151
|
Lässer C. Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 2014; 15:103-17. [DOI: 10.1517/14712598.2015.977250] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
152
|
Deregulation of serum microRNA expression is associated with cigarette smoking and lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:364316. [PMID: 25386559 PMCID: PMC4217347 DOI: 10.1155/2014/364316] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related death and cigarette smoking is the main risk factor for lung cancer. Circulating microRNAs (miRNAs) are considered potential biomarkers of various cancers, including lung cancer. However, it is unclear whether changes in circulating miRNAs are associated with smoking and smoking-related lung cancer. In this study, we determined the serum miRNA profiles of 10 nonsmokers, 10 smokers, and 10 lung-cancer patients with miRCURY LNA microRNA arrays. The differentially expressed miRNAs were then confirmed in a larger sample. We found that let-7i-3p and miR-154-5p were significantly downregulated in the sera of smokers and lung-cancer patients, so the serum levels of let-7i-3p and miR-154-5p are associated with smoking and smoking-related lung cancer. The areas under receiver operating characteristic curves for let-7i-3p and miR-154-5p were approximately 0.892 and 0.957, respectively. In conclusion, our results indicate that changes in serum miRNAs are associated with cigarette smoking and lung cancer and that let-7i-3p and miR-154-5p are potential biomarkers of smoking-related lung cancer.
Collapse
|
153
|
Vescovo VD, Grasso M, Barbareschi M, Denti MA. MicroRNAs as lung cancer biomarkers. World J Clin Oncol 2014; 5:604-620. [PMID: 25302165 PMCID: PMC4129526 DOI: 10.5306/wjco.v5.i4.604] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Its high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumor biology. Importantly, lung cancer histological subgroups respond differently to some chemotherapeutic substances and side effects of some therapies appear to vary between subgroups. Biomarkers able to stratify for the subtype of lung cancer, prognosticate the course of disease, or predict the response to treatment are in high demand. In the last decade, microRNAs (miRNAs), measured in resected tumor samples or in fine needle aspirate samples have emerged as biomarkers for tumor diagnosis, prognosis and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole blood have increasingly been explored in the last five years as less invasive biomarkers for the early detection of cancers. In this review we cover the increasing amounts of data that have accumulated in the last ten years on the use of miRNAs as lung cancer biomarkers.
Collapse
|
154
|
The impact of extracellular vesicle-encapsulated circulating microRNAs in lung cancer research. BIOMED RESEARCH INTERNATIONAL 2014; 2014:486413. [PMID: 25295261 PMCID: PMC4176915 DOI: 10.1155/2014/486413] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths. Biomarkers for lung cancer have raised great expectations in their clinical applications for early diagnosis, survival, and therapeutic responses. MicroRNAs (miRNAs), a family of short endogenous noncoding RNAs, play critical roles in cell growth, differentiation, and the development of various types of cancers. Current studies have shown that miRNAs are present in the extracellular spaces, packaged into various membrane-bound vesicles. Tumor-specific circulating miRNAs have been developed as early diagnostic biomarkers for lung cancer. Remarkably, some studies have succeeded in discovering circulating miRNAs with prognostic or predictive significance. Extracellular vesicles (EVs), such as exosomes and microvesicles, are recognized as novel tools for cell-cell communication and as biomarkers for various diseases. Their vesicle composition and miRNA content have the ability to transfer biological information to recipient cells and play an important role in cancer metastasis and prognosis. This review provides an in-depth summary of current findings on circulating miRNAs in lung cancer patients used as diagnostic biomarkers. We also discuss the role of EV miRNAs in cell-cell communication and explore the effectiveness of these contents as predictive biomarkers for cancer malignancy.
Collapse
|
155
|
Forensic miRNA: potential biomarker for body fluids? Forensic Sci Int Genet 2014; 14:1-10. [PMID: 25280377 DOI: 10.1016/j.fsigen.2014.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/06/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022]
Abstract
In forensic investigation, body fluids represent an important support to professionals when detected, collected and correctly identified. Through many years, various approaches were used, namely serology-based methodologies however, their lack of sensitivity and specificity became difficult to set aside. In order to sidetrack the problem, miRNA profiling surged with a real potential to be used to identify evidences like urine, blood, menstrual blood, saliva, semen and vaginal secretions. MiRNAs are small RNA structures with 20-25 nt whose proprieties makes them less prone to degradation processes when compared to mRNA which is extremely important once, in a crime scene, biological evidences might be exposed to several unfavorable environmental factors. Recently, published studies were able to identify some specific miRNAs, however their results were not always reproducible by others which can possibly be the reflection of different workflow strategies for their profiling studies. Given the current blast of interest in miRNAs, it is important to acknowledge potential limitations of miRNA profiling, yet, the lack of such studies are evident. This review pretends to gather all the information to date and assessed a multitude of factors that have a potential aptitude to discrediting miRNA profiling, such as: methodological approaches, environmental factors, physiological conditions, gender, pathologies and samples storage. It can be asserted that much has yet to be made, but we pretend to highlight a potential answer for the ultimate question: Can miRNA profiling be used as the forensic biomarker for body fluids identification?
Collapse
|
156
|
Jia B, Chang Z, Wei X, Lu H, Yin J, Jiang N, Chen Q. Plasma microRNAs are promising novel biomarkers for the early detection of Toxoplasma gondii infection. Parasit Vectors 2014; 7:433. [PMID: 25199527 PMCID: PMC4261535 DOI: 10.1186/1756-3305-7-433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been shown to be present in plasma, which are remarkably stable, and have been suggested as disease biomarkers. Toxoplasma gondii (T. gondii) is a protozoan parasite that is infective to a wide range of animals and human beings. Previous studies have found that the parasite generated a large number of miRNAs during proliferation and it is known that the spectrum of miRNA expression in the infected hosts is pathogen-specific. To date, there are no reports regarding the application of microRNAs as biomarkers for the early detection of T. gondii infection. Methods In this study, we investigated the expression patterns of 414 murine miRNAs and tested their expression levels in the plasma after T. gondii infection by real-time PCR, with an ultimate purpose of identifying infection-related miRNAs. Three miRNAs in particular, exhibiting prominently elevated expressions, were further validated in a large number of infected mice. The Toxoplasma infection-specific miRNAs were confirmed by comparing their expression levels with those of mice infected with Plasmodium berghei, P. yoelii, P. chabaudi, Cryptosporidium parvum, Mouse hepatitis virus, and Staphylococcus aureus. Results Among the 414 miRNA candidates identified by a real-time PCR array, 71 were found to be up-regulated in the plasma of T. gondii infected mice. Three of those miRNAs (mmu-miR-712-3p, mmu-miR-511-5p and mmu-miR-217-5p) were prominently expressed in mice infected by both the RH and ME49 strains of T. gondii. Additionally, the elevated expression of these miRNAs was Toxoplasma-specific. Conclusions The levels of the three miRNAs, mmu-miR-712-3p, mmu-miR-511-5p and mmu-miR-217-5p miRNAs, were found specifically up-regulated in plasma of mice after T. gondii infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Jiang
- Key Laboratory of Zoonosis, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China.
| | | |
Collapse
|
157
|
Zhu X, He Z, Hu Y, Wen W, Lin C, Yu J, Pan J, Li R, Deng H, Liao S, Yuan J, Wu J, Li J, Li M. MicroRNA-30e* suppresses dengue virus replication by promoting NF-κB-dependent IFN production. PLoS Negl Trop Dis 2014; 8:e3088. [PMID: 25122182 PMCID: PMC4133224 DOI: 10.1371/journal.pntd.0003088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/30/2014] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3'-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.
