151
|
ZNF521 Is Correlated with Tumor Immune Cell Infiltration and Act as a Valuable Prognostic Biomarker in Gastric Cancer. Gastroenterol Res Pract 2022; 2022:5288075. [PMID: 36311294 PMCID: PMC9606838 DOI: 10.1155/2022/5288075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aim To explore the correlations between the expression of zinc finger protein 521 (ZNF521) with immune invasion and prognosis of gastric cancer. Methods Expression of ZNF521 was examined by immunohistochemistry in gastric cancer cases. Kaplan–Meier plotter was used to determine the relationships between ZNF521 and prognosis. TIMER and GEPIA were used to analyze the correlation between ZNF521 expression and gene markers of immune cell infiltration. Results The expression of ZNF521 was up-regulated in gastric cancer samples. Kaplan–Meier analysis indicated that higher expression of ZNF521 was associated with poor prognosis. The expression of ZNF521 was correlated with infiltrating levels of CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic cells in gastric cancer, which also correlated with diverse immune marker sets. Conclusions ZNF521 is correlated significantly with immune cell infiltration and is a valuable biomarker for prognosis in gastric cancer.
Collapse
|
152
|
Su X, Ma G, Bai X, Zhang J, Li M, Zhang F, Sun T, Ma D, Lu F, Ji C. The prognostic marker FLVCR2 associated with tumor progression and immune infiltration for acute myeloid leukemia. Front Cell Dev Biol 2022; 10:978786. [PMID: 36313565 PMCID: PMC9597318 DOI: 10.3389/fcell.2022.978786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies in adults. The tumor microenvironment (TME) has a critical effect on AML occurrence, recurrence, and progression. The gene feline leukemia virus subgroup C cellular receptor family member 2 (FLVCR2) belongs to the major facilitator superfamily of transporter protein members, which is primarily involved in transporting small molecules. The potential role of FLVCR2 in the TME in AML has not been investigated. To clarify the expression and role of FLVCR2 in AML, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas databases and found that FLVCR2 mRNA expression significantly increased among patients with AML. Furthermore, based on an analysis of the Gene Expression Profiling Interactive Analysis database, FLVCR2 upregulation predicted dismal overall survival of patients with AML. Our validation analysis revealed the significant upregulation of FLVCR2 within the bone marrow of AML relative to healthy controls by western blotting and qPCR assays. Gene set enrichment analysis was conducted to explore FLVCR2's related mechanism in AML. We found that high FLVCR2 expression was related to infiltration degrees of immune cells and immune scores among AML cases, indicating that FLVCR2 possibly had a crucial effect on AML progression through the immune response. Specifically, FLVCR2 upregulation was negatively related to the immune infiltration degrees of activated natural killer cells, activated memory CD4+ T cells, activated dendritic cells, and CD8+ T cells using CIBERSORT analysis. According to the in vitro research, FLVCR2 silencing suppressed AML cell growth and promoted their apoptosis. This study provides insights into FLVCR2's effect on tumor immunity, indicating that it might serve as an independent prognostic biomarker and was related to immune infiltration within AML.
Collapse
Affiliation(s)
- Xiuhua Su
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoran Bai
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
153
|
Su JQ, Tian X, Xu WH, Anwaier A, Ye SQ, Zhu SX, Wang Y, Gu J, Shi GH, Qu YY, Zhang HL, Ye DW. The Inflammasomes Adaptor Protein PYCARD Is a Potential Pyroptosis Biomarker Related to Immune Response and Prognosis in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14204992. [PMID: 36291776 PMCID: PMC9599636 DOI: 10.3390/cancers14204992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Inflammation has been recognized as one of the hallmarks of cancers. PYCARD, the adaptor protein of inflammasomes, plays an important role in pyroptosis and apoptosis. However, the function of PYCARD remains unclear in human cancers. Here, we systematically performed a comprehensive analysis of PYCARD expression and its relationship with immunotherapy response and prognosis. We found significant differences in PYCARD expression between tumor and normal tissue, particularly in clear cell renal cell carcinoma. We also found that PYCARD was an unfavorable prognostic factor and was confirmed by external validation cohorts. Exploration of the profound mechanisms of PYCARD might help to identify new therapeutic targets and improve the efficacy of immunotherapy. Abstract PYCARD is a protein engaged in inflammation, pyroptosis, and apoptosis. However, the function of PYCARD in human cancers remains unclear. The objective of our study was to explore PYCARD expression and prognostic value in human cancers. Public databases were used to assess PYCARD expression and prognostic value. The TISIDB database was used to explore the associations between PYCARD expression and different immune subtypes. The correlations between PYCARD expression and ICP genes, MMR genes, MSI, and TMB were also investigated. The immunotherapy response was assessed using the TIDE database. Single-cell RNA databases evaluated the PYCARD expression of immune cells. External datasets and immunohistochemical staining were conducted to validate PYCARD expression and prognostic value. The results showed that PYCARD expression varied in several cancers and was associated with prognosis, immune-related genes, published biomarkers, and immunotherapy response. Of note, PYCARD expression was upregulated in renal cancers with high diagnostic ability. Upregulation of PYCARD was correlated with worse prognosis in KIRC and external validation cohorts. In conclusion, PYCARD demonstrated strong correlations with prognosis, immune response, and disease progression in pan-cancer analysis. In ccRCC, PYCARD might serve as a biomarker for diagnosis and therapeutic target-boosting immunotherapy response.
Collapse
Affiliation(s)
- Jia-Qi Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Shi-Qi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Shu-Xuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Jun Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
- Correspondence: (H.-L.Z.); (D.-W.Y.)
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
- Correspondence: (H.-L.Z.); (D.-W.Y.)
| |
Collapse
|
154
|
Noncoding RNAs-mediated overexpression of KIF14 is associated with tumor immune infiltration and unfavorable prognosis in lung adenocarcinoma. Aging (Albany NY) 2022; 14:8013-8031. [PMID: 36227151 PMCID: PMC9596199 DOI: 10.18632/aging.204332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Kinesin family member 14 (KIF14) is potentially oncogenic and acts as a chromokinesin via binding to microtubules and chromatin during the bipolar spindle formation. KIF14 overexpression is a significant prognostic biomarker in various cancers. However, the expression, prognosis, mechanism, and tumor immune regulation of KIF14 in lung adenocarcinoma (LUAD) remain obscure. Our results demonstrated that KIF14 was upregulated in a variety of cancers, including LUAD. High-expression of KIF14 in LUAD was associated with pathological tumor stage, N stage and unfavorable prognosis. Both univariate and multivariate Cox regression results demonstrated that KIF14 was a significant independent risk factor influencing the prognosis of LUAD patients. The most promising upstream ncRNA-associated pathway of KIF14 in LUAD was determined to be GSEC/TYMSOS-hsa-miR-101-3p axis according to the starBase and The Cancer Genome Atlas databases. Furthermore, upregulation of KIF14 in LUAD was positively correlated with tumor mutation burden, microsatellite instability, immune checkpoint-related gene expression, immune cell biomarkers, and tumor immune cell infiltration. This study reveals that ncRNAs-mediated overexpression of KIF14 is associated with tumor immune infiltration and unfavorable prognosis in LUAD.
