that SHP-1 plays an important role in BCR-ABL-independent IMA resistance modulating the activation signals that SHP-2 receives from both BCR/ABL and membrane receptor tyrosine kinases. The role of SHP-1 as a determinant of IMA sensitivity has been further confirmed in 60 consecutive untreated patients with chronic myelogenous leukemia, whose SHP-1 mRNA levels were significantly lower in case of IMA treatment failure (P < .0001). In conclusion, we suggest that SHP-1 could be a new biologic indicator at baseline of IMA sensitivity in patients with chronic myelogenous leukemia.
Collapse
|
186
|
Breccia M, Alimena G. The significance of early, major and stable molecular responses in chronic myeloid leukemia in the imatinib era. Crit Rev Oncol Hematol 2011; 79:135-43. [DOI: 10.1016/j.critrevonc.2010.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022] Open
|
187
|
[Is AP24534 (Ponatinib) the next treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia?]. Bull Cancer 2011; 98:761-7. [PMID: 21700550 DOI: 10.1684/bdc.2011.1390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Distinct clinicopathologic acute lymphoblastic leukemia (ALL) entities have been identified, resulting in the adoption of risk-oriented treatment approaches. In Philadelphia chromosome-positive (Ph(+)) ALL, the optimal treatment requires the addition of BCR-ABL tyrosine kinase inhibitors, as imatinib. However, the outcome remains poor in absence of allogeneic stem cell transplantation, and novel agents are desperately required. Resistance attributable to kinase domain mutations can lead to relapse despite the development of second-generation compounds, including dasatinib and nilotinib. Despite these therapeutic options, the cross-resistant BCR-ABL (T315I) mutation remains a major clinical challenge. The first evaluations of AP24534 present this drug as a potent multi-targeted kinase inhibitor active against T315I and all other BCR-ABL mutants. AP24534 could be the next treatment of choice in hematological malignancies with Philadelphia-positive chromosome, particularly Ph(+) ALL known for its frequent occurrence of T315I mutation.
Collapse
|
188
|
Chen SJ, Zhou GB, Zhang XW, Mao JH, de Thé H, Chen Z. From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood 2011; 117:6425-37. [PMID: 21422471 PMCID: PMC3123014 DOI: 10.1182/blood-2010-11-283598] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 03/11/2011] [Indexed: 12/29/2022] Open
Abstract
Arsenic had been used in treating malignancies from the 18th to mid-20th century. In the past 3 decades, arsenic was revived and shown to be able to induce complete remission and to achieve, when combined with all-trans retinoic acid and chemotherapy, a 5-year overall survival of 90% in patients with acute promyelocytic leukemia driven by the t(15;17) translocation-generated promyelocytic leukemia-retinoic acid receptor α (PML-RARα) fusion. Molecularly, arsenic binds thiol residues and induces the formation of reactive oxygen species, thus affecting numerous signaling pathways. Interestingly, arsenic directly binds the C3HC4 zinc finger motif in the RBCC domain of PML and PML-RARα, induces their homodimerization and multimerization, and enhances their interaction with the SUMO E2 conjugase Ubc9, facilitating subsequent sumoylation/ubiquitination and proteasomal degradation. Arsenic-caused intermolecular disulfide formation in PML also contributes to PML-multimerization. All-trans retinoic acid, which targets PML-RARα for degradation through its RARα moiety, synergizes with arsenic in eliminating leukemia-initiating cells. Arsenic perturbs a number of proteins involved in other hematologic malignancies, including chronic myeloid leukemia and adult T-cell leukemia/lymphoma, whereby it may bring new therapeutic benefits. The successful revival of arsenic in acute promyelocytic leukemia, together with modern mechanistic studies, has thus allowed a new paradigm to emerge in translational medicine.