Collapse
Affiliation(s)
- Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weitao Wen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cuiji Lin
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Pan
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Li
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haijing Deng
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaowei Liao
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
158
|
Nair VS, Pritchard CC, Tewari M, Ioannidis JPA. Design and Analysis for Studying microRNAs in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol 2014; 180:140-52. [PMID: 24966218 PMCID: PMC4082346 DOI: 10.1093/aje/kwu135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are fundamental to cellular biology. Although only approximately 22 bases long, miRNAs regulate complex processes in health and disease, including human cancer. Because miRNAs are highly stable in circulation when compared with several other classes of nucleic acids, they have generated intense interest as clinical biomarkers in diverse epidemiologic studies. As with other molecular biomarker fields, however, miRNA research has become beleaguered by pitfalls related to terminology and classification; procedural, assay, and study cohort heterogeneity; and methodological inconsistencies. Together, these issues have led to both false-positive and potentially false-negative miRNA associations. In this review, we summarize the biological rationale for studying miRNAs in human disease with a specific focus on circulating miRNAs, which highlight some of the most challenging topics in the field to date. Examples from lung cancer are used to illustrate the potential utility and some of the pitfalls in contemporary miRNA research. Although the field is in its infancy, several important lessons have been learned relating to cohort development, sample preparation, and statistical analysis that should be considered for future studies. The goal of this primer is to equip epidemiologists and clinical researchers with sound principles of study design and analysis when using miRNAs.
Collapse
Affiliation(s)
| | | | | | - John P. A. Ioannidis
- Correspondence to Dr. John P. A. Ioannidis, Stanford University School of Medicine, Stanford Prevention Research Center, 1265 Welch Road, MSOB X306, Stanford, CA 94305 ()
| |
Collapse
|
159
|
Yamaguchi T, Iijima T, Wakaume R, Takahashi K, Matsumoto H, Nakano D, Nakayama Y, Mori T, Horiguchi S, Miyaki M. Underexpression of miR-126 and miR-20b in hereditary and nonhereditary colorectal tumors. Oncology 2014; 87:58-66. [PMID: 24994098 DOI: 10.1159/000363303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of the study was to determine the significance of miR-126 and miR-20b in colorectal carcinogenesis. METHODS We analyzed the expressions of miR-126 and miR-20b in 136 colorectal tumors from 39 microsatellite stable (MSS) tumors, 23 high microsatellite instability (MSI-H) tumors, 16 Lynch syndrome, and 58 familial adenomatous polyposis (FAP) tumors including adenoma, intramucosal carcinoma, and invasive carcinoma. RESULTS All four kinds of tumors showed underexpression of both miR-126 and miR-20b. The frequency of miR-126 downregulation was 100.0% in FAP adenomas, 85.7% in FAP intramucosal carcinomas, 78.9% in invasive carcinomas, 81.3% in Lynch syndrome tumors, 68.4% in MSS tumors, and 65.4% in MSI-H tumors. The frequency of miR-20b downregulation was 64.0% in FAP adenomas, 50.0% in FAP intramucosal carcinomas, 73.3% in invasive carcinomas, 62.5% in Lynch syndrome tumors, 79.5% in MSS tumors, and 91.3% in MSI-H tumors. The current study demonstrated underexpression of miR-126 and miR-20b in various types of colorectal cancer. These findings support the hypothesis that angiogenesis results from underexpressions of miR-126 and miR-20b and occurs as an early event in colorectal carcinogenesis. CONCLUSIONS Underexpression of miR-126 and miR-20b was observed in various types of colorectal cancer, and occurs as an early event of colorectal carcinogenesis in FAP tumors.
Collapse
Affiliation(s)
- Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ulivi P, Zoli W. miRNAs as non-invasive biomarkers for lung cancer diagnosis. Molecules 2014; 19:8220-37. [PMID: 24941344 PMCID: PMC6271142 DOI: 10.3390/molecules19068220] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is a leading cause of cancer death and late diagnosis is one of the most important reasons for the high mortality rate. Circulating microRNAs (miRNAs) represent stable and reproducible markers for numerous solid tumors, including lung cancer, and have been hypothesized as non-invasive diagnostic markers. Serum, plasma or whole peripheral blood can be used as starting material, and several methodological approaches have been proposed to evaluate miRNA expression. The present review provides an in depth summary of current knowledge on circulating miRNAs in different types of biological samples used as diagnostic markers of lung cancer. We also evaluate the diagnostic accuracy of each miRNA or group of miRNAs in relation to the different housekeeping miRNAs used. Finally, the limitations and potential of miRNA analysis are discussed.
Collapse
Affiliation(s)
- Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, 47014 Meldola (FC), Italy.
| | - Wainer Zoli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, 47014 Meldola (FC), Italy
| |
Collapse
|
161
|
Zhang W, Lei P, Dong X, Xu C. The new concepts on overcoming drug resistance in lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:735-44. [PMID: 24944510 PMCID: PMC4057322 DOI: 10.2147/dddt.s60672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is one of the most deadly diseases worldwide. The current first-line therapies include chemotherapy using epidermal growth factor receptor tyrosine kinase inhibitors and radiotherapies. With the current progress in identifying new molecular targets, acquired drug resistance stands as an obstacle for good prognosis. About half the patients receiving epidermal growth factor receptor-tyrosine kinase inhibitor treatments develop resistance. Although extensive studies have been applied to elucidate the underlying mechanisms, evidence is far from enough to establish a well-defined picture to correct resistance. In the review, we will discuss four different currently developed strategies that have the potential to overcome drug resistance in lung cancer therapies and facilitate prolonged anticancer effects of the first-line therapies.
Collapse
Affiliation(s)
- Weisan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xifeng Dong
- Department of Hematology-Oncology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Cuiping Xu
- Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
162
|
Jarry J, Schadendorf D, Greenwood C, Spatz A, van Kempen LC. The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol Oncol 2014; 8:819-29. [PMID: 24656978 PMCID: PMC5528532 DOI: 10.1016/j.molonc.2014.02.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/14/2014] [Accepted: 02/24/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) in circulation have received an increasing amount of interest as potential minimal invasive diagnostic tools in oncology. Several diagnostic, prognostic and predictive signatures have been proposed for a variety of cancers at different stages of disease, but these have not been subjected to a critical review regarding their validity: reproducible identification in comparable studies and/or with different platforms of miRNA detection. In this review, we will critically address the results of circulating miRNA research in oncology that have been published between January 2008 and June 2013 (5.5 years), and discuss pre-analytical challenges, technological pitfalls and limitations that may contribute to the non-reproducibility of circulating miRNA research.
Collapse
Affiliation(s)
- J Jarry
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - D Schadendorf
- Department of Dermatology, University Hospital Essen, Germany
| | - C Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; Department of Oncology, McGill University, Montreal, QC, Canada; Department of Pathology, McGill University, Montreal, QC, Canada
| | - A Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Pathology, Jewish General Hospital, Montreal, QC, Canada; Department of Oncology, McGill University, Montreal, QC, Canada; Department of Pathology, McGill University, Montreal, QC, Canada
| | - L C van Kempen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Pathology, Jewish General Hospital, Montreal, QC, Canada; Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
163
|
Rodríguez M, Silva J, López-Alfonso A, López-Muñiz MB, Peña C, Domínguez G, García JM, López-Gónzalez A, Méndez M, Provencio M, García V, Bonilla F. Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer 2014; 53:713-24. [PMID: 24764226 DOI: 10.1002/gcc.22181] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Tumor-derived exosomes mediate tumorigenesis by facilitating tumor growth, metastasis, development of drug resistance, and immunosuppression. However, little is known about the exosomes isolated from bronchoalveolar lavage (BAL) in patients with lung neoplasm. Exosomes isolated in plasma and BAL from 30 and 75 patients with tumor and nontumor pathology were quantified by acetylcholinesterase activity and characterized by Western Blot, Electron Microscopy, and Nanoparticle Tracking Analysis. Differences in exosome cargo were analyzed by miRNA quantitative PCR in pooled samples and validated in a second series of patients. More exosomes were detected in plasma than in BAL in both groups (P < 0.001). The most miRNAs evaluated by PCR array were detected in tumor plasma, tumor BAL, and nontumor BAL pools, but only 56% were detected in the nontumor plasma pool. Comparing the top miRNAs with the highest levels detected in each pool, we found close homology only between the BAL samples of the two pathologies. In tumor plasma, we found a higher percentage of miRNAs with increased levels than in tumor BAL or in nontumor plasma. The data reveal differences between BAL and plasma exosome amount and miRNA content.