Collapse
|
155
|
Zhang W, Shi Y, Niu S, Li L, Lin L, Gao X, Cai W, Chen Y, Zhong Y, Tang D, Tang M, Dai Y. Integrated computer analysis and a self-built Chinese cohort study identified GSTM2 as one survival-relevant gene in human colon cancer potentially regulating immune microenvironment. Front Oncol 2022; 12:881906. [PMID: 36263204 PMCID: PMC9574330 DOI: 10.3389/fonc.2022.881906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
According to a recent report by GLOBOCAN, colorectal cancer is the third most common and second most deadly cancer in 2020. In our previous proteomic study, we found that the expression of GSTM2 in colon tissues was significantly lower than that in para-cancer tissues, and its lower expression was associated with reduced overall survival rate of patients, suggesting that this gene might play a role in the occurrence of colon cancer. As a member of the detoxifying enzyme family, GSTM2 is likely to play an important role in the initiation of tumors. Whereas, the functions of GSTM2 in colon cancer are barely known. In this study, using the RNA-Seq datasets of colon cancer patients from public database (ntumor = 457, nnormal = 41), we confirmed the reduced expression of GSTM2 and its prognostic value in colon cancer. Furthermore, we used our own Chinese cohort (ntumor = 100, nnormal = 72) verified the lower GSTM2 expression in colon cancer, and also its effects on patient prognosis. Subsequently, we uncovered two potential reasons for the lower expression of GSTM2 in colon cancer tissues, including the deep deletion of GSTM2 on genome, and the up-regulation of RAD21 or SP1. Moreover, we disclosed that GSTM2 might be involved in several immune-related pathways in colon cancer, such as chemokine signaling and leukocyte transendothelial migration. Finally, we revealed that the GSTM2 expression was closely related to the immune-related scores of colon cancer and the infiltration ratios of various immune cells, suggesting that GSTM2 might regulate the development of colon cancer by modulating immune microenvironment. In conclusion, we uncovered the prognostic value of GSTM2 based on the public data and our own data, revealed its potential regulatory role in tumor immune microenvironment, and disclosed the probable reasons for its lower expression in colon cancer. The findings of our study provide a potential prognostic biomarker and drug target for clinical diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- Medical School, Nanchang Institute of Technology, Nanchang, China
| | - Yutong Shi
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shumeng Niu
- Laboratory Department, Shanghai Hongkou Jiangwan Hospital, Shanghai, China
| | - Lintai Li
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xucan Gao
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yafang Zhong
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- *Correspondence: Yong Dai, ; ; Donge Tang, ; Min Tang,
| | - Min Tang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Yong Dai, ; ; Donge Tang, ; Min Tang,
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- *Correspondence: Yong Dai, ; ; Donge Tang, ; Min Tang,
| |
Collapse
|
156
|
Pan-cancer analysis of LncRNA XIST and its potential mechanisms in human cancers. Heliyon 2022; 8:e10786. [PMID: 36212008 PMCID: PMC9535293 DOI: 10.1016/j.heliyon.2022.e10786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
157
|
Lei J, Fan Y, Yan C, Jiamaliding Y, Tang Y, Zhou J, Huang M, Ju G, Wu J, Peng C. Comprehensive analysis about prognostic and immunological role of WTAP in pan-cancer. Front Genet 2022; 13:1007696. [PMID: 36171885 PMCID: PMC9511574 DOI: 10.3389/fgene.2022.1007696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Wilms tumor 1-associated protein (WTAP) plays a critical role in ribonucleic acid (RNA) methylation of N6 adenosine (m6A) modification, which is closely related with varieties of biological process. However, the role of WTAP in cancers remains to be determined. This study is designed to demonstrate the prognostic landscape of WTAP in pan-cancer and explore the relationship between WTAP expression and immune infiltration. Methods: Here, we investigated the expression level and prognostic role of WTAP in pan-cancer using multiple databases, including PrognoScan, GEPIA, and Kaplan-Meier Plotter. Then, applying the GEPIA and TIMER databases, we illustrated the correlations between WTAP expression and immune infiltration in tumors, especially liver hepatocellular carcinoma (LIHC), and esophageal carcinoma (ESCA). Results: WTAP had significant higher expression levels in tumor tissues of ESCA, LIHC, etc., while lower expression levels in those of bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), etc. And WTAP demonstrated multifaceted prognostic value in cancers. Of our interests, WTAP exerted a harmful effect on LIHC patient for overall survival (OS) and progression free survival (PFS). WTAP expression also significantly associated with the infiltration levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (DC) in LIHC but not ESCA. Furthermore, combined analysis about WTAP expression level and immune cell specific gene markers implied WTAP correlates with regulatory cells (T reg) infiltration in LIHC and ESCA. Conclusion: The m6A regulator WTAP can serve as a prognostic biomarker for certain tumor types in pan-cancer and potentially result from immune cell infiltration.
Collapse
Affiliation(s)
- Jiangchu Lei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhi Fan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeernaer Jiamaliding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiawei Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengna Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guomin Ju
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
158
|
Su C, Lin Z, Cui Y, Cai JC, Hou J. Identification of Essential Tumor-Infiltrating Immune Cells and Relevant Genes in Left-Sided and Right-Sided Colon Cancers. Cancers (Basel) 2022; 14:cancers14194713. [PMID: 36230637 PMCID: PMC9564376 DOI: 10.3390/cancers14194713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Differences in oncogenes between left-sided colon cancer and right-sided colon cancer have been reported in-depth. Tumor-infiltrating immune cells and relevant genes between left-sided and right-sided colon cancers are unclear. Bioinformatic analysis was used to identify these hub immune cells and relevant genes. Colon cancer outcomes are associated with changes in MDSC infiltration, and therefore LCP1, ITGB2, and IKZF1 may be novel targets for immunotherapy. Abstract Backgrounds: Colorectal cancer is the third most prevalent cancer worldwide. A right-sided colon cancer patient typically has a worse prognosis than one who has a left-sided colon cancer. There is an unclear understanding of how left-sided colon cancer differs from right-sided colon cancer in tumor-infiltrating immune cells (TIICs) and relevant genes. Methods: The Cancer Genome Atlas provided RNA-seq data and clinical information regarding colon adenocarcinoma. We conducted a single-sample gene set enrichment analysis (ssGSEA) to quantify the level of 24 immune cells infiltrating the tissues. Based on an analysis of univariate Cox regression, immune cell types associated with survival were identified. Weighted gene co-expression network analysis (WGCNA) was used to identify hub genes related to location and critical immune cells. Based on the Search Tool for the Retrieval of Interacting Genes (STRING), interaction potential was predicted among the hub genes. Hub genes that influence outcomes through immune infiltration were identified using the least absolute shrinkage and selection operator (LASSO). Then, we used the TISIDB database (a repository portal for tumor–immune system interactions) to validate the correlation between hub genes and immune cell infiltration. Finally, immunohistochemical assays were conducted to determine the levels of proteins expressed by critical TIICs and cancer cells. Results: Colon cancers on the right side of the body had higher levels of myeloid-derived suppressor cells (MDSCs) than on the left side. There were three key genes: LCP1, ITGB2, and IKZF1. It was found that their expression was linked to poor prognosis and an increased level of MDSC infiltration. An immunohistochemical study confirmed these findings. Conclusions: There is a higher rate of MDSC infiltration in right-sided colon cancer when compared with left-sided colon cancer. COAD outcomes are associated with changes in MDSC infiltration, and therefore LCP1, ITGB2, and IKZF1 may be novel targets for immunotherapy.
Collapse
Affiliation(s)
- Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yongmei Cui
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (J.-C.C.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (J.-C.C.); (J.H.)
| |
Collapse
|
159
|
Sun A, Tian X, Yang W, Lin Q. Overexpression of SCYL1 Is Associated with Progression of Breast Cancer. Curr Oncol 2022; 29:6922-6932. [PMID: 36290821 PMCID: PMC9600755 DOI: 10.3390/curroncol29100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023] Open
Abstract
SCYL1 is a pseudokinase and plays roles in cell division and gene transcription, nuclear/cytoplasmic shuttling of tRNA, protein glycosylation, and Golgi morphology. However, the role of SCYL1 in human breast cancer progression remains largely unknown. In this study, we determined expression of SCYL1 in breast cancer by searching the Cancer Genome Atlas (TCGA) and Tumor Immunoassay Resource (TIMER) databases. Meanwhile, we collected breast tumor tissue samples from 247 cases and detected expression of SCYL1 in the tumors using the tissue microarray assay (TMA). Association of SCYL1 with prognosis of breast cancer was determined based on the PrognoScan database. The results have shown that SCYL1 is overexpressed in breast cancer, and the expression of SCYL1 is associated with poor clinical outcomes of breast cancer patients. Furthermore, knockdown of SCYL1 by shRNAs significantly inhibited the proliferation and migration of breast cancer cells. Taken together, our data suggest that SCYL1 is a biomarker for poor prognosis of breast cancer, has a promoting role in breast cancer progression, and is a potential target for breast cancer therapy.
Collapse
|
160
|
Comprehensive Multiomics Analysis Identified IQGAP3 as a Potential Prognostic Marker in Pan-Cancer. DISEASE MARKERS 2022; 2022:4822964. [PMID: 36164370 PMCID: PMC9508463 DOI: 10.1155/2022/4822964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
Background IQGAP3 has important function in cancer progression and has become a potential therapeutic target as a transmembrane protein. But its role in tumor immunity and pan-cancer was not systematically investigated. This study evaluated the potential role of IQGAP3 and clinical significance in pan-cancer through combined multiomics analysis. Methods From Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases, transcriptomic datasets were first obtained, and from Gene Expression Omnibus (GEO), expression profiling microarray data were acquired and integrated to systematically assess the expression differences and prognostic relevance of IQGAP3 in pancreatic cancer. Immunohistochemical data were obtained from Human Protein Atlas (HPA) to assess IQGAP3 protein expression differences, and exome data from TCGA were used to analyze IQGAP3 expression in relation to tumor mutational burden (TMB), microsatellite instability (MSI), and mutation. Additionally, we also analyzed the relationship between IQGAP3 expression and immune checkpoints, mismatch repair (MMR), and IQGAP3 relationship with methylation and copy number variation based on expression profiles. Results Microsatellite instability (MSI), immune checkpoints, mismatch repair (MMR), and tumor mutational burden (TMB) all closely interacted with IQGAP3 mRNA. In addition, detailed relationships between the immune microenvironment and IQGAP3 mRNA as well as immune cell CD4+ Th2 and myeloid-derived suppressor cells (MDSCs) were determined. Mechanistically, IQGAP3 was involved in cytoskeleton formation, T cell receptor signaling pathways, DNA damage, cell cycle, P53 pathway, Fc gamma R-mediated phagocytosis, and apoptosis. Conclusion IQGAP3 could serve as an effective prognostic biomarker for pan-cancer immune-related therapy.