Collapse
Affiliation(s)
- Sai-Juan Chen
- Shanghai Institute of Hematology and State Key Laboratory for Medical Genomics, Rui Jin Hospital/Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, China
| | | | | | | | | | | |
Collapse
|
189
|
Schmidt T, Kharabi Masouleh B, Loges S, Cauwenberghs S, Fraisl P, Maes C, Jonckx B, De Keersmaecker K, Kleppe M, Tjwa M, Schenk T, Vinckier S, Fragoso R, De Mol M, Beel K, Dias S, Verfaillie C, Clark RE, Brümmendorf TH, Vandenberghe P, Rafii S, Holyoake T, Hochhaus A, Cools J, Karin M, Carmeliet G, Dewerchin M, Carmeliet P. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell 2011; 19:740-53. [PMID: 21665148 DOI: 10.1016/j.ccr.2011.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 01/05/2011] [Accepted: 05/05/2011] [Indexed: 12/12/2022]
Abstract
Imatinib has revolutionized the treatment of Bcr-Abl1(+) chronic myeloid leukemia (CML), but, in most patients, some leukemia cells persist despite continued therapy, while others become resistant. Here, we report that PlGF levels are elevated in CML and that PlGF produced by bone marrow stromal cells (BMSCs) aggravates disease severity. CML cells foster a soil for their own growth by inducing BMSCs to upregulate PlGF, which not only stimulates BM angiogenesis, but also promotes CML proliferation and metabolism, in part independently of Bcr-Abl1 signaling. Anti-PlGF treatment prolongs survival of imatinib-sensitive and -resistant CML mice and adds to the anti-CML activity of imatinib. These results may warrant further investigation of the therapeutic potential of PlGF inhibition for (imatinib-resistant) CML.
Collapse
MESH Headings
- Animals
- Benzamides
- Bone Marrow Cells/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NF-kappa B/physiology
- Osteolysis/prevention & control
- Piperazines/therapeutic use
- Placenta Growth Factor
- Pregnancy Proteins/antagonists & inhibitors
- Pregnancy Proteins/blood
- Pregnancy Proteins/physiology
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Angiogenesis & Neurovascular Link, Vesalius Research Center (VRC), VIB, K.U. Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
With an understanding of the molecular changes that accompany cell transformation, cancer drug discovery has undergone a dramatic change in the past few years. Whereas most of the emphasis in the past has been placed on developing drugs that induce cell death based on mechanisms that do not discriminate between normal and tumor cells, recent strategies have emphasized targeting specific mechanisms that have gone awry in tumor cells. However, the identification of cancer-associated mutations in oncogenes and their amplification in tumors has suggested that inhibitors against such proteins might represent attractive substrates for targeted therapy. In the clinic, the success of imatinib (Gleevec®, STI571) and trastuzumab (Herceptin®), both firsts of their kind, spurred further development of new, second-generation drugs that target kinases in cancer. This review highlights a few important examples each of these types of therapies, along with some newer agents that are in various stages of development. Second-generation kinase inhibitors aimed at overriding emerging resistance to these therapies are also discussed.
Collapse
|
191
|
Takeda Y, Nakaseko C, Tanaka H, Takeuchi M, Yui M, Saraya A, Miyagi S, Wang C, Tanaka S, Ohwada C, Sakaida E, Yamaguchi N, Yokote K, Hennighausen L, Iwama A. Direct activation of STAT5 by ETV6-LYN fusion protein promotes induction of myeloproliferative neoplasm with myelofibrosis. Br J Haematol 2011; 153:589-98. [PMID: 21492125 PMCID: PMC3091948 DOI: 10.1111/j.1365-2141.2011.08663.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloproliferative neoplasms (MPN), a group of haematopoietic stem cell (HSC) disorders, are often accompanied by myelofibrosis. We previously identified the fusion of the ETV6 gene to the LYN gene (ETV6-LYN) in idiopathic myelofibrosis with ins(12;8)(p13;q11q21). The introduction of ETV6-LYN into HSCs resulted in fatal MPN with massive myelofibrosis in mice, implicating the rearranged LYN kinase in the pathogenesis of MPN with myelofibrosis. However, the signalling molecules directly downstream from and activated by ETV6-LYN remain unknown. In this study, we demonstrated that the direct activation of STAT5 by ETV6-LYN is crucial for the development of MPN. ETV6-LYN was constitutively active as a kinase through autophosphorylation. ETV6-LYN, but not its kinase-dead mutant, supported cytokine-free proliferation of haematopoietic cells. STAT5 was activated in a JAK2-independent manner in ETV6-LYN-expressing cells. ETV6-LYN interacted with STAT5 and directly activated STAT5 both in vitro and in vivo. Of note, ETV6-LYN did not support the formation of colonies by Stat5-deficient HSCs under cytokine-free conditions and the capacity of ETV6-LYN to induce MPN with myelofibrosis was profoundly attenuated in a Stat5-null background. These findings define STAT5 as a direct target of ETV6-LYN and unveil the LYN-STAT5 axis as a novel pathway to augment proliferative signals in MPN and leukaemia.