Collapse
Affiliation(s)
- Marta Rodríguez
- Department of Medical Oncology, University Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Grange C, Collino F, Tapparo M, Camussi G. Oncogenic micro-RNAs and Renal Cell Carcinoma. Front Oncol 2014; 4:49. [PMID: 24672771 PMCID: PMC3956040 DOI: 10.3389/fonc.2014.00049] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022] Open
Abstract
Tumor formation is a complex process that occurs in different steps and involves many cell types, including tumor cells, endothelial cells, and inflammatory cells, which interact to promote growth of the tumor mass and metastasization. Epigenetic alterations occurring in transformed cells result in de-regulation of miRNA expression (a class of small non-coding RNA that regulates multiple functions), which contributes to tumorigenesis. The specific miRNAs, which have an aberrant expression in tumors, are defined as oncomiRNAs, and may be either over- or under-expressed, but down-regulation is most commonly observed. Renal cell carcinoma (RCC) is a frequent form of urologic tumor, associated with an alteration of multiple signaling pathways. Many molecules involved in the progression of RCCs, such as HIF, VEGF, or mammalian target of rapamycin, are possible targets of de-regulated miRNAs. Within tumor mass, the cancer stem cell (CSC) population is a fundamental component that promotes tumor growth. The CSC hypothesis postulates that CSCs have the unique ability to self-renew and to maintain tumor growth and metastasis. CSCs present in RCC were shown to express the mesenchymal stem cell marker CD105 and to exhibit self-renewal and clonogenic properties, as well as the ability to generate serially transplantable tumors. The phenotype of CSC has been related to the potential to undergo the epithelial–mesenchymal transition, which has been linked to the expression pattern of tumorigenic miRNAs or down-regulation of anti-tumor miRNAs. In addition, the pattern of circulating miRNAs may allow discrimination between healthy and tumor patients. Therefore, a miRNA signature may be used as a tumor biomarker for cancer diagnosis, as well as to classify the risk of relapse and metastasis, and for a guide for therapy.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Torino , Torino , Italy
| | - Federica Collino
- Translational Center for Regenerative Medicine, University of Torino , Torino , Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino , Torino , Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino , Torino , Italy
| |
Collapse
|
165
|
Assessment of circulating microRNAs in plasma of lung cancer patients. Molecules 2014; 19:3038-54. [PMID: 24619302 PMCID: PMC6272001 DOI: 10.3390/molecules19033038] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/20/2022] Open
Abstract
Lung cancer is the most common cause of cancer deaths worldwide and numerous ongoing research efforts are directed to identify new strategies for its early detection. The development of non-invasive blood-based biomarkers for cancer detection in its preclinical phases is crucial to improve the outcome of this deadly disease. MicroRNAs (miRNAs) are a new promising class of circulating biomarkers for cancer detection and prognosis definition, but lack of consensus on data normalization methods for circulating miRNAs and the critical issue of haemolysis, has affected the identification of circulating miRNAs with diagnostic potential. We describe here an interesting approach for profiling circulating miRNAs in plasma samples based on the evaluation of reciprocal miRNA levels measured by quantitative Real-Time PCR. By monitoring changes of plasma miRNA-ratios, it is possible to assess the deregulation of tumor-related miRNAs and identify signatures with diagnostic and prognostic value. In addition, to avoid bias due to the release of miRNAs from blood cells, a miRNA-ratios signature distinguishing haemolyzed samples was identified. The method described was validated in plasma samples of lung cancer patients, but given its reproducibility and reliability, could be potentially applied for the identification of diagnostic circulating miRNAs in other diseases.
Collapse
|
166
|
Jia S, Zocco D, Samuels ML, Chou MF, Chammas R, Skog J, Zarovni N, Momen-Heravi F, Kuo WP. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn 2014; 14:307-21. [PMID: 24575799 DOI: 10.1586/14737159.2014.893828] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have been shown to carry a variety of biomacromolecules including mRNA, microRNA and other non-coding RNAs. Within the past 5 years, EVs have emerged as a promising minimally invasive novel source of material for molecular diagnostics. Although EVs can be easily identified and collected from biological fluids, further research and proper validation is needed in order for them to be useful in the clinical setting. In addition, innovative and more efficient means of nucleic acid profiling are needed to facilitate investigations into the cellular and molecular mechanisms of EV function and to establish their potential as useful clinical biomarkers and therapeutic tools. In this article, we provide an overview of recent technological improvements in both upstream EV isolation and downstream analytical technologies, including digital PCR and next generation sequencing, highlighting future prospects for EV-based molecular diagnostics.
Collapse
Affiliation(s)
- Shidong Jia
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18:371-90. [PMID: 24533657 PMCID: PMC3943687 DOI: 10.1111/jcmm.12236] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma- and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Collapse
Affiliation(s)
- Leni Moldovan
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
168
|
Wang J, Zhang KY, Liu SM, Sen S. Tumor-associated circulating microRNAs as biomarkers of cancer. Molecules 2014; 19:1912-1938. [PMID: 24518808 PMCID: PMC6271223 DOI: 10.3390/molecules19021912] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), the 17- to 25-nucleotide long noncoding RNAs that modulate the expression of mRNAs and proteins, have emerged as critical players in cancer initiation and progression processes. Deregulation of tissue miRNA expression levels associated with specific genetic alterations has been demonstrated in cancer, where miRNAs function either as oncogenes or as tumor-suppressor genes and are shed from cancer cells into circulation. The present review summarizes and evaluates recent advances in our understanding of the characteristics of tumor tissue miRNAs, circulating miRNAs, and the stability of miRNAs in tissues and their varying expression profiles in circulating tumor cells, and body fluids including blood plasma. These advances in knowledge have led to intense efforts towards discovery and validation of differentially expressing tumor-associated miRNAs as biomarkers and therapeutic targets of cancer. The development of tumor-specific miRNA signatures as cancer biomarkers detectable in malignant cells and body fluids should help with early detection and more effective therapeutic intervention for individual patients.
Collapse
Affiliation(s)
- Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke-Yong Zhang
- Department of orthopedics, Daye People's Hospital, Daye, Hubei 435100, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
169
|
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11:145-56. [PMID: 24492836 DOI: 10.1038/nrclinonc.2014.5] [Citation(s) in RCA: 821] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient patient management relies on early diagnosis of disease and monitoring of treatment. In this regard, much effort has been made to find informative, blood-based biomarkers for patients with cancer. Owing to their attributes-which are specifically modulated by the tumour-circulating cell-free microRNAs found in the peripheral blood of patients with cancer may provide insights into the biology of the tumour and the effects of therapeutic interventions. Moreover, the role of microRNAs in the regulation of different cellular processes points to their clinical utility as blood-based biomarkers and future therapeutic targets. MicroRNAs are optimal biomarkers owing to high stability under storage and handling conditions and their presence in blood, urine and other body fluids. In particular, detection of levels of microRNAs in blood plasma and serum has the potential for an earlier cancer diagnosis and to predict prognosis and response to therapy. This Review article considers the latest developments in the use of circulating microRNAs as prognostic and predictive biomarkers and discusses their utility in personalized medicine.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumour Biology, Centre of Experimental Medicine, University Cancer Centre, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Naohiro Nishida
- Department of Experimental Therapeutics and the Centre for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, South Campus Research Building 3, 1881 East Road, Houston, TX 77030, USA
| | - George A Calin
- Department of Experimental Therapeutics and the Centre for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, South Campus Research Building 3, 1881 East Road, Houston, TX 77030, USA
| | - Klaus Pantel
- Department of Tumour Biology, Centre of Experimental Medicine, University Cancer Centre, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
170
|
Siddeek B, Inoubli L, Lakhdari N, Rachel PB, Fussell KC, Schneider S, Mauduit C, Benahmed M. MicroRNAs as potential biomarkers in diseases and toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:46-57. [PMID: 24486656 DOI: 10.1016/j.mrgentox.2014.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
Abstract
MiRNAs (microRNAs) are single-stranded non-coding RNAs of approximately 21-23 nucleotides in length whose main function is to inhibit gene expression by interfering with mRNA processes. MicroRNAs suppress gene expression by affecting mRNA (messenger RNAs) stability, targeting the mRNA for degradation, or both. In this review, we have examined how microRNA expression could be altered following exposure to chemicals and how they could represent appropriate tissue and more interestingly circulating biomarkers. Among the key questions before using the microRNA for evaluation of risk toxicity, it remains still to clarify how they could be causally involved in the adverse effects and how stable their changes are.