Collapse
|
161
|
Wei Q, Miao T, Zhang P, Jiang B, Yan H. Comprehensive analysis to identify GNG7 as a prognostic biomarker in lung adenocarcinoma correlating with immune infiltrates. Front Genet 2022; 13:984575. [PMID: 36159963 PMCID: PMC9500342 DOI: 10.3389/fgene.2022.984575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: G Protein Subunit Gamma 7 (GNG7), an important regulator of cell proliferation and cell apoptosis, has been reported to be downregulated in a variety of tumors including lung adenocarcinoma (LUAD). However, the correlation between low expression of GNG7 and prognosis of LUAD as well as the immune infiltrates of LUAD remains unclear. Methods: The samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). R software was performed for statistical analysis. GNG7 expression and its prognostic value in LUAD were assessed through statistically analyzing the data from different databases. A nomogram was constructed to predict the impact of GNG7 on prognosis. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analyses GSEA (ssGSEA) were employed to determine the potential signal pathways and evaluated the immune cell infiltration regulated by GNG7. The prognostic significance of GNG7 expression associated with immune cell infiltration was investigated using the Tumor Immune Estimation Resource 2.0 (TIMER2.0) and the Kaplan-Meier plotter database. The UALCAN, cBio Cancer Genomics Portal (cBioPortal) and MethSurv database were used to analyze the correlation between the methylation of GNG7 and its mRNA expression as well as prognostic significance. Results: GNG7 was demonstrated to be down-regulated in LUAD and its low expression was associated with poor prognosis. A clinical reliable prognostic-predictive model was constructed. Pathway enrichment showed that GNG7 was highly related to the B cell receptor signaling pathway. Further analysis showed that GNG7 was positively associated with B cell infiltration and low levels of B cell infiltration tended to associate with worse prognosis in patients with low GNG7 expression. Moreover, methylation analysis suggested hypermethylation may contribute to the low expression of GNG7 in LUAD. Conclusion: Decreased expression of GNG7 at least partly caused by hypermethylation of the GNG7 promoter is closely associated with poor prognosis and tumor immune cell infiltration (especially B cells) in LUAD. These results suggest that GNG7 may be a promising prognostic biomarker and a potential immunotherapeutic target for LUAD, which provides new insights into immunotherapy for LUAD.
Collapse
Affiliation(s)
- Qin Wei
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Tianshu Miao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Baodong Jiang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Yan
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Hua Yan,
| |
Collapse
|
162
|
Ullah MA, Tabassum T, Farzana M, Moin AT, Zohora US, Rahman MS. Expression analysis, molecular characterization and prognostic evaluation on TMED4 and TMED9 gene expression in glioma. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
163
|
TIMP2 is associated with prognosis and immune infiltrates of gastric and colon cancer. Int Immunopharmacol 2022; 110:109008. [DOI: 10.1016/j.intimp.2022.109008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
|
164
|
Huang CZ, Zhou Y, Tong QS, Duan QJ, Zhang Q, Du JZ, Yao XQ. Precision medicine-guided co-delivery of ASPN siRNA and oxaliplatin by nanoparticles to overcome chemoresistance of colorectal cancer. Biomaterials 2022; 290:121827. [DOI: 10.1016/j.biomaterials.2022.121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
165
|
Systematic Pan-Cancer Analysis Identifies CDK1 as an Immunological and Prognostic Biomarker. JOURNAL OF ONCOLOGY 2022; 2022:8115474. [PMID: 36090896 PMCID: PMC9452984 DOI: 10.1155/2022/8115474] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 1 (CDK1) plays an important role in cancer development, progression, and the overall process of tumorigenesis. However, no pan-cancer analysis has been reported for CDK1, and the predictive role of CDK1 in immune checkpoint inhibitors (ICIs) therapy response remains unexplored. Thus, in this study, we first investigated the potential oncogenic role of CDK1 in 33 tumors by multidimensional bioinformatics analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatic analysis and immunohistochemical experiments confirmed that CDK1 is significantly upregulated in most common cancers and is strongly associated with prognosis. Further analysis indicated that CDK1 may influence tumor immunity mainly by mediating the degree of tumor infiltration of immune-associated cells, and the effect of CDK1 on immunity is diverse across tumor types in tumor microenvironment. CDK1 was also positively correlated with tumor mutational burden (TMB) and microsatellite instability (MSI) in certain cancer types, linking its expression to the assessment of possible treatment response. The results of the pan-cancer analysis study showed that the CDK1 gene was positively associated with the expression of three classes of RNA methylation regulatory proteins, and affects RNA function through multiple mechanisms of action and plays an important role in the posttranscriptional regulation of the tumor microenvironment. These findings shed light on the role of the CDK1 gene in cancer progression and provide information to further study the CDK1 gene as a potential target for pan-cancer.
Collapse
|
166
|
Lewis AH, Bridges CS, Moorshead DN, Chen TJ, Du W, Zorman B, Sumazin P, Puppi M, Lacorazza HD. Krüppel-like Factor 4 Supports the Expansion of Leukemia Stem Cells in MLL-AF9-driven Acute Myeloid Leukemia. Stem Cells 2022; 40:736-750. [PMID: 35535819 PMCID: PMC9406610 DOI: 10.1093/stmcls/sxac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with 5-year overall survival of less than 10% in patients over the age of 65. Limited progress has been made in the patient outcome because of the inability to selectively eradicate the leukemic stem cells (LSC) driving the refractory and relapsed disease. Herein, we investigated the role of the reprogramming factor KLF4 in AML because of its critical role in the self-renewal and stemness of embryonic and cancer stem cells. Using a conditional Cre-lox Klf4 deletion system and the MLL-AF9 retroviral mouse model, we demonstrated that loss-of-KLF4 does not significantly affect the induction of leukemia but markedly decreased the frequency of LSCs evaluated in limiting-dose transplantation studies. Loss of KLF4 in leukemic granulocyte-macrophage progenitors (L-GMP), a population enriched for AML LSCs, showed lessened clonogenicity and percentage in the G2/M phase of the cell cycle. RNAseq analysis of purified L-GMPs revealed decreased expression of stemness genes and MLL-target genes and upregulation of the RNA sensing helicase DDX58. However, silencing of DDX58 in KLF4 knockout leukemia indicated that DDX58 is not mediating this phenotype. CRISPR/Cas9 deletion of KLF4 in MOLM13 cell line and AML patient-derived xenograft cells showed impaired expansion in vitro and in vivo associated with a defective G2/M checkpoint. Collectively, our data suggest a mechanism in which KLF4 promotes leukemia progression by establishing a gene expression profile in AML LSCs supporting cell division and stemness.
Collapse
Affiliation(s)
- Andrew Henry Lewis
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Cory Seth Bridges
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - David Neal Moorshead
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Taylor J Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Wa Du
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Present address: Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Monica Puppi
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
167
|
Li D, Jiao Y, Gao W, Hu S, Li D, Zhao W, Chen P, Jin L, Zhao Y, Ma Z, Wu X, Yan Y, Sun W, Du X, Dong G. Comprehensive analysis of the prognostic and immunotherapeutic implications of STAT family members in human colorectal cancer. Front Genet 2022; 13:951252. [PMID: 36061181 PMCID: PMC9437353 DOI: 10.3389/fgene.2022.951252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the third most prevalent cancer worldwide and the second leading cause of cancer mortality. Signal transducer and activator of transcription (STAT) proteins are a group of transcription factors implicated in cell signal transduction and gene transcription in several cancer types. However, the level of expression, genetic alterations, and biological function of different STATs, as well as their prognostic and immunotherapeutic value in CRC remain unclear.Methods: The mRNA and protein expression levels, genetic alterations, prognostic value, gene–gene and protein–protein interaction networks, and biological function of STATs in CRC were studied using the GEPIA, HPA, cBioPortal, PrognoScan, Kaplan–Meier plotter, GeneMANIA, STRING, and Metascape databases. The expression of STATs in CRC was confirmed using immunohistochemistry (IHC). Finally, the relationship between STAT expression and immune infiltration as well as immunotherapy-associated indicators was also investigated.Results: The expression levels of STAT2/5A/5B are downregulated in CRC, and the STAT1/3/4/5B expressions were significantly associated with the tumor stage of patients with CRC. The abnormal expression of STAT2/4/5B in patients with CRC is related to the prognosis of patients with CRC. The STATs and their neighboring proteins are primarily associated with lymphocyte activation, cytokine-mediated signaling pathways, positive regulation of immune response, regulation of cytokine production, and growth hormone receptor signaling pathways in cancer. The expression of STATs was significantly associated with immune infiltration and immunotherapy response-associated indicators.Conclusion: This study may help further understand the molecular mechanism of CRC and provide new prognostic biomarkers and immunotherapy targets in patients with CRC.