Collapse
Affiliation(s)
- Yusuke Takeda
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Chiaki Nakaseko
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Hiroaki Tanaka
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Masahiro Takeuchi
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Makiko Yui
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Changshan Wang
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Satomi Tanaka
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Chikako Ohwada
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Emiko Sakaida
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Division of Haematology, Department of Clinical Cell Biology, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8670, Japan
- CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
192
|
Soverini S, Rosti G, Iacobucci I, Baccarani M, Martinelli G. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring Bcr-Abl kinase domain mutations: how reliable is the IC₅₀? Oncologist 2011; 16:868-76. [PMID: 21632458 DOI: 10.1634/theoncologist.2010-0388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of drug resistance to imatinib mesylate in chronic myeloid leukemia (CML) patients is often accompanied by selection of point mutations in the kinase domain (KD) of the Bcr-Abl oncoprotein, where imatinib binds. Several second-generation tyrosine kinase inhibitors (TKIs) have been designed rationally so as to enhance potency and retain the ability to bind mutated forms of Bcr-Abl. Since the preclinical phase of their development, most of these inhibitors have been tested in in vitro studies to assess their half maximal inhibitory concentration (IC₅₀) for unmutated and mutated Bcr-Abl-that is, the drug concentration required to inhibit the cell proliferation or the phosphorylation processes driven by either the unmutated or the mutated forms of the kinase. A number of such studies have been published, and now that two inhibitors-dasatinib and nilotinib-are available for the treatment of imatinib-resistant cases, it is tempting for clinicians to reason on the IC₅₀ values to guess, case by case, which one will work best in patients harboring specific Bcr-Abl KD mutations. Here, we discuss the pros and cons of using this approach in TKI selection.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Haematology/Oncology, L. e A. Serígnoli, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
193
|
Schultz KR, Prestidge T, Camitta B. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: new and emerging treatment options. Expert Rev Hematol 2011; 3:731-42. [PMID: 21091149 DOI: 10.1586/ehm.10.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) in children and adolescents has, until recently, been considered one of the poorest-risk subgroups of ALL. With chemotherapy alone, only 20-30% of children with Ph(+) ALL are cured. Allogeneic hematopoietic cell transplantation in first complete remission cures 60% of patients with a closely matched donor. Although targeted tyrosine kinase inhibitors (TKIs) have limited activity against Ph(+) ALL as a single agent, they have been evaluated in combination with chemotherapy with promising results. The early results of Children's Oncology Group trial AALL0031 have shown 88% 3-year event-free survival for Ph(+) patients treated with intensive chemotherapy plus continuous-dosing imatinib. This suggests that chemotherapy plus TKIs may be the initial treatment of choice for Ph(+) ALL in children. However, the numbers are small in this trial and confirmatory results are not yet available from the European Intergroup Study on Post Induction Treatment of Philadelphia Positive Acute Lymphoblastic Leukaemia with Imatinib trial. Additional issues include determining the most effective TKI (imatinib, dasatinib or nilotinib) and the most effective, least toxic chemotherapy backbone. The experience of adding a targeted agent such as a TKI to the standard chemotherapy regimen suggests that this strategy might be applied to other ALL subtypes to achieve both increased efficacy and decreased toxicity.