Collapse
Affiliation(s)
- Bénazir Siddeek
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; BASF Agro, Ecully F-69130, France
| | - Lilia Inoubli
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Nadjem Lakhdari
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Paul Bellon Rachel
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | | | - Steffen Schneider
- BASF SE, experimental toxicology and ecology, 67056 Ludwigshafen, Germany
| | - Claire Mauduit
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Université Lyon 1, UFR Médecine Lyon Sud, Lyon, F-69921, France; Hospices Civils de Lyon, Hôpital Lyon Sud, laboratoire d'anatomie et de cytologie pathologiques, Pierre-Bénite, F-69495, France
| | - Mohamed Benahmed
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Centre Hospitalier Universitaire de Nice, Pôle Digestif, Gynécologie, Obstetrique, Centre de Reproduction, Nice, F-06202, France.
| |
Collapse
|
171
|
Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female non-smokers. PLoS One 2013; 8:e81408. [PMID: 24282590 PMCID: PMC3839880 DOI: 10.1371/journal.pone.0081408] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023] Open
Abstract
Objectives Lung adenocarcinoma is considered a unique disease for Asian female non-smokers. We investigated whether plasma microRNA (miRNA) expression profiles are different by the EGFR status and are associated with survival outcomes of the patients. Methods Using real-time RT-PCR, we analyzed the expression of 20 miRNAs in the plasma of 105 female patients with lung adenocarcinoma. Kaplan-Meier survival analysis and Cox proportional hazards regression were performed to determine the association between miRNA expression and overall survival. Time dependent receiver operating characteristic (ROC) analysis was also performed. Results In the 20 miRNAs, miR-122 were found differently expressed between wild and mutant EGFR carriers (P=0.018). Advanced disease stage and tumor metastasis were independently associated with poor prognosis of patients with lung adenocarcinoma (P=0.010 and 1.0×10-4). Plasma levels of miR-195 and miR-122 expression were also associated with overall survival in the patients, especially in those with advanced stage (HR=0.23, 95%CI:0.07-0.84; and HR=0.22, 95%CI:0.06-0.77) and EGFR mutation (HR=0.27, 95%CI:0.08-0.96; and HR=0.23, 95%CI=0.06-0.81). Moreover, a model including miR-195, miR-122 may predict survival outcomes of female patients with lung adenocarcinoma (AUC=0.707). Conclusions Circulating miR-195 and miR-122 may have prognostic values in predicting the overall survival as well as predicting EGFR mutation status in non-smoking female patients with lung adenocarcinoma. Measuring plasma levels of miR-195 and miR-122 may especially be useful in EGFR mutant patients with lung adenocarcinoma.
Collapse
|
172
|
Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS One 2013; 8:e77853. [PMID: 24223734 PMCID: PMC3815222 DOI: 10.1371/journal.pone.0077853] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023] Open
Abstract
Background Most (70%) epithelial ovarian cancers (EOCs) are diagnosed late. Non-invasive biomarkers that facilitate disease detection and predict outcome are needed. The microRNAs (miRNAs) represent a new class of biomarkers. This study was to identify and validate plasma miRNAs as biomarkers in EOC. Methodology/Principal Findings We evaluated plasma samples of 360 EOC patients and 200 healthy controls from two institutions. All samples were grouped into screening, training and validation sets. We scanned the circulating plasma miRNAs by TaqMan low-density array in the screening set and identified/validated miRNA markers by real-time polymerase chain reaction assay in the training set. Receiver operating characteristic and logistic regression analyses established the diagnostic miRNA panel, which were confirmed in the validation sets. We found higher plasma miR-205 and lower let-7f expression in cases than in controls. MiR-205 and let-7f together provided high diagnostic accuracy for EOC, especially in patients with stage I disease. The combination of these two miRNAs and carbohydrate antigen-125 (CA-125) further improved the accuracy of detection. MiR-483-5p expression was elevated in stages III and IV compared with in stages I and II, which was consistent with its expression pattern in tumor tissues. Furthermore, lower levels of let-7f were predictive of poor prognosis in EOC patients. Conclusions/Significance Our findings indicate that plasma miR-205 and let-7f are biomarkers for ovarian cancer detection that complement CA-125; let-7f may be predictive of ovarian cancer prognosis.
Collapse
|
173
|
Yang X, Mattes WB, Shi Q, Weng Z, Salminen WF. Cell‐free microRNAs as Biomarkers in Human Diseases. MICRORNAS IN TOXICOLOGY AND MEDICINE 2013:363-387. [DOI: 10.1002/9781118695999.ch22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
174
|
Rani S, Gately K, Crown J, O'Byrne K, O'Driscoll L. Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 2013; 14:1104-12. [PMID: 24025412 DOI: 10.4161/cbt.26370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Early diagnosis and the ability to predict the most relevant treatment option for individuals is essential to improve clinical outcomes for non-small cell lung cancer (NSCLC) patients. Adenocarcinoma (ADC), a subtype of NSCLC, is the single biggest cancer killer and therefore an urgent need to identify minimally invasive biomarkers to enable early diagnosis. Recent studies, by ourselves and others, indicate that circulating miRNAs have potential as biomarkers. Here we applied global profiling approaches in serum from patients with ADC of the lung to explore if miRNAs have potential as diagnostic biomarkers. This study involved RNA isolation from 80 sera specimens including those from ADC patients (equal numbers of stages 1, 2, 3, and 4) and age- and gender-matched controls (n = 40 each). Six hundred and sixty-seven miRNAs were co-analyzed in these specimens using TaqMan low density arrays and qPCR validation using individual miRNAs. Overall, approximately 390 and 370 miRNAs were detected in ADC and control sera, respectively. A group of 6 miRNAs, miR-30c-1* (AUC = 0.74; P<0.002), miR-616* (AUC = 0.71; P = 0.001), miR-146b-3p (AUC = 0.82; P<0.0001), miR-566 (AUC = 0.80; P<0.0001), miR-550 (AUC = 0.72; P = 0.0006), and miR-939 (AUC = 0.82; P<0.0001) was found to be present at substantially higher levels in ADC compared with control sera. Conversely, miR-339-5p and miR-656 were detected at substantially lower levels in ADC sera (co-analysis resulting in AUC = 0.6; P = 0.02). Differences in miRNA profile identified support circulating miRNAs having potential as diagnostic biomarkers for ADC. More extensive studies of ADC and control serum specimens are warranted to independently validate the potential clinical relevance of these miRNAs as minimally invasive biomarkers for ADC.