Collapse
Affiliation(s)
- Dingchang Li
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yanan Jiao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shidong Hu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dingling Li
- Medical College of Qinghai University, Xining, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lujia Jin
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofu Ma
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiansheng Wu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Yan
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wen Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaohui Du, ; Guanglong Dong,
| | - Guanglong Dong
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaohui Du, ; Guanglong Dong,
| |
Collapse
|
168
|
Huang T, Li J, Liu X, Shi B, Li S, An HX. An integrative pan-cancer analysis revealing the difference in small ring finger family of SCF E3 ubiquitin ligases. Front Immunol 2022; 13:968777. [PMID: 36059474 PMCID: PMC9434121 DOI: 10.3389/fimmu.2022.968777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background The SCF (Skp1-cullin-F-box proteins) complex is the largest family of E3 ubiquitin ligases that mediate multiple specific substrate proteins degradation. Two ring-finger family members RBX1/ROC1 and RBX2/RNF7/SAG are small molecular proteins necessary for ubiquitin ligation activity of the multimeric SCF complex. Accumulating evidence indicated the involvement of RBX proteins in the pathogenesis and development of cancers, but no research using pan-cancer analysis for evaluating their difference has been directed previously. Methods We investigated RBX1/2 expression patterns and the association with clinicopathological features, and survivals of cancer patients obtained from the TCGA pan-cancer data. The binding energies of RBX1/2-CUL1 complexes were preliminarily calculated by using molecular dynamics simulations. Meanwhile, we assessed their immune infiltration level across numerous databases, including TISIDB and Timer database. Results High expression levels of RBX1/2 were observed in most cancer types and correlated with poor prognosis of patients analyzed. Nonetheless, exceptions were observed: RBX2 expression in KICH was higher than normal renal tissues and played a detrimental role in KICH. The expression of RBX1 was not associated with the prognostic risk of KICH. Moreover, the combination of RBX1 and CUL1 expression is more stable than that of RBX2 and CUL1. RBX1/2 expression showed their own specific characteristics in tumor pathological stages and grades, copy number variation and immune components. Conclusions These findings not only indicated that the difference of RBX1/2 might result in varying degrees of tumor progression, but also suggested that they might serve as biomarkers for immune infiltration in cancers, shedding new light on therapeutics of cancers.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Medical Oncology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xinli Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Shiqin Li
- Department of Gastroenterology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Han-Xiang An
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China
- *Correspondence: Hanxiang An,
| |
Collapse
|
169
|
Li X, Ma Z, Mei L. Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. Am J Cancer Res 2022; 12:3561-3580. [PMID: 36119835 PMCID: PMC9442001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023] Open
Abstract
Cuproptosis is a recently reported novel way of cell death. A comprehensive study regarding expression, function and mechanism of cuproptosis-related genes in breast cancer is still absent. In this work, a series of in silico analyses were employed and SLC31A1 was selected as the most potential cuproptosis-related gene in breast cancer, which was statistically upregulated and possessed significant abilities to predict diagnosis, prognosis and drug response. Moreover, SLC31A1 was significantly positively correlated with different immune cell infiltration levels, immune cell biomarkers or immune checkpoints in breast cancer. Upstream G2E3-AS1/let-7a-5p and CDKN2B-AS1/let-7b-5p pathways were found to be responsible for SLC31A1 upregulation in breast cancer based on competing endogenous RNA mechanism. Furthermore, we found that SLC31A1 overexpression might be also induced by its high copy number level in breast cancer. Collectively, our current data elucidated that cuproptosis-related SLC31A1 might be a promising diagnostic/prognostic biomarker and drug responsive predictor in breast cancer.
Collapse
Affiliation(s)
- Xiao Li
- Emergency Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhou 317000, Zhejiang, China
| | - Zhaosheng Ma
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhou 317000, Zhejiang, China
| | - Linhang Mei
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhou 317000, Zhejiang, China
| |
Collapse
|
170
|
Qiu X, Liu W, Zheng Y, Zeng K, Wang H, Sun H, Dai J. Identification of HMGB2 associated with proliferation, invasion and prognosis in lung adenocarcinoma via weighted gene co-expression network analysis. BMC Pulm Med 2022; 22:310. [PMID: 35962344 PMCID: PMC9373369 DOI: 10.1186/s12890-022-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background High mobility group protein B2 (HMGB2) is a multifunctional protein that plays various roles in different cellular compartments. Moreover, HMGB2 serves as a potential prognostic biomarker and therapeutic target for lung adenocarcinoma (LUAD). Methods In this study, the expression pattern, prognostic implication, and potential role of HMGB2 in LUAD were evaluated using the integrated bioinformatics analyses based on public available mRNA expression profiles from The Cancer Genome Atlas and Gene Expression Omnibus databases, both at the single-cell level and the tissue level. Further study in the patient-derived samples was conducted to explore the correlation between HMGB2 protein expression levels with tissue specificity, (tumor size-lymph node-metastasis) TNM stage, pathological grade, Ki-67 status, and overall survival. In vitro experiments, such as CCK-8, colony-formation and Transwell assay, were performed with human LUAD cell line A549 to investigate the role of HMGB2 in LUAD progression. Furthermore, xenograft tumor model was generated with A549 in nude mice. Results The results showed that the HMGB2 expression was higher in the LUAD samples than in the adjacent normal tissues and was correlated with high degree of malignancy in different public data in this study. Besides, over-expression of HMGB2 promoted A549 cells proliferation and migration while knocking down of HMGB2 suppressed the tumor promoting effect. Conclusions Our study indicated that HMGB2 was remarkably highly expressed in LUAD tissues, suggesting that it is a promising diagnostic and therapeutic marker for LUAD in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02110-y.
Collapse
Affiliation(s)
- Xie Qiu
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Wei Liu
- Department of Thoracic Surgery, Haian People's Hospital Affiliated to Nantong University, Haian, People's Republic of China
| | - Yifan Zheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Kai Zeng
- Department of Thyroid Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Hao Wang
- Yancheng TCM Hospital, Nanjing University of Chinese Medicine, Yancheng, 224002, China
| | - Haijun Sun
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China.
| | - Jianhua Dai
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China.
| |
Collapse
|
171
|
Alnoumas L, van den Driest L, Apczynski Z, Lannigan A, Johnson CH, Rattray NJW, Rattray Z. Evaluation of the role of KPNA2 mutations in breast cancer prognosis using bioinformatics datasets. BMC Cancer 2022; 22:874. [PMID: 35948941 PMCID: PMC9364282 DOI: 10.1186/s12885-022-09969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer, comprising of several sub-phenotypes, is a leading cause of female cancer-related mortality in the UK and accounts for 15% of all cancer cases. Chemoresistant sub phenotypes of breast cancer remain a particular challenge. However, the rapidly-growing availability of clinical datasets, presents the scope to underpin a data-driven precision medicine-based approach exploring new targets for diagnostic and therapeutic interventions.We report the application of a bioinformatics-based approach probing the expression and prognostic role of Karyopherin-2 alpha (KPNA2) in breast cancer prognosis. Aberrant KPNA2 overexpression is directly correlated with aggressive tumour phenotypes and poor patient survival outcomes. We examined the existing clinical data available on a range of commonly occurring mutations of KPNA2 and their correlation with patient survival.Our analysis of clinical gene expression datasets show that KPNA2 is frequently amplified in breast cancer, with differences in expression levels observed as a function of patient age and clinicopathologic parameters. We also found that aberrant KPNA2 overexpression is directly correlated with poor patient prognosis, warranting further investigation of KPNA2 as an actionable target for patient stratification or the design of novel chemotherapy agents.In the era of big data, the wealth of datasets available in the public domain can be used to underpin proof of concept studies evaluating the biomolecular pathways implicated in chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Layla Alnoumas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lisa van den Driest
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Zoe Apczynski
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
172
|
Sun C, Lowe S, Ma S, Bentley R, Zhou Z, Cheng C, Zhou Q. CCNB2 expression correlates with worse outcomes in breast cancer patients: a pooled analysis. Women Health 2022; 62:655-663. [DOI: 10.1080/03630242.2022.2106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, USA
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei, Anhui, P.R. China
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ce Cheng
- Internal Medicine, The University of Arizona College of Medicine, Tucson, Arizona
- Internal Medicine, Banner-University Medical Center South, Tucson, Arizona
| | - Qin Zhou
- Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
173
|
Game-theoretic link relevance indexing on genome-wide expression dataset identifies putative salient genes with potential etiological and diapeutics role in colorectal cancer. Sci Rep 2022; 12:13409. [PMID: 35927308 PMCID: PMC9352798 DOI: 10.1038/s41598-022-17266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diapeutics gene markers in colorectal cancer (CRC) can help manage mortality caused by the disease. We applied a game-theoretic link relevance Index (LRI) scoring on the high-throughput whole-genome transcriptome dataset to identify salient genes in CRC and obtained 126 salient genes with LRI score greater than zero. The biomarkers database lacks preliminary information on the salient genes as biomarkers for all the available cancer cell types. The salient genes revealed eleven, one and six overrepresentations for major Biological Processes, Molecular Function, and Cellular components. However, no enrichment with respect to chromosome location was found for the salient genes. Significantly high enrichments were observed for several KEGG, Reactome and PPI terms. The survival analysis of top protein-coding salient genes exhibited superior prognostic characteristics for CRC. MIR143HG, AMOTL1, ACTG2 and other salient genes lack sufficient information regarding their etiological role in CRC. Further investigation in LRI methodology and salient genes to augment the existing knowledge base may create new milestones in CRC diapeutics.