Collapse
Affiliation(s)
- Kirk R Schultz
- Division of Pedatric Hematology, Oncology, Blood and Marrow Transplantation, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
194
|
Nambu T, Hamada A, Nakashima R, Yuki M, Kawaguchi T, Mitsuya H, Saito H. Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia. Biol Pharm Bull 2011; 34:114-9. [PMID: 21212528 DOI: 10.1248/bpb.34.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular concentration of imatinib in leukemic cells is thought to affect the clinical efficacy of this drug in patients with chronic myeloid leukemia (CML); however, there is no report that directly indicates the relationship between intracellular concentration and clinical outcome and/or, plasma concentration. In addition, the impacts of genetic variations of drug transporters, which mediate leukocyte concentration of imatinib, are unknown. In the present study, we investigated the correlation between intracellular imatinib concentrations in leukocytes, plasma imatinib levels, and genotypes of drug transporters, including ATP binding cassette B1 (ABCB), ABCG2, solute carrier 22A1 (SLC22A1), solute carrier organic anion transporter family members 1B1 (SLCO1B1) and SLCO1B3. The imatinib levels in leukocytes were determined using HPLC in 15 patients with chronic phase CML. No significant correlation between intracellular and plasma concentrations of imatinib was observed. The intracellular concentration was comparable in both patients with or without complete cytogenetic response. The intracellular imatinib concentration was significantly higher in patients with SLCO1B3 334TT than in those with 334TG/GG (p=0.0188). Plasma concentrations were similar in both SLCO1B3 genotypes (p=0.860), thereby resulting in the intracellular to plasma concentration ratio being higher in patients with SLCO1B3 334TT than those with 334 TG/GG (p=0.0502). These results suggested that the SLCO1B3 334T>G polymorphism could have a significant impact on the intracellular concentration of imatinib in leukocytes as a promising biomarker for personalized treatment of CML patients.
Collapse
Affiliation(s)
- Takeru Nambu
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
195
|
Balabanov S, Gontarewicz A, Keller G, Raddrizzani L, Braig M, Bosotti R, Moll J, Jost E, Barett C, Rohe I, Bokemeyer C, Holyoake TL, Brümmendorf TH. Abcg2 overexpression represents a novel mechanism for acquired resistance to the multi-kinase inhibitor Danusertib in BCR-ABL-positive cells in vitro. PLoS One 2011; 6:e19164. [PMID: 21541334 PMCID: PMC3082549 DOI: 10.1371/journal.pone.0019164] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 03/29/2011] [Indexed: 02/07/2023] Open
Abstract
The success of Imatinib (IM) therapy in chronic myeloid leukemia (CML) is compromised by the development of IM resistance and by a limited IM effect on hematopoietic stem cells. Danusertib (formerly PHA-739358) is a potent pan-aurora and ABL kinase inhibitor with activity against known BCR-ABL mutations, including T315I. Here, the individual contribution of both signaling pathways to the therapeutic effect of Danusertib as well as mechanisms underlying the development of resistance and, as a consequence, strategies to overcome resistance to Danusertib were investigated. Starting at low concentrations, a dose-dependent inhibition of BCR-ABL activity was observed, whereas inhibition of aurora kinase activity required higher concentrations, pointing to a therapeutic window between the two effects. Interestingly, the emergence of resistant clones during Danusertib exposure in vitro occurred considerably less frequently than with comparable concentrations of IM. In addition, Danusertib-resistant clones had no mutations in BCR-ABL or aurora kinase domains and remained IM-sensitive. Overexpression of Abcg2 efflux transporter was identified and functionally validated as the predominant mechanism of acquired Danusertib resistance in vitro. Finally, the combined treatment with IM and Danusertib significantly reduced the emergence of drug resistance in vitro, raising hope that this drug combination may also achieve more durable disease control in vivo.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Apoptosis/drug effects
- Aurora Kinases
- Benzamides/pharmacology
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Clone Cells
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/pathology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mutation/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Piperazines/pharmacology
- Polyploidy
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Stefan Balabanov
- Klinik für Onkologie, Hämatologie und Knochenmarktransplantation mit Sektion Pneumologie, Universitäres Cancer Center Hamburg, Universitäts-Klinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Donato NJ, Peterson LF. Chronic myeloid leukemia stem cells and developing therapies. Leuk Lymphoma 2011; 52 Suppl 1:60-80. [PMID: 21299460 DOI: 10.3109/10428194.2010.546921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chronic myeloid leukemia therapy has remarkably improved with the use of frontline BCR-ABL kinase inhibitors such that newly diagnosed patients have minimal disease manifestations or progression. Effective control of disease may also set the stage for eventual 'cure' of this leukemia. However, the existence of Philadelphia chromosome-positive leukemic cells that are unaffected by BCR-ABL inhibition represents a major barrier that may delay or prevent curative therapy with the current approaches. The most commonly reported mechanism of resistance to tyrosine kinase inhibitor-based therapies involves BCR-ABL gene mutations and amplification, but these changes may not be solely responsible for disease relapse when inhibitor-based therapies are curtailed. Therefore new targets may need to be defined before significant advancement in curative therapies is possible. Emerging evidence suggests that persistence of chronic myeloid leukemia stem cells or acquisition of stem cell-like characteristics prevents complete elimination of chronic myeloid leukemia by tyrosine kinase inhibition alone. This review focuses on several recently emerging concepts regarding the existence and characteristics of chronic myeloid leukemia stem cells. Definitions based on human primary cells and animal model studies are highlighted as are the potential signaling pathways associated with disease repopulating cells. Finally, several recently defined therapeutic targets and active compounds that have emerged from stem cell studies are described. Our goal is to provide an unbiased report on the current state of discovery within the chronic myeloid leukemia stem cell field and to orient the reader to emerging therapeutic targets and strategies that may lead to elimination of this leukemia.