Collapse
Affiliation(s)
- Sweta Rani
- School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin, Ireland
| | - Kathy Gately
- Institute of Molecular Medicine; Trinity Centre for Health Sciences; St. James's Hospital; Trinity College Dublin; Dublin, Ireland
| | - John Crown
- Molecular Therapeutics for Cancer Ireland (MTCI) & St. Vincent's University Hospital; Dublin, Ireland
| | - Ken O'Byrne
- Institute of Molecular Medicine; Trinity Centre for Health Sciences; St. James's Hospital; Trinity College Dublin; Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin, Ireland
| |
Collapse
|
175
|
Wang Y, Gu J, Roth JA, Hildebrandt MA, Lippman SM, Ye Y, Minna JD, Wu X. Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 2013; 73:4801-9. [PMID: 23774211 PMCID: PMC3760306 DOI: 10.1158/0008-5472.can-12-3273] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study was designed to identify TGF-β signaling pathway-related serum microRNAs (miRNA) as predictors of survival in advanced non-small cell lung cancer (NSCLC). Serum samples from 391 patients with advanced NSCLC were collected before treatment. Global miRNA microarray expression profiling based on sera from four patients with good survival (>24 months) and four patients with poor survival (<6 months) was used to identify 140 highly expressed serum miRNAs, among which 35 miRNAs had binding sites within the 3'-untranslated regions of a panel of 11 genes in the TGF-β signaling pathway and were assayed by quantitative RT-PCR for their associations with survival in a training (n = 192) and testing set (n = 191). Out of the 35 miRNAs, survival analysis using Cox regression model identified 17 miRNAs significantly associated with 2-year patient survival. MiR-16 exhibited the most statistically significant association: high expression of miR-16 was associated with a significantly better survival [adjusted hazard ratio (HR) = 0.4, 95% confidence interval (CI): 0.3-0.5]. A combined 17-miRNA risk score was created that was able to identify patients at the highest risk of death. Those with a high-risk score had a 2.5-fold increased risk of death compared with those with a low risk score (95% CI: 1.8-3.4; P = 1.1 × 10(-7)). This increase in risk of death was corresponding to a 7.8-month decrease in median survival time (P = 9.5 × 10(-14)). Our results suggest that serum miRNAs could serve as predictors of survival for advanced NSCLC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jack A. Roth
- Department of Thoracic & Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | | | - Scott M. Lippman
- Moores Cancer Center at the University of California, San Diego, La Jolla, CA 92093
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - John D. Minna
- The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
176
|
Billeter AT, Barnett RE, Druen D, Polk HC, van Berkel VH. MicroRNA as a new factor in lung and esophageal cancer. Semin Thorac Cardiovasc Surg 2013. [PMID: 23200070 DOI: 10.1053/j.semtcvs.2012.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lung cancer is the most lethal cancer due to late detection in advanced stages; early diagnosis of lung cancer allows surgical treatment and improves the outcome. The prevalence of gastroesophageal reflux-related adenocarcinomas of the esophagus is increasing; repetitive surveillance endoscopies are necessary to detect development of cancer. A blood-based biomarker would simplify the diagnosis and treatment of both diseases. MicroRNAs (miRNAs) are short RNA strands that interfere with protein production. miRNAs play pivotal roles in cell homeostasis, and dysregulation of miRNAs can lead to the development of cancer. miRNAs can be found in all body fluids and have been proposed to serve as messengers between closely localized cells but also distant organs. Cancer cells actively secrete miRNAs, and these miRNA profiles can be found in blood. We outline, here, how these miRNAs may aid in diagnosis and treatment of lung and esophageal cancers, as well as their apparent limitations.
Collapse
Affiliation(s)
- Adrian T Billeter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| | | | | | | | | |
Collapse
|
177
|
Ninomiya M, Kondo Y, Funayama R, Nagashima T, Kogure T, Kakazu E, Kimura O, Ueno Y, Nakayama K, Shimosegawa T. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS One 2013; 8:e66086. [PMID: 23776611 PMCID: PMC3680413 DOI: 10.1371/journal.pone.0066086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/03/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS MicroRNAs are small endogenous RNA molecules with specific expression patterns that can serve as biomarkers for numerous diseases. However, little is known about the expression profile of serum miRNAs in PBC. METHODS First, we employed Illumina deep sequencing for the initial screening to indicate the read numbers of miRNA expression in 10 PBC, 5 CH-C, 5 CH-B patients and 5 healthy controls. Comparing the differentially expressed miRNAs in the 4 groups, analysis of variance was performed on the number of sequence reads to evaluate the statistical significance. Hierarchical clustering was performed using an R platform and we have found candidates for specific miRNAs in the PBC patients. Second, a quantitative reverse transcription PCR validation study was conducted in 10 samples in each group. The expression levels of the selected miRNAs were presented as fold-changes (2(-ΔΔCt)). Finally, computer analysis was conducted to predict target genes and biological functions with MiRror 2.0 and DAVID v6.7. RESULTS We obtained about 12 million 32-mer short RNA reads on average per sample and the mapping rates to miRBase were 16.60% and 81.66% to hg19. In the statistical significance testing, the expression levels of 81 miRNAs were found to be differentially expressed in the 4 groups. The heat map and hierarchical clustering demonstrated that the miRNA profiles from PBC clustered with those of CH-B, CH-C and healthy controls. Additionally, the circulating levels of hsa-miR-505-3p, 197-3p, and 500a-3p were significantly decreased in PBC compared with healthy controls and the expression levels of hsa-miR-505-3p, 139-5p and 197-3p were significantly reduced compared with the viral hepatitis group. CONCLUSIONS Our results indicate that sera from patients with PBC have a unique miRNA expression profile and that the down-regulated expression of hsa-miR-505-3p and miR-197-3p can serve as clinical biomarkers of PBC.
Collapse
Affiliation(s)
- Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, Tohoku University School of Medicine, Sendai, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, Tohoku University School of Medicine, Sendai, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Eiji Kakazu
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Osamu Kimura
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, Tohoku University School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
178
|
Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013; 81:388-396. [PMID: 23756108 DOI: 10.1016/j.lungcan.2013.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022]
Abstract
Deregulation of miRNAs expression levels has been detected in many human tumor types, and recent studies have demonstrated the critical roles of miRNAs in cancer pathogenesis. Numerous recent studies have shown that miRNAs are rapidly released from tissues into the circulation in many pathological conditions. The high relative stability of miRNAs in biofluids such as plasma and serum, and the ability of miRNA expression profiles to accurately classify discrete tissue types and disease states have positioned miRNAs as promising non-invasive new tumor biomarkers. In this study, we used liquid bead array technology (Luminex) to profile the expression of 320 mature miRNAs in a pilot testing group of 19 matched fresh frozen cancerous and non-cancerous tissues from NSCLC patients. We further validated our results by RT-qPCR for differentially expressed miRNAs in an independent group of 40 matched fresh frozen tissues, 37 plasma samples from NSCLC patients and 28 healthy donors. We found that eight miRNAs (miR-21, miR-30d, miR-451, miR-10a, miR-30e-5p and miR-126*, miR-126, miR-145) were differentially expressed by three different statistical analysis approaches. Two of them (miR-10a and miR-30e-5p) are reported here for the first time. Bead-array results were further verified in an independent group of 40 matched fresh frozen tissues by RT-qPCR. According to RT-qPCR miR-21 was significantly up-regulated (P = 0.010), miR-126* (P = 0.002), miR-30d (P = 0.012), miR-30e-5p (P < 0.001) and miR-451 (P < 0.001) were down-regulated, while miR-10a was not differentiated (P = 0.732) in NSCLC tissues. However, in NSCLC plasma samples, only three of these miRNAs (miR-21, miR-10a, and miR-30e-5p) displayed differential expression when compared to plasma of healthy donors. High expression of miR-21 was associated with DFI and OS both in NSCLC tissues (P = 0.022 and P = 0.037) and plasma (P = 0.045 and P = 0.065), respectively. Moreover, we report for the first time that low expression of miR-10a in NSCLC plasma samples was associated with worse DFI (P = 0.050) and high expression of miR-30e-5p was found to be associated with shorter OS (P = 0.048). In conclusion, circulating miR-21, miR-10a and miR-30e-5p in plasma should be further evaluated as potential non-invasive biomarkers in NSCLC.
Collapse
Affiliation(s)
- A Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - I Sourvinou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - P A Vorkas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - G M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - E Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece.
| |
Collapse
|
179
|
Lucotti S, Rainaldi G, Evangelista M, Rizzo M. Fludarabine treatment favors the retention of miR-485-3p by prostate cancer cells: implications for survival. Mol Cancer 2013; 12:52. [PMID: 23734815 PMCID: PMC3751825 DOI: 10.1186/1476-4598-12-52] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/28/2013] [Indexed: 12/29/2022] Open
Abstract
Background Circulating microRNAs (miRNAs) have been found in many body fluids and represent reliable markers of several physio-pathological disorders, including cancer. In some cases, circulating miRNAs have been evaluated as markers of the efficacy of anticancer treatment but it is not yet clear if miRNAs are actively released by tumor cells or derive from dead tumor cells. Results We showed that a set of prostate cancer secretory miRNAs (PCS-miRNAs) were spontaneously released in the growth medium by DU-145 prostate cancer cells and that the release was greater after treatment with the cytotoxic drug fludarabine. We also found that the miRNAs were associated with exosomes, implying an active mechanism of miRNA release. It should be noted that in fludarabine treated cells the release of miR-485-3p, as well as its association with exosomes, was reduced suggesting that miR-485-3p was retained by surviving cells. Monitoring the intracellular level of miR-485-3p in these cells, we found that miR-485-3p was stably up regulated for several days after treatment. As a possible mechanism we suggest that fludarabine selected cells that harbor high levels of miR-485-3p, which in turn regulates the transcriptional repressor nuclear factor-Y triggering the transcription of topoisomerase IIα, multidrug resistance gene 1 and cyclin B2 pro-survival genes. Conclusions Cytotoxic treatment of DU-145 cells enhanced the release of PCS-miRNAs with the exception of miR-485-3p which was retained by surviving cells. We speculate that the retention of miR-485-3p was a side effect of fludarabine treatment in that the high intracellular level of miR-485-3p plays a role in the sensitivity to fludarabine.