Collapse
|
174
|
Wang J, Akter R, Shahriar MF, Uddin MN. Cancer-Associated Stromal Fibroblast-Derived Transcriptomes Predict Poor Clinical Outcomes and Immunosuppression in Colon Cancer. Pathol Oncol Res 2022; 28:1610350. [PMID: 35991839 PMCID: PMC9385976 DOI: 10.3389/pore.2022.1610350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022]
Abstract
Background: Previous studies revealed that colonic cancer-associated fibroblasts (CAFs) are associated with the modulation of the colon tumor microenvironment (TME). However, identification of key transcriptomes and their correlations with the survival prognosis, immunosuppression, tumor progression, and metastasis in colon cancer remains lacking. Methods: We used the GSE46824, GSE70468, GSE17536, GSE35602, and the cancer genome atlas (TCGA) colon adenocarcinoma (COAD) datasets for this study. We identified the differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, hub genes, and survival-associated genes in colon cancer. Finally, we investigated the correlation of key genes with the survival prognosis, immunosuppression, and metastasis. Results: We identified 246 common DEGs between the GSE46824 and GSE70468 datasets of colonic CAFs, which included 72 upregulated and 174 downregulated genes. The upregulated pathways are mainly involved with cancers and cellular signaling, and downregulated pathways are involved with immune regulation and cellular metabolism. The search tool for the retrieval of interacting genes (STRING)-based analysis identified 15 hub genes and 9 significant clusters in colonic CAFs. The upregulation of CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 and downregulation of FBN2 are correlated with a shorter survival time in colon cancer. The CTHRC1, PDGFC, PDLIM3, and NTM genes are positively correlated with the infiltration of tumor-associated macrophages (TAM), macrophages, M2 macrophages, the regulatory T cells (Tregs), T cell exhaustion, and myeloid-derived suppressor cells (MDSCs), indicating the immunosuppressive roles of these transcriptomes in colon cancer. Moreover, the CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 genes are gradually increased from normal tissue to the tumor and tumor to the metastatic tumor, and FBN2 showed the reverse pattern. Furthermore, the CTHRC1, FBN2, PDGFC, PDLIM3, and NTM genes are positively correlated with the metastatic scores in colon cancer. Then, we revealed that the expression value of CTHRC1, FBN2, PDGFC, PDLIM3, NTM, and SLC16A3 showed the diagnostic efficacy in colonic CAFs. Finally, the expression level of CTHRC1, PDGFC, and NTM genes are consistently altered in colon tumor stroma as well as in the higher CAFs-group of TCGA COAD patients. Conclusion: The identified colonic CAFs-derived key genes are positively correlated with survival prognosis, immunosuppression, tumor progression, and metastasis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rehana Akter
- Bioinformatics Research Lab, Center for Research Innovation and Development (CRID), Dhaka, Bangladesh
| | | | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh,*Correspondence: Md. Nazim Uddin,
| |
Collapse
|
175
|
Lin Y, Zhou H, Li S. BTN3A2 Expression Is Connected With Favorable Prognosis and High Infiltrating Immune in Lung Adenocarcinoma. Front Genet 2022; 13:848476. [PMID: 35873496 PMCID: PMC9298880 DOI: 10.3389/fgene.2022.848476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Butyrophilin subfamily 3 member A2 (BTN3A2) is an important mediator in immune activation, and it is reported to be linked to many cancer progresses. However, the relation with infiltrating immune and prognosis of BTN3A2 in lung adenocarcinoma are not clear. Methods: In our study, we checked the mRNA expression and protein expression profile of BTN3A2 in lung adenocarcinoma (LUAD) and its relation to clinical outcomes using TIMER and UALCAN databases. In addition, we analyzed the survival of BTN3A2 in LUAD using the Kaplan–Meier Plotter database and PrognoScan database. Moreover, we analyzed gene set enrichment analysis (GSEA) of the BTN3A2. Next, we explored the relation of BTN3A2 expression with the immune infiltration by TIMER. At last, in order to enrich the regulatory mechanism of BTN3A2, we used miRarbase, starbase, and miRDB databases to look for miRNA targets of BTN3A2. Results: The mRNA along with the protein expression of BTN3A2 in the LUAD group was lower than that in the normal group. In addition, high BTN3A2 expression was connected with good first progression (FP) and overall survival (OS) in LUAD. Then, the GSEA analysis demonstrated that T-cell receptor signaling cascade, B-cell receptor signaling cascade, natural killer cell–mediated cytotoxicity, immune receptor activity, immunological synapse, and T-cell activation were enriched differentially in the BTN3A2 high expression phenotype of LUAD. Moreover, BTN3A2 expression is a remarkable positive correlation with invading levels of tumor purity, B cells, neutrophils, CD4+ T cells, dendritic cells, macrophages, and CD8+ T cells in LUAD, and B cells and dendritic cells were linked with a good prognosis of LUAD. To further enrich the possible regulatory mechanisms of BTN3A2, we analyzed the miRNA targets. The results showed that hsa-miR-17-5p may be miRNA targets of BTN3A2. Conclusion: Taking together, we provide evidence of BTN3A2 as possible prognosis biomarkers of LUAD. In addition, high BTN3A2 expression in LUAD may influence the prognosis because of immune invasion. Moreover, our findings provide a potential mechanism that hsa-miR-17-5p may be miRNA targets of BTN3A2.
Collapse
Affiliation(s)
- Yuansheng Lin
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hao Zhou
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shengjun Li
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
176
|
Zhou Y, Xiao D, Jiang X. LncRNA RP3-525N10.2-NFKB1-PROS1 triplet-mediated low PROS1 expression is an onco-immunological biomarker in low-grade gliomas: a pan-cancer analysis with experimental verification. J Transl Med 2022; 20:335. [PMID: 35879775 PMCID: PMC9310492 DOI: 10.1186/s12967-022-03536-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glioma is the most common cancer in the central nervous system, and low grade gliomas are notorious for many types of tumors and heterogeneity. PROS1 not only plays an important role in the blood coagulation system, and recent studies have found that it was correlated with the development of tumors, especially related to tumor immune infiltration. However, the study of underlying role and mechanism of PROS1 in gliomas, especially in low-grade gliomas, is almost absent. Methods We integrated the information of patients with LGG in The Cancer Genome Atlas (TCGA) cohort and Chinese Glioma Genome Atlas (CGGA) cohort. Then, we systematically demonstrated the differences and prognostic prognosis value of PROS1 based on multi-omics analyses. In addition, Cell counting kit-8 (CCK-8) assay, colony formation assay, 5-Ethynyl-2’-deoxyuridine (EdU) incorporation assay, and Transwell assays were performed to evaluate cell proliferation and invasion. qRT-PCR and immunohistochemistry were used to evaluate the expression of PROS1 in LGG. Results Various bioinformatics approaches revealed that PROS1 was a valuable prognostic marker and may influence tumour development via distinct mechanisms, including expression of DNA methyltransferase, RNA modification, and DNA mismatch repair system genes, copy number variation, single nucleotide variation frequency, genomic heterogeneity, cancer stemness, DNA methylation, and alternative PROS1 splicing. Our analyses indicated that the long non-coding RNA RP3-525N10.2 may “decoy” or “guide” the transcription factor NFKB1 and prevent its association with PROS1, thereby reducing PROS1 expression and improving poor LGG prognosis. PROS1 expression was also closely associated with tumour infiltration by immune cells, especially tumour-associated macrophages, as well as the expression of various immune checkpoint inhibitors, immunomodulators, and immune cell markers. Conclusion long non-coding RNA RP3-525N10.2-NFKB1-PROS1 triplet-mediated PROS1 expression could serve as a biomarker for cancer diagnosis, prognosis, therapy selection, and follow-up in LGG patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03536-y.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
177
|
Wang S, Fu Y, Kuerban K, Liu J, Huang X, Pan D, Chen H, Zhu Y, Ye L. Discoidin domain receptor 1 is a potential target correlated with tumor invasion and immune infiltration in gastric cancer. Front Immunol 2022; 13:933165. [PMID: 35935941 PMCID: PMC9353406 DOI: 10.3389/fimmu.2022.933165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) has been demonstrated to be able to promote tumor invasion and metastasis and being closely related to tumor immune infiltration. However, DDR1 has rarely been studied in gastric cancer. Here, we primarily evaluated DDR1 expression in gastric cancer and its cell lines using multiple databases. Subsequently, the cancer prognosis was investigated in relation to DDR1 expression. After analysis, we discovered that DDR1 was highly expressed and significantly connected with poor prognosis in gastric cancer. To comprehensively understand the molecular mechanism of DDR1, we explored genes and proteins interacting with DDR1 in gastric cancer using databases. Additionally, we found that the expression level of DDR1 was inversely correlated with immune infiltration and significantly relative to various immune cell markers. Overall, DDR1 was implicated in invasion, metastasis, and immune infiltration of gastric cancer. Inhibition of DDR1 may have the potential to alleviate the strong invasiveness and metastasis of advanced gastric cancer. Meanwhile, immune exclusion by DDR1 may also provide a new strategy for improving the efficacy of immune checkpoints inhibitors (ICIs), such as programmed cell death protein 1 (PD-1) antibody.
Collapse
Affiliation(s)
- Songna Wang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Fu
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
| | - Kudelaidi Kuerban
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiayang Liu
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Danjie Pan
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Huaning Chen
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Li Ye
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Li Ye,
| |
Collapse
|
178
|
Bai X, Li Y, Li Y, Li F, Che N, Ni C, Zhao N, Zhao X, Liu T. GRHL2 Expression Functions in Breast Cancer Aggressiveness and Could Serve as Prognostic and Diagnostic Biomarker for Breast Cancer. Clin Med Insights Oncol 2022; 16:11795549221109511. [PMID: 35898391 PMCID: PMC9310218 DOI: 10.1177/11795549221109511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/06/2022] [Indexed: 01/26/2023] Open
Abstract
Background Breast cancer (BC) is the most frequent malignancy in women worldwide and the leading cause of female cancer-associated death in the world. Grainyhead-like 2 (GRHL2) is an important gene involved in human cancer progression. However, the role of GRHL2 in BC is unknown. Methods In this study, we used in vitro experiments to verify the role of GRHL2 expression in BC progression. We used 14 databases to analyse the expression level of GRHL2 in BC and its prognostic and diagnostic value. In addition, the correlation between GRHL2 expression and immune cell infiltration and DNA methylation was also analysed. Results At the cellular level, overexpression of GRHL2 induced E-cadherin expression in BC cells with a mesenchymal phenotype and resulted in a hybrid epithelial/mesenchymal (E/M) phenotype, which is more strongly correlated with tumour aggressiveness than a pure mesenchymal phenotype. Through analysis of various databases, we found that tumour tissue had a higher expression level of GRHL2. High expression of GRHL2 was associated with worse prognosis of BC patients and indicated that GRHL2 had significant diagnostic value. Grainyhead-like 2 is also related to immune infiltration and regulated by DNA methylation. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that GRHL2-related signalling pathways in BC were related to tumour cell proliferation, invasion, and angiogenesis. Conclusions In summary, evidence indicates that GRHL2 can be used as a prognostic and diagnostic biomarker for BC.