Collapse
Affiliation(s)
- Nicholas J Donato
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
197
|
Abstract
ABL inhibitors have revolutionized the clinical management of chronic myeloid leukemia, but the BCR-ABL(T315I) mutation confers resistance to currently approved drugs. Chan et al. show, in this issue of Cancer Cell, that "switch-control" inhibitors block BCR-ABL(T315I) activity by preventing ABL from switching from the inactive to active conformation.
Collapse
Affiliation(s)
- Leisl Packer
- Division of Tumour Biology, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
198
|
Porkka K, Mustjoki S, Simonsson B. Suboptimal responses in chronic myeloid leukemia: milestones and mechanisms. Expert Rev Hematol 2011; 2:81-91. [PMID: 21082997 DOI: 10.1586/17474086.2.1.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patients with chronic myeloid leukemia who fail to achieve timely treatment responses have a worse prognosis. Although many patients respond well to first-line treatment with imatinib, a significant proportion relapse or experience an inadequate response. Since effective alternative Bcr-Abl inhibitors are available (i.e., dasatinib or nilotinib), several regional groups have proposed milestones for imatinib failure or suboptimal response based on the achievement of specified levels of response within a defined treatment duration. A suboptimal response indicates that, although patients may continue to receive a benefit from continuing imatinib treatment at the assigned dose, long-term outcome may be better with an alternative strategy. The underlying mechanisms behind suboptimal responses are multifactorial and may differ from those causing relapse.
Collapse
Affiliation(s)
- Kimmo Porkka
- Department of Medicine (Division of Hematology), Helsinki University Central Hospital, Helsinki, Finland.
| | | | | |
Collapse
|
199
|
Sohn SK, Oh SJ, Kim BS, Ryoo HM, Chung JS, Joo YD, Bang SM, Jung CW, Kim DH, Yoon SS, Kim H, Lee HG, Won JH, Min YH, Cheong JW, Park JS, Eom KS, Hyun MS, Kim MK, Kim H, Park MR, Park J, Kim CS, Kim HJ, Kim YK, Park EK, Zang DY, Jo DY, Moon JH, Park SY. Trough plasma imatinib levels are correlated with optimal cytogenetic responses at 6 months after treatment with standard dose of imatinib in newly diagnosed chronic myeloid leukemia. Leuk Lymphoma 2011; 52:1024-9. [DOI: 10.3109/10428194.2011.563885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
200
|
Assouline S, Lipton J. Monitoring response and resistance to treatment in chronic myeloid leukemia. Curr Oncol 2011; 18:e71-83. [PMID: 21505592 PMCID: PMC3070714 DOI: 10.3747/co.v18i2.391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic myeloid leukemia (cml) results from expression of the constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. Imatinib, a tyrosine kinase inhibitor (tki), is highly effective in the treatment of cml. However, some patients treated with imatinib will fail to respond, will respond suboptimally, or will relapse because of primary or acquired resistance or intolerance. Research activities focusing on the mechanisms that underlie imatinib resistance have identified mutations in the BCR-ABL gene, clonal evolution, and amplification of the BCR-ABL gene as common causes. Cytogenetic and molecular techniques are currently used to monitor cml therapy for both response and relapse. With multiple and more potent therapeutic options now available, monitoring techniques can permit treatment to be tailored to the individual patient based on disease characteristics-for example, according to BCR-ABL mutation profile or to patient characteristics such as certain comorbid conditions. This approach should benefit patients by increasing the potential for better long-term outcomes.
Collapse
Affiliation(s)
- S. Assouline
- Department of Medicine and Oncology, McGill University, Jewish General Hospital, Montreal, QC
| | - J.H. Lipton
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, ON
| |
Collapse
|