Collapse
Affiliation(s)
- Serena Lucotti
- Laboratory of Gene and Molecular Therapy, Institute of Clinical Physiology, Area della Ricerca CNR,Via Moruzzi,1, Pisa 56124, Italy
| | | | | | | |
Collapse
|
180
|
Takahashi K, Yokota SI, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 2013; 272:154-60. [PMID: 23726802 DOI: 10.1016/j.taap.2013.05.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023]
Abstract
Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases.
Collapse
Affiliation(s)
- Kei Takahashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
181
|
Kim T, Reitmair A. Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology. Int J Mol Sci 2013; 14:4934-68. [PMID: 23455466 PMCID: PMC3634484 DOI: 10.3390/ijms14034934] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/09/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have been found to have roles in a large variety of biological processes. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined, holding great promise for use in diagnostic, prognostic, and therapeutic applications. Within ncRNAs, microRNAs (miRNAs) are the most widely studied and characterized. They have been implicated in initiation and progression of a variety of human malignancies, including major pathologies such as cancers, arthritis, neurodegenerative disorders, and cardiovascular diseases. Their surprising stability in serum and other bodily fluids led to their rapid ascent as a novel class of biomarkers. For example, several properties of stable miRNAs, and perhaps other classes of ncRNAs, make them good candidate biomarkers for early cancer detection and for determining which preneoplastic lesions are likely to progress to cancer. Of particular interest is the identification of biomarker signatures, which may include traditional protein-based biomarkers, to improve risk assessment, detection, and prognosis. Here, we offer a comprehensive review of the ncRNA biomarker literature and discuss state-of-the-art technologies for their detection. Furthermore, we address the challenges present in miRNA detection and quantification, and outline future perspectives for development of next-generation biodetection assays employing multicolor alternating-laser excitation (ALEX) fluorescence spectroscopy.
Collapse
Affiliation(s)
- Taiho Kim
- Nesher Technologies, Inc., 2100 W. 3rd St. Los Angeles, CA 90057, USA.
| | | |
Collapse
|
182
|
Sundarbose K, Kartha RV, Subramanian S. MicroRNAs as Biomarkers in Cancer. Diagnostics (Basel) 2013; 3:84-104. [PMID: 26835669 PMCID: PMC4665585 DOI: 10.3390/diagnostics3010084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/28/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules, which in recent years have emerged to have enormous potential as biomarkers. Recently, there have been significant developments in understanding miRNA biogenesis, their regulatory mechanisms and role in disease process, and their potential as effective therapies. The identification of miRNAs as biomarkers provides possibilities for development of less or non-invasive and more specific methods for monitoring tumor growth and progression. This review summarizes the recent developments in methods to detect and quantitate miRNAs in body fluids and their applications as biomarkers in cancers. The prospect of miRNAs as potential diagnostic and prognostic biomarkers with clinical applications is significant as more evidence points to their central role in cancer pathobiology.
Collapse
Affiliation(s)
- Kamini Sundarbose
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Reena V Kartha
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
183
|
Zandberga E, Kozirovskis V, Ābols A, Andrējeva D, Purkalne G, Linē A. Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer 2012; 52:356-69. [PMID: 23404859 DOI: 10.1002/gcc.22032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the most common cancer worldwide, accounting for over 1.37 million deaths annually. The clinical outcome and management of lung cancer patients could be substantially improved by the implementation of non-invasive biomarker assays for the early detection, prognosis as well as prediction and monitoring of treatment response. MicroRNAs (miRNAs) have been implicated in the regulation of virtually all signaling circuits within a cell and their dysregulation has been shown to play an essential role in the development and progression of cancer. Recently, miRNAs were found to be released into the circulation and to exist there in a remarkably stable form. Furthermore, various cancers were shown to leave specific miRNA fingerprints in the blood of patients suggesting that cell-free miRNAs could serve as non-invasive biomarkers for the detection or monitoring of cancer and putative therapeutic targets. Since that, a considerable effort has been devoted to decode the information carried by circulating miRNAs. In the current review, we give an insight into the mechanisms of miRNA release into the bloodstream, their putative functional significance and systematically review the studies focused on the identification of cell-free miRNAs with the diagnostic, prognostic, and predictive significance in lung cancer and discuss their potential clinical utility.
Collapse
|
184
|
Abstract
Lung cancer-related mortality is the most common cause of cancer death worldwide. Detecting lung cancer at an earlier stage and, ideally, predicting who will develop the disease and particularly the most aggressive forms of cancer are the biggest challenge. MicroRNAs (miRNAs) are short, noncoding RNA molecules with regulatory function on protein-coding genes. Because of their fundamental role in development and differentiation, their involvement in the biological mechanisms underlying tumorigenesis, as well as their low complexity, stability, and easy detection, they represent a promising class of tissue- and blood-based biomarkers of cancer. We summarize the current literature on the use of microRNAs as diagnostic and prognostic tools in lung cancer and discuss the relevant clinical implications of these findings.
Collapse
|
185
|
MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet 2012; 205:545-51. [PMID: 23098991 DOI: 10.1016/j.cancergen.2012.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023]
Abstract
Anti-EGFR monoclonal antibodies (anti-EGFRmAb) serve in the treatment of metastatic colorectal cancer (mCRC), but patients with a mutation in KRAS/BRAF and nearly one-half of those without the mutation fail to respond. We performed microRNA (miRNA) analysis to find miRNAs predicting anti-EGFRmAb efficacy. Of the 99 mCRC patients, we studied differential miRNA expression by microarrays from primary tumors of 33 patients who had wild-type KRAS/BRAF and third- to sixth-line anti-EGFRmAb treatment, with/without irinotecan. We tested the association of each miRNA with overall survival (OS) by the Cox proportional hazards regression model. Significant miR-31* up-regulation and miR-592 down-regulation appeared in progressive disease versus disease control. miR-31* expression and down-regulation of its target genes SLC26A3 and ATN1 were verified by quantitative reverse transcriptase polymerase chain reaction. Clustering of patients based on miRNA expression revealed a significant difference in OS between patient clusters. Members of the let-7 family showed significant up-regulation in the patient cluster with poor OS. Additionally, miR-140-5p up-regulation and miR-1224-5p down-regulation were significantly associated with poor OS in both cluster analysis and the Cox proportional hazards regression model. In mCRC patients with wild-type KRAS/BRAF, miRNA profiling can efficiently predict the benefits of anti-EGFRmAb treatment. Larger series of patients are necessary for application of these miRNAs as predictive/prognostic markers.
Collapse
|
186
|
High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 2012; 49:604-15. [PMID: 23099007 DOI: 10.1016/j.ejca.2012.09.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 01/13/2023]
Abstract
We synthesised the evidence of microRNAs as prognostic biomarkers in lung cancer. Studies were identified by searching PubMed, Embase and Web of Science until March 2012. Descriptive characteristics for studies were described and an additional meta-analysis for two specific microRNAs (miR-21 and miR-155) which were studied extensively was performed. Pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated. The median study size was 88 patients (interquartile range [IQR]=53-193) and the median HR in the studies that reported statistically significant results was 2.855 (IQR=2.01-5.035). For the studies evaluating miR-21's association with clinical outcomes, the pooled HR suggested that high expression of miR-21 has a negative impact on overall survival (OS) in non-small cell lung cancer (NSCLC) (HR=2.32[1.17-4.62], P<0.05) and recurrence-free survival (RFS)/cancer-specific survival (CSS) in lung adenocarcinoma (HR=2.43[1.67-3.54], P<0.001). As for miR-155, the pooled HR for OS was 2.09 (95%CI: 0.68-6.41, P>0.05) which was not statistically significant, but for RFS/CSS was 1.42 (95% CI: 1.10-1.83, P=0.007). These results indicate that microRNAs show promising associations with prognosis in lung cancer; moreover, specific microRNAs such as miR-21 and miR-155 can predict recurrence and poor survival in NSCLC.