Collapse
Affiliation(s)
- Xiaoyu Bai
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Na Che
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Tieju Liu
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China,Tieju Liu, Department of Pathology, Tianjin
Medical University, Qixiangtai Road No. 22, HePing District, Tianjin, 30070,
China.
| |
Collapse
|
179
|
Comprehensive Analysis of Prognostic Value and Immune Infiltration of IGFBP Family Members in Glioblastoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2929695. [PMID: 35832140 PMCID: PMC9273392 DOI: 10.1155/2022/2929695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The insulin-like growth factor-binding protein (IGFBP) family is involved in tumorigenesis and the development of multiple cancers. However, little is known about the prognostic value and regulatory mechanisms of IGFBPs in GBM. Oncomine, Gene Expression Profiling Interactive Analysis, PrognoScan, cBioPortal, LinkedOmics, TIMER, and TISIDB were used to analyze the differential expression, prognostic value, genetic alteration, biological function, and immune cell infiltration of IGFBPs in GBM. We observed that IGFBP1, IGFBP2, IGFBP3, IGFBP4, and IGFBP5 mRNA expression was significantly upregulated in patients with GBM, whereas IGFBP6 was downregulated; this difference in mRNA expression was statistically insignificant. Subsequent investigations showed that IGFBP4 and IGFBP6 mRNA levels were significantly associated with overall survival in patients with GBM. Functional Gene Ontology Annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes coexpressed with IGFBP4 and IGFBP6 were mainly enriched in immune-related pathways. These results were validated using the TIMER and TSMIDB databases. This study demonstrated that the IGFBP family has prognostic value in patients with GBM. IGFBP4 and IGFBP6 are two members of the IGFBP family that had the highest prognostic value; thus, they have the potential to serve as survival predictors and immunotherapeutic targets in GBM.
Collapse
|
180
|
da Silva-Oliveira RJ, Gomes INF, da Silva LS, Lengert AVH, Laus AC, Melendez ME, Munari CC, Cury FDP, Longato GB, Reis RM. Efficacy of Combined Use of Everolimus and Second-Generation Pan-EGRF Inhibitors in KRAS Mutant Non-Small Cell Lung Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23147774. [PMID: 35887120 PMCID: PMC9317664 DOI: 10.3390/ijms23147774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Background: EGFR mutations are present in approximately 15−50% of non-small cell lung cancer (NSCLC), which are predictive of anti-EGFR therapies. At variance, NSCLC patients harboring KRAS mutations are resistant to those anti-EGFR approaches. Afatinib and allitinib are second-generation pan-EGFR drugs, yet no predictive biomarkers are known in the NSCLC context. In the present study, we evaluated the efficacy of pan-EGFR inhibitors in a panel of 15 lung cancer cell lines associated with the KRAS mutations phenotype. Methods: KRAS wild-type sensitive NCI-H292 cell line was further transfected with KRAS mutations (p.G12D and p.G12S). The pan-EGFR inhibitors’ activity and biologic effect of KRAS mutations were evaluated by cytotoxicity, MAPK phospho-protein array, colony formation, migration, invasion, and adhesion. In addition, in vivo chicken chorioallantoic membrane assay was performed in KRAS mutant cell lines. The gene expression profile was evaluated by NanoString. Lastly, everolimus and pan-EGFR combinations were performed to determine the combination index. Results: The GI50 score classified two cell lines treated with afatinib and seven treated with allitinib as high-sensitive phenotypes. All KRAS mutant cell lines demonstrated a resistant profile for both therapies (GI50 < 30%). The protein array of KRAS edited cells indicated a significant increase in AKT, CREB, HSP27, JNK, and, importantly, mTOR protein levels compared with KRAS wild-type cells. The colony formation, migration, invasion, adhesion, tumor perimeter, and mesenchymal phenotype were increased in the H292 KRAS mutated cells. Gene expression analysis showed 18 dysregulated genes associated with the focal adhesion-PI3K-Akt-mTOR-signaling correlated in KRAS mutant cell lines. Moreover, mTOR overexpression in KRAS mutant H292 cells was inhibited after everolimus exposure, and sensitivity to afatinib and allitinib was restored. Conclusions: Our results indicate that allitinib was more effective than afatinib in NSCLC cell lines. KRAS mutations increased aggressive behavior through upregulation of the focal adhesion-PI3K-Akt-mTOR-signaling in NSCLC cells. Significantly, everolimus restored sensibility and improved cytotoxicity of EGFR inhibitors in the KRAS mutant NSCLC cell lines.
Collapse
Affiliation(s)
- Renato José da Silva-Oliveira
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
- Correspondence: (R.J.d.S.-O.); (R.M.R.)
| | - Izabela Natalia Faria Gomes
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Luciane Sussuchi da Silva
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - André van Helvoort Lengert
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Ana Carolina Laus
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Matias Eliseo Melendez
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Carla Carolina Munari
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Fernanda de Paula Cury
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Giovanna Barbarini Longato
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Rui Manuel Reis
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (R.J.d.S.-O.); (R.M.R.)
| |
Collapse
|
181
|
Lan T, Wang Y, Miao J, Guo H, Wang Z, Wang J, Zhang C, Yang P, Zhang Z, Dunmall LC, Wang Y. Deoxythymidylate Kinase as a Promising Marker for Predicting Prognosis and Immune Cell Infiltration of Pan-cancer. Front Mol Biosci 2022; 9:887059. [PMID: 35903153 PMCID: PMC9315941 DOI: 10.3389/fmolb.2022.887059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Deoxythymidylate kinase (DTYMK) serves as a pyrimidine metabolic rate-limiting enzyme that catalyzes deoxythymidine monophosphate (dTMP) to generate deoxythymidine diphosphate (dTDP). It remains unclear whether DTYMK expression has the potential to predict outcome and immune cell infiltration in cancers. Methods: DTYMK expression profile was analyzed using Oncomine, TIMER, GEPIA and UALCAN databases. The influence of DTYMK on immune infiltration was examined using TIMER and TISIDB databases. DTYMK interactive gene hub and co-expressing genes were obtained and analyzed by STRING and Linkedomics, respectively. The relationship between DTYMK expression and patient prognosis was validated using GEPIA, Kaplan-Meier plotter, and PrognoScan databases. The functions of DTYMK in cancer cells were also biologically validated in vitro. Results: DTYMK expression was elevated in tumor tissues compared with their control counterparts. DTYMK expression varied in different stages and discriminatorily distributed in different immune and molecular subtypes. Higher expression of DTYMK predicted worse outcome in several cancer types such as liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). High DTYMK expression was positively or negatively correlated with immune cell infiltration, including B cell, CD8+ cell, CD4+ T cell, macrophage, neutrophil and dendritic cell, depending on the type of cancers. Additionally, DTYMK co-expressing genes participated in pyrimidine metabolism as well as in T helper cell differentiation in LIHC and LUAD. In vitro, knockdown of DTYMK suppressed cell migration of liver and lung cancer cells. Conclusion: DTYMK might be taken as an useful prognostic and immunological marker in cancers and further investigation is warrented.
Collapse
Affiliation(s)
- Tianfeng Lan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yachao Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin Miao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haoran Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Surgical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yaohe Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
182
|
Tian W, Zhou J, Chen M, Qiu L, Li Y, Zhang W, Guo R, Lei N, Chang L. Bioinformatics analysis of the role of aldolase A in tumor prognosis and immunity. Sci Rep 2022; 12:11632. [PMID: 35804089 PMCID: PMC9270404 DOI: 10.1038/s41598-022-15866-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Aldolase A (ALDOA) is an enzyme that plays an important role in glycolysis and gluconeogenesis, which is closely related to tumor metabolism. In this study, the overall roles of ALDOA in pan-cancer have been investigated from several aspects using databases and online analysis tools. Using the ONCOMINE database, the expression of ALDOA in various cancers was analyzed. The prognostic role of ALDOA was explored by PrognoScan, GEPIA, and Kaplan–Meier Plotter. The immune-related role of ALDOA and its downstream substrates was decided by TIMER, cBioPortal and String. Our data indicate that ALDOA expression level in lung adenocarcinoma, liver hepatocellular carcinoma, head and neck squamous cell carcinoma is higher than that in normal tissues. Increased expression of ALDOA often indicates a poor prognosis for patients. The correlation between ALDOA and immune infiltration among different tumors is very different. We also investigate the relationship between ALDOA and its upstream/downstream proteins. Our results showed that ALDOA could be used as a biomarker for the tumor prognosis, and could be correlated with the infiltrating levels of macrophages, CD4+ T cells and CD8+ T cells.
Collapse
Affiliation(s)
- Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yike Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Weiwei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
183
|
Chen J, Wen Y, Su H, Yu X, Hong R, Chen C, Su C. Deciphering Prognostic Value of TTN and Its Correlation With Immune Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 12:877878. [PMID: 35875159 PMCID: PMC9304871 DOI: 10.3389/fonc.2022.877878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for around 40%. Despite achievements in the treatment approach, the prognosis is still dismal, with overall survival of fewer than five years. Thus, novel prognostic biomarkers are needed to predict the clinical outcomes of individual patients better. TTN has a high mutation rate in the LUAD, which encodes a large abundant protein of striated muscle. However, the value of TTN in prognosis and the immune environment are poorly understood. Methods We investigated the clinicopathological characteristics, transcriptional and protein level, prognostic value, biological function, and its relationship with immune infiltration of TTN gene in LUAD patients through bioinformatics analysis. Results TTN expression was significantly lower in LUAD than that in normal lung tissue. Lower TTN expression was associated with worse survival. Besides, TTN is highly expressed in alveolar type 2 cells which were surmised as the origin of LUAD. Conclusion Our findings indicated the potential prognostic value of TTN and its role as a biomarker for determining the immune infiltration levels in patients with LUAD.