Collapse
|
187
|
Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A, Ferro A. miRandola: extracellular circulating microRNAs database. PLoS One 2012; 7:e47786. [PMID: 23094086 PMCID: PMC3477145 DOI: 10.1371/journal.pone.0047786] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular messenger RNAs. They are frequently dysregulated in cancer and have shown great potential as tissue-based markers for cancer classification and prognostication. microRNAs are also present in extracellular human body fluids such as serum, plasma, saliva, and urine. Most of circulating microRNAs are present in human plasma and serum cofractionate with the Argonaute2 (Ago2) protein. However, circulating microRNAs have been also found in membrane-bound vesicles such as exosomes. Since microRNAs circulate in the bloodstream in a highly stable, extracellular form, they may be used as blood-based biomarkers for cancer and other diseases. A knowledge base of extracellular circulating miRNAs is a fundamental tool for biomedical research. In this work, we present miRandola, a comprehensive manually curated classification of extracellular circulating miRNAs. miRandola is connected to miRò, the miRNA knowledge base, allowing users to infer the potential biological functions of circulating miRNAs and their connections with phenotypes. The miRandola database contains 2132 entries, with 581 unique mature miRNAs and 21 types of samples. miRNAs are classified into four categories, based on their extracellular form: miRNA-Ago2 (173 entries), miRNA-exosome (856 entries), miRNA-HDL (20 entries) and miRNA-circulating (1083 entries). miRandola is available online at: http://atlas.dmi.unict.it/mirandola/index.html.
Collapse
Affiliation(s)
- Francesco Russo
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Sebastiano Di Bella
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Valentina Macca
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Alessandro Laganà
- Department of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Rosalba Giugno
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Alfredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
- * E-mail:
| |
Collapse
|
188
|
Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free Circulating miRNA Biomarkers in Cancer. J Cancer 2012; 3:432-48. [PMID: 23074383 PMCID: PMC3471083 DOI: 10.7150/jca.4919] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice.
Collapse
Affiliation(s)
- Meng-Hsuan Mo
- 1. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | | | | | | |
Collapse
|
189
|
Zeng X, Xiang J, Wu M, Xiong W, Tang H, Deng M, Li X, Liao Q, Su B, Luo Z, Zhou Y, Zhou M, Zeng Z, Li X, Shen S, Shuai C, Li G, Fang J, Peng S. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One 2012; 7:e46367. [PMID: 23056289 PMCID: PMC3466268 DOI: 10.1371/journal.pone.0046367] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/29/2012] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs have been considered as a kind of potential novel biomarker for cancer detection due to their remarkable stability in the blood and the characteristics of their expression profile in many diseases. Methods We performed microarray-based serum miRNA profiling on the serum of twenty nasopharyngeal carcinoma patients at diagnosis along with 20 non-cancerous individuals as controls. This was followed by a real-time quantitative Polymerase Chain Reaction (RT-qPCR) in a separate cohort of thirty patients with nasopharyngeal carcinoma and thirty age- matched non-cancerous volunteers. A model for diagnosis was established by a conversion of mathematical calculation formula which has been validated by analyzing 74 cases of patients with nasopharyngeal carcinoma and 57 cases of non-cancerous volunteers. Results The profiles showed that 39 and 17 miRNAs are exclusively expressed in the serum of non-cancerous volunteers and of patients with nasopharyngeal carcinoma respectively. 4 miRNAs including miR-17, miR-20a, miR-29c, and miR-223 were found to be expressed differentially in the serum of NPC compared with that of non-cancerous control. Based on this, a diagnosis equation with Ct difference method has been established to distinguish NPC cases and non-cancerous controls and validated with high sensitivity and specificity. Conclusions We demonstrate that the serum miRNA-based biomarker model become a novel tool for NPC detection. The circulating 4-miRNA-based method may provide a novel strategy for NPC diagnosis.
Collapse
Affiliation(s)
- Xi Zeng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Juanjuan Xiang
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Minghua Wu
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Hailin Tang
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Min Deng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Xiayu Li
- Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qianjin Liao
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Bo Su
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Zhaohui Luo
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Yanhong Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Shourong Shen
- Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan, P.R. China
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jiasheng Fang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JF); (SP)
| | - Shuping Peng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JF); (SP)
| |
Collapse
|
190
|
Abstract
OBJECTIVE The lack of reliable noninvasive diagnostic biomarkers of biliary atresia (BA) results in delayed diagnosis and worsened patient outcome. Circulating microRNAs (miRNAs) are a new class of noninvasive biomarkers with encouraging diagnostic utility. METHODS We examined the ability of serum miRNAs to distinguish BA from other forms of neonatal hyperbilirubinemia. BA-specific serum miRNAs were identified using a microfluidic array platform and validated in a larger, independent sample set. RESULTS The miR-200b/429 cluster was significantly increased in the sera of patients with BA relative to infants with non-BA cholestatic disorders. CONCLUSIONS Circulating levels of the miR-200b/429 cluster are elevated in infants with BA and have promising diagnostic clinical performance.
Collapse
|
191
|
Yang LH, Dong Z, Gong ZH. [Extracellular miRNA: a novel molecular biomarker for lung cancer]. YI CHUAN = HEREDITAS 2012; 34:651-8. [PMID: 22698734 DOI: 10.3724/sp.j.1005.2012.00651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though continuous development and progress have been made in the early diagnosis and treatment of cancer, it is still difficult to find a sensitive, accurate and minimally invasive biomarker for cancer diagnosis and treatment. MicroRNA (miRNA) is a class of non-coding small endogenous RNAs of 21-24 nucleotides in length. As a novel molecular biomarker, extracellular miRNA (ec-miRNA) has the potential to be a minimally invasive, highly sensitive and highly specific marker in cancer diagnosis. Many research achievements of ec-miRNA have been accumulated in recent years. In this paper, the origin, function and detection of ec-miRNA, its role in lung cancer diagnosis as a novel molecular biomarker, and some issues are reviewed.
Collapse
Affiliation(s)
- Li-Hua Yang
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | | | | |
Collapse
|
192
|
Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains. BMC Genomics 2012; 13:476. [PMID: 22974136 PMCID: PMC3496628 DOI: 10.1186/1471-2164-13-476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 09/05/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. RESULTS We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA's expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. CONCLUSIONS The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this approach for discovery of new functional roles and downstream processes regulated by miRNA.
Collapse
|
193
|
Lee H, Park CS, Deftereos G, Morihara J, Stern JE, Hawes SE, Swisher E, Kiviat NB, Feng Q. MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol 2012; 10:174. [PMID: 22925189 PMCID: PMC3449188 DOI: 10.1186/1477-7819-10-174] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA (miRNA) expression is known to be deregulated in ovarian carcinomas. However, limited data is available about the miRNA expression pattern for the benign or borderline ovarian tumors as well as differential miRNA expression pattern associated with histological types, grades or clinical stages in ovarian carcinomas. We defined patterns of microRNA expression in tissues from normal, benign, borderline, and malignant ovarian tumors and explored the relationship between frequently deregulated miRNAs and clinicopathologic findings, response to therapy, survival, and association with Her-2/neu status in ovarian carcinomas. Methods We measured the expression of nine miRNAs (miR-181d, miR-30a-3p, miR-30c, miR-30d, miR-30e-3p, miR-368, miR-370, miR-493-5p, miR-532-5p) in 171 formalin-fixed, paraffin-embedded ovarian tissue blocks as well as six normal human ovarian surface epithelial (HOSE) cell lines using Taqman-based real-time PCR assays. Her-2/neu overexpression was assessed in ovarian carcinomas (n = 109 cases) by immunohistochemistry analysis. Results Expression of four miRNAs (miR-30c, miR-30d, miR-30e-3p, miR-370) was significantly different between carcinomas and benign ovarian tissues as well as between carcinoma and borderline tissues. An additional three miRNAs (miR-181d, miR-30a-3p, miR-532-5p) were significantly different between borderline and carcinoma tissues. Expression of miR-532-5p was significantly lower in borderline than in benign tissues. Among ovarian carcinomas, expression of four miRNAs (miR-30a-3p, miR-30c, miR-30d, miR-30e-3p) was lowest in mucinous and highest in clear cell samples. Expression of miR-30a-3p was higher in well-differentiated compared to poorly differentiated tumors (P = 0.02), and expression of miR-370 was higher in stage I/II compared to stage III/IV samples (P = 0.03). In multivariate analyses, higher expression of miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with significantly better disease-free or overall survival. Finally, lower expression of miR-30c, miR-30d, miR-30e-3p and miR-532-5p was significantly associated with overexpression of Her-2/neu. Conclusions Aberrant expression of miRNAs is common in ovarian tumor suggesting involvement of miRNA in ovarian tumorigenesis. They are associated with histology, clinical stage, survival and oncogene expression in ovarian carcinoma.