Collapse
Affiliation(s)
- Jianing Chen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ruisheng Hong
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| |
Collapse
|
184
|
Huang R, Sun H, Lin R, Zhang J, Yin H, Xian S, Li M, Wang S, Li Z, Qiao Y, Jiang M, Yan P, Meng T, Huang Z. The Role of Tetraspaninsin Pan-Cancer. iScience 2022; 25:104777. [PMID: 35992081 PMCID: PMC9385710 DOI: 10.1016/j.isci.2022.104777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Hanlin Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Ruoyi Lin
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Siqiao Wang
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Zhenyu Li
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Yannan Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Meiyun Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Corresponding author
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| |
Collapse
|
185
|
Integrated analysis of the clinical consequence and associated gene expression of ALK in ALK-positive human cancers. Heliyon 2022; 8:e09878. [PMID: 35865984 PMCID: PMC9293659 DOI: 10.1016/j.heliyon.2022.e09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/30/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is genetically altered in several cancers, including NSCLC, melanoma, lymphoma, and other tumors. Although ALK is associated with various cancers, the relationship between ALK expression and patient prognosis in different cancers is poorly understood. Here, using multidimensional approaches, we revealed the correlation between ALK expression and the clinical outcomes of patients with LUAD, melanoma, OV, DLBC, AML, and BC. We analyzed ALK transcriptional expression, patient survival rate, genetic alteration, protein network, and gene and microRNA (miRNA) co-expression. Compared to that in normal tissues, higher ALK expression was found in LUAD, melanoma, and OV, which are associated with poor patient survival rates. In contrast, lower transcriptional expression was found to decrease the survival rate of patients with DLBC, AML, and BC. A total of 202 missense mutations, 17 truncating mutations, 7 fusions, and 3 in-frame mutations were identified. Further, 17 genes and 19 miRNAs were found to be exclusively co-expressed and echinoderm microtubule-associated protein-like 4 (EML4) was identified as the most positively correlated gene (log odds ratio >3). The gene ontology and signaling pathways of the genes co-expressed with ALK in these six cancers were also identified. Our findings offer a basis for ALK as a prognostic biomarker and therapeutic target in cancers, which will potentially contribute to precision oncology and assist clinicians in identifying suitable treatment options.
Collapse
|
186
|
do Nascimento RG, de Moraes J, de Oliveira Cerqueira D, Januário SJ. An <i>In Silico</i> Analysis Identified Members of the Pleckstrin Homology-Like Domain, Family B (PHLDB family) as Potential Prognostic and Predictive Biomarkers of Treatment Response in Breast Cancer Patients. Eur J Breast Health 2022; 18:235-247. [DOI: 10.4274/ejbh.galenos.2022.2022-3-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
|
187
|
Zhang W, Qiao XY, Li Q, Cui C, Qiao CM, Shen YQ, Zhao WJ. Comprehensive Pan-Cancer Analysis of TRPM8 in Tumor Metabolism and Immune Escape. Front Oncol 2022; 12:914060. [PMID: 35847920 PMCID: PMC9281503 DOI: 10.3389/fonc.2022.914060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Transient receptor potential melastatin 8 (TRPM8) modulates tumor biology and sensitivity to treatment. The present study aimed to determine the part it plays in tumor immunity and physiology using pan-cancer analysis. Method Data from the GTEx, CCLE, TISIDB, GSCA, cBioportal, and TCGA databases were collected using Estimate, Scanneo, and GSEA, and the associations between TRPM8 and prognosis, molecular subtypes, mutational burden, microsatellite instability, immune gene functions, and drug sensitivity were analyzed in 33 tumor types. Result TRPM8 levels were found to be elevated in most tumors, particularly in solid tumors, with variations according to clinical stage. Mutation frequency was greatest in endometrial carcinoma. High levels of TRPM8 were linked to unfavorable prognosis, immune cell infiltration, and the tumor microenvironment, as well as correlating with abnormalities in the transcription levels of genes associated with immunity and DNA repair. TRPM8 was also linked to unfavorable patient outcomes and cancer-associated signaling. Conclusions TRPM8 is strongly associated with tumor physiology and immunity. The Pan-Cancer analysis suggests the potential of TRPM8 as a treatment target or biomarker for determining the prognosis of a specific type of cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, China
| | - Xin-yu Qiao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Li
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chen-meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan-qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei-jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Wei-jiang Zhao,
| |
Collapse
|
188
|
Xiao Y, Wang Z, Zhao M, Ji W, Xiang C, Li T, Wang R, Yang K, Qian C, Tang X, Xiao H, Zou Y, Liu H. A novel defined risk signature of interferon response genes predicts the prognosis and correlates with immune infiltration in glioblastoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9481-9504. [PMID: 35942769 DOI: 10.3934/mbe.2022441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Interferons (IFNs) have been implemented as anti-tumor immunity agents in clinical trials of glioma, but only a subset of glioblastoma (GBM) patients profits from it. The predictive role of IFNs stimulated genes in GBM needs further exploration to investigate the clinical role of IFNs. METHODS This study screened 526 GBM patients from three independent cohorts. The transcriptome data with matching clinical information were analyzed using R. Immunohistochemical staining data from the Human Protein Atlas and DNA methylation data from MethSurv were used for validation in protein and methylation level respectively. RESULTS We checked the survival effect of all 491 IFNs response genes, and found 54 genes characterized with significant hazard ratio in overall survival (OS). By protein-protein interaction analysis, 10 hub genes were selected out for subsequent study. And based on the expression of these 10 genes, GBM patients could be divided into two subgroups with significant difference in OS. Furthermore, the least absolute shrinkage and selection operator cox regression model was utilized to construct a multigene risk signature, including STAT3, STAT2 and SOCS3, which could serve as an independent prognostic predictor for GBM. The risk model was validated in two independent GBM cohorts. The GBM patients with high risk scores mainly concentrated in the GBM Mesenchymal subtype. The higher risk group was enriched in hypoxia, angiogenesis, EMT, glycolysis and immune pathways, and had increased Macrophage M2 infiltration and high expression of immune checkpoint CD274 (namely PD-L1). CONCLUSIONS Our findings revealed the three-gene risk model could be an independent prognostic predictor for GBM, and they were crucial participants in immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chong Xiang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Changzhou Wujin People's Hospital, Changzhou, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ran Wang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
189
|
Zhao H, Lu G. Prognostic Implication and Immunological Role of PSMD2 in Lung Adenocarcinoma. Front Genet 2022; 13:905581. [PMID: 35754829 PMCID: PMC9214243 DOI: 10.3389/fgene.2022.905581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although previous studies reported that 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) is involved in many human cancers. However, its clinical significance and function in lung adenocarcinoma remain unclear. Here, we examined the prognostic and immunological role of PSMD2 in lung adenocarcinoma. Methods: The Cancer Genome Atlas (TCGA) was conducted to analyze PSMD2 expression and verified using UALCAN. PrognoScan and Kaplan-Meier curves were utilized to assess the effect of PSMD2 on survival. cBioPortal database was conducted to identify the mutation characteristics of PSMD2. Functional enrichment was performed to determine PSMD2-related function. Cancer Single-cell State Atlas (CancerSEA) was used to explore the cancer functional status of PSMD2 at single-cell resolution. PSMD2-related immune infiltration analysis was conducted. Tumor-Immune system interaction database (TISIDB) was performed to verify the correlation between PSMD2 expression and tumor-infiltrating lymphocytes (TILs). Results: Both mRNA and protein expression of PSMD2 were significantly elevated in lung adenocarcinoma. High expression of PSMD2 was significantly correlated with high T stage (p = 0.014), lymph node metastases (p < 0.001), and TNM stage p = 0.005). Kaplan-Meier curves indicated that high expression of PSMD2 was correlated with poor overall survival (38.2 vs. 59.7 months, p < 0.001) and disease-specific survival (59.9 months vs. not available, p = 0.004). Multivariate analysis suggested that PSMD2 was an independent biomarker for poor overall survival (HR 1.471, 95%CI, 1.024–2.114, p = 0.037). PSMD2 had a high mutation frequency of 14% in lung adenocarcinoma. The genetic mutation of PSMD2 was also correlated with poor overall survival, disease-specific survival, and progression-free survival in lung adenocarcinoma. Functional enrichment suggested PSMD2 expression was involved in the cell cycle, RNA transport, and cellular senescence. CancerSEA analysis indicated PSMD2 expression was positively correlated with cell cycle, DNA damage, and DNA repair. Immune infiltration analysis suggested that PSMD2 expression was correlated with immune cell infiltration levels and abundance of TILs. Conclusion: The upregulation of PSMD2 is significantly correlated with poor prognosis and immune infiltration levels in lung adenocarcinoma. Our findings suggest that PSMD2 is a potential biomarker for poor prognosis and immune therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
190
|
van den Driest L, Johnson CH, Rattray NJW, Rattray Z. Development of an Accessible Gene Expression Bioinformatics Pipeline to Study Driver Mutations of Colorectal Cancer. Altern Lab Anim 2022; 50:282-292. [PMID: 35765262 DOI: 10.1177/02611929221107546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is a global cause of cancer-related mortality driven by genetic and environmental factors which influence therapeutic outcomes. The emergence of next-generation sequencing technologies enables the rapid and extensive collection and curation of genetic data for each cancer type into clinical gene expression biobanks. We report the application of bioinformatics tools for investigating the expression patterns and prognostic significance of three genes that are commonly dysregulated in colon cancer: adenomatous polyposis coli (APC); B-Raf proto-oncogene (BRAF); and Kirsten rat sarcoma viral oncogene homologue (KRAS). Through the use of bioinformatics tools, we show the patterns of APC, BRAF and KRAS genetic alterations and their role in patient prognosis. Our results show mutation types, the frequency of mutations, tumour anatomical location and differential expression patterns for APC, BRAF and KRAS for colorectal tumour and matched healthy tissue. The prognostic value of APC, BRAF and KRAS genetic alterations was investigated as a function of their expression levels in CRC. In the era of precision medicine, with significant advancements in biobanking and data curation, there is significant scope to use existing clinical data sets for evaluating the role of mutational drivers in carcinogenesis. This approach offers the potential for studying combinations of less well-known genes and the discovery of novel biomarkers, or for studying the association between various effector proteins and pathways.