Collapse
Affiliation(s)
- Heejeong Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Schmitt J, Backes C, Nourkami-Tutdibi N, Leidinger P, Deutscher S, Beier M, Gessler M, Graf N, Lenhof HP, Keller A, Meese E. Treatment-independent miRNA signature in blood of Wilms tumor patients. BMC Genomics 2012; 13:379. [PMID: 22871070 PMCID: PMC3563587 DOI: 10.1186/1471-2164-13-379] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 07/24/2012] [Indexed: 01/10/2023] Open
Abstract
Background Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001. Results We did not find a significant difference between miRNA signature of both groups. However both, Wilms tumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. The signature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5% and of patients after chemotherapy an accuracy of 97.0%, each as compared to healthy controls. Conclusion Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of four weeks preoperative chemotherapy treatment.
Collapse
Affiliation(s)
- Jana Schmitt
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Wang Z, Lu Y, Han J. Peripheral blood microRNAs: A novel tool for diagnosing disease? Intractable Rare Dis Res 2012; 1:98-102. [PMID: 25343080 PMCID: PMC4204598 DOI: 10.5582/irdr.2012.v1.3.98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
Peripheral blood microRNAs (miRNAs) are endogenous, noncoding small RNAs present in blood. Because of their size, abundance, tissue specificity, and relative stability in peripheral circulation, they offer great promise of becoming a novel noninvasive biomarker. However, the mechanism by which they are secreted, their biological function, and the reason for the existence of extracellular miRNAs are largely unclear. This article describes advances in the study of the mechanism of origin and biological function of extracellular miRNAs along with approaches adopted by research and questions that remain. This work also discusses the potential for peripheral blood miRNAs to serve as a diagnostic tool.
Collapse
Affiliation(s)
- Ziqiang Wang
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs Ministry of Health, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs Ministry of Health, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs Ministry of Health, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Jinxiang Han, Shandong Academy of Medical Sciences, No. 18877 Jing-shi Road, Ji'nan, 250062, Shandong, China. E-mail:
| |
Collapse
|
196
|
Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta Rev Cancer 2012; 1826:32-43. [DOI: 10.1016/j.bbcan.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
|
197
|
Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK. J Mol Med (Berl) 2012; 91:69-81. [DOI: 10.1007/s00109-012-0935-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/10/2012] [Accepted: 07/05/2012] [Indexed: 01/05/2023]
|
198
|
Du L, Pertsemlidis A. microRNA regulation of cell viability and drug sensitivity in lung cancer. Expert Opin Biol Ther 2012; 12:1221-39. [PMID: 22731874 DOI: 10.1517/14712598.2012.697149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION microRNAs (miRNAs) are 19 - 23 nucleotide long RNAs found in multiple organisms that regulate gene expression and have been shown to play important roles in tumorigenesis. In the context of lung cancer, numerous studies have shown that tumor suppressor genes and oncogenes that play crucial roles in lung tumor development and progression are targets of miRNA regulation. Manipulation of miRNA levels that modulate lung cancer cell survival and drug sensitivity can therefore provide novel therapeutic targets and agents. AREAS COVERED Here, the authors review the published in vitro, in vivo and preclinical studies on the functional role of miRNAs in modulating lung cancer cell viability and drug response, and discuss the limitations and promise of translating current findings into miRNA-based therapeutic and diagnostic strategies. EXPERT OPINION Although many miRNAs have been identified as potent regulators of cell viability and drug sensitivity in lung cancer, most of them have not been characterized for potential clinical application. Further study is warranted to evaluate translation of the current findings to the clinic to improve the diagnosis and treatment of lung cancer. In addition, most studies have focused on non-small cell lung cancer (NSCLC). It is therefore important to raise interest in investigating miRNAs in small cell lung cancer (SCLC) as well as in comparative studies of miRNA expression and function in different histological subtypes of lung cancer.
Collapse
Affiliation(s)
- Liqin Du
- Greehey Children's Cancer Research Institute, Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|
199
|
Komatsu S, Ichikawa D, Takeshita H, Konishi H, Nagata H, Hirajima S, Kawaguchi T, Arita T, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E. Prognostic impact of circulating miR-21 and miR-375 in plasma of patients with esophageal squamous cell carcinoma. Expert Opin Biol Ther 2012; 12 Suppl 1:S53-9. [PMID: 22519435 DOI: 10.1517/14712598.2012.681373] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND miR-21 and miR-375 are reported to be highly and poorly expressed in esophageal squamous cell carcinoma (ESCC) tissues, respectively. Recently, we demonstrated that circulating miR-21 and miR-375 were stably detectable in plasma and reflected tumor dynamics as a tumor marker for ESCC. We hypothesized that these plasma miRNA concentrations contributed to prognostic markers in patients with ESCC. METHODS Between 2008 and 2010, 50 preoperative plasma samples were collected from consecutive patients with ESCC, who underwent curative esophagectomy in our hospital. We examined the association between plasma miRNA concentrations and prognosis retrospectively. RESULTS i) The postoperative cause-specific survival rate of patients with high plasma miR-21 concentration tended to be poorer than low group (3-yr survival rate: 53.4 and 81.5%, p = 0.1038), while that of high plasma miR-375 group was better than low group (3-yr survival rate: 100 and 65.2%). ii) Patients with high miR-21 and low miR-375 concentrations in plasma had significantly poorer prognosis than other patients (3-yr survival rate: 48.4 and 83.1%, p = 0.039). Multivariate analysis revealed that the presence of high miR-21 and low miR-375 concentrations in plasma was an independent prognostic factor (p = 0.029, hazard ratio 3.8 (1.14-12.5)). CONCLUSION Circulating miR-21 and miR-375 could be reliable prognostic markers for ESCC. These plasma markers might facilitate clinical decision-making to select prospective candidates, which need meticulous follow-up for early detection of recurrences and additional treatments such as neo-adjuvant chemotherapy and postoperative chemotherapy in ESCC.
Collapse
Affiliation(s)
- Shuhei Komatsu
- Kyoto Prefectural University of Medicine, Division of Digestive Surgery, Department of Surgery, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Lässer C. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opin Biol Ther 2012; 12 Suppl 1:S189-97. [PMID: 22506888 DOI: 10.1517/14712598.2012.680018] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Exosomes are nano-sized (40 - 100 nm), extracellular vesicles, of endosomal origin. They are released by cells and found in many body fluids, including plasma. Exosomes contain proteins, microRNAs (miRNAs), and messenger RNAs (mRNAs) that can be transferred between cells. The discovery that exosomes contain RNA, and that this encapsulated RNA could potentially be transferred over distances in vivo, reinforced the importance of exosomes in cell-to-cell communication. AREAS COVERED The existence of exosomes, as a naturally occurring delivery system of RNA, enables their use as both biomarkers and vectors in gene therapy. This review provides an overview of studies reporting that exosomal miRNA and mRNA in plasma can serve as a diagnostic marker in various types of cancers. In addition, the recent finding that exosomes can be used as vectors for delivery of small interfering RNA (siRNA) in mice, with therapeutic effects, is also reviewed. EXPERT OPINION The data reviewed here suggest that exosomal RNA has the potential to play an important role in the diagnosis, prognosis, and treatment of diseases in the future.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|