Collapse
Affiliation(s)
- Lisa van den Driest
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 3527University of Strathclyde, Glasgow, UK
| | | | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 3527University of Strathclyde, Glasgow, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 3527University of Strathclyde, Glasgow, UK
| |
Collapse
|
191
|
Wang YJ, Liu M, Jiang HY, Yu YW. Downregulation of LRRC19 Is Associated with Poor Prognosis in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5848823. [PMID: 35794979 PMCID: PMC9251150 DOI: 10.1155/2022/5848823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is globally one of the most often diagnosed cancers with high mortality rates. This study aimed to explore novel biomarkers for the diagnosis and prognosis of CRC. METHODS We collected 4 datasets about CRC in GEO and sought differentially expressed genes (DEGs) with GEO2R. Leucine-rich repeat-containing protein 19 (LRRC19) expression was assessed through the Oncomine and TIMER database analyses, which was further confirmed by qRT-PCR of CRC samples. We used online survival analysis tools (GEPIA, PrognoScan, and Kaplan-Meier plotter) to examine the prognostic value of LRRC19 in CRC and other malignancies. GO and KEGG enrichment analyses were employed to explore the biological functions of LRRC19. Finally, we conducted network prediction by STRING and further validation on the GEPIA to discover other molecules that might interact with LRRC19. RESULTS A total of 21 upregulated and 46 downregulated DEGs were identified from the 4 datasets. The TIMER and Oncomine online analyses showed lower mRNA of LRRC19 in CRC tissues compared with adjacent normal tissues, which was validated by qRT-PCR in CRC patient samples. The survival analysis through the GEPIA and PrognoScan websites revealed that low LRRC19 expression was significantly correlated with poor prognosis in CRC patients. The Kaplan-Meier plotter survival analysis indicated that low LRRC19 expression was significantly associated with the disease progression of patients with ovarian cancer, gastric cancer, breast cancer, and lung cancer. The enrichment analysis suggested that low expression of LRRC19 could be involved in the retinol metabolism and the zymogen granule membrane. Through STRING and GEPIA, it was found that LRRC19 is clearly associated with ZCCHC10, MOB3B, IMMP2L, and TRMT11. CONCLUSION LRRC19 mRNA was prominently decreased in human CRC tissues and was significantly associated with shorter survival in CRC patients. LRRC19 might serve as a possible target for early diagnosis and prognosis assessment in CRC.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Pathology, Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, Zhejiang, China
| | - Man Liu
- Department of Clinical Laboratory, Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, Zhejiang, China
| | - Hui-Ying Jiang
- Intensive Care Unit, Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, Zhejiang, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
192
|
Saed L, Jeleń A, Mirowski M, Sałagacka-Kubiak A. Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis. Int J Mol Sci 2022; 23:ijms23136933. [PMID: 35805937 PMCID: PMC9266824 DOI: 10.3390/ijms23136933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
High-mobility group protein 1 (HMGA1) participates in the processes of DNA transcription, replication, recombination, and repair. The HMGA1 gene is expressed abundantly during embryogenesis and is reactivated during carcinogenesis. HMGA1 gene expression has been associated with a high degree of malignancy, metastatic tendency, and poor survival in breast, colon, ovary, and pancreatic cancers. However, its prognostic significance in lung cancer remains unclear. Using publicly available data, HMGA1 was shown to be overexpressed in both small and non-small lung tumors, with higher expression compared to both the adjacent non-malignant lung tissues and non-tumor lung tissues of healthy individuals. Elevated HMGA1 expression could result from lowered HMGA1 methylation and was connected with some clinicopathological features like sex, age, and stage of the disease. The high HMGA1 expression level was connected with shorter overall and first progression survival time among lung adenocarcinoma patients, but not lung squamous cell carcinoma patients. HMGA1 could interact with proteins involved in cellular senescence and cell cycle control (TP53, RB1, RPS6KB1, and CDK1), transcription regulation (EP400 and HMGA2), chromatin assembly and remodeling (LMNB1), and cholesterol and isoprene biosynthesis (HMGCR and INSIG1). Taken together, HMGA1 overexpression could be an essential element of lung carcinogenesis and a prognostic feature in lung cancer.
Collapse
|
193
|
Yi L, Lei Y, Yuan F, Tian C, Chai J, Gu M. NTN4 as a prognostic marker and a hallmark for immune infiltration in breast cancer. Sci Rep 2022; 12:10567. [PMID: 35732855 PMCID: PMC9217917 DOI: 10.1038/s41598-022-14575-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Netrin-4 (NTN4), a member of neurite guidance factor family, can promote neurite growth and elongation. This study aims to investigate if NTN4 correlates with prognosis and immune infiltration in breast cancer. The prognostic landscape of NTN4 and its relationship with immune infiltration in breast cancer were deciphered with public databases and immunohistochemistry (IHC) in tissue samples. The expression profiling and prognostic value of NTN4 were explored using UALCAN, TIMER, Kaplan-Meier Plotter and Prognoscan databases. Based on TIMER, relationships of NTN4 expression with tumor immune invasion and immune cell surface markers were evaluated. Transcription and survival analyses of NTN4 in breast cancer were investigated with cBioPortal database. The STRING database was explored to identify molecular functions and signaling pathways downstream of NTN4. NTN4 expression was significantly lower in invasive breast carcinoma compared with adjacent non-malignant tissues. Promoter methylation of NTN4 exhibited different patterns in breast cancer. Low expression of NTN4 was associated with poorer survival. NTN4 was significantly positively related to infiltration of CD8+ T cells, macrophages and neutrophils, whereas significantly negatively related to B cells and tumor purity. Association patterns varied with different subtypes. Various associations between NTN4 levels and immune cell surface markers were revealed. Different subtypes of breast cancer carried different genetic alterations. Mechanistically, NTN4 was involved in mediating multiple biological processes including morphogenesis and migration.
Collapse
Affiliation(s)
- Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yongqiang Lei
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Conghui Tian
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Jian Chai
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China.
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China.
| |
Collapse
|
194
|
Nie Z, Pu T, Han Z, Wang C, Pan C, Li P, Ma X, Yao Y, Zhao Y, Wang C, Jiang X, Ding J. Extra Spindle Pole Bodies-Like 1 Serves as a Prognostic Biomarker and Promotes Lung Adenocarcinoma Metastasis. Front Oncol 2022; 12:930647. [PMID: 35814478 PMCID: PMC9257280 DOI: 10.3389/fonc.2022.930647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Extra spindle pole bodies-like 1 (ESPL1), a cysteine endopeptidase, plays a vital role in chromosome inheritance. However, the association of ESPL1 with prognosis and immune infiltration in lung adenocarcinoma (LUAD) has not yet been explored. Here, we analyzed the expression level, prognostic values, diagnostic value, and immune infiltration level in LUAD using various databases. Immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays were used to detect the expression of ESPL1 in LUAD tissues and cell lines. In this study, we found that ESPL1 was upregulated in LUAD and a higher expression of ESPL1 was correlated with unfavorable prognosis in LUAD. Meanwhile, Cox hazard regression analysis results suggested that ESPL1 may be an independent prognostic factor for LUAD. Moreover, we demonstrated that ESPL1 expression was significantly correlated with immune infiltration of Th2 and dendritic cells in LUAD. We also confirmed that DNA copy number amplification and DNA hypo-methylation were positively correlated with ESPL1 expression in LUAD. Additionally, DNA copy number amplification was significantly associated with adverse clinical outcomes in LUAD. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) confirmed that ESPL1 was mainly involved in the DNA replication and glycolysis signaling pathway. Finally, we revealed that ESPL1 was highly expressed in LUAD tissues and cell lines. Knockdown of ESPL1 significantly inhibited cell migration and the invasion abilities of LUAD. Our study comprehensively confirmed that ESPL1 expression may serve as a novel prognostic biomarker for both the clinical outcome and immune cell infiltration in LUAD.
Collapse
Affiliation(s)
- Zhi Nie
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Neurology, Yunnan Province Clinical Research Center for Neurological Diseases, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Tong Pu
- The College of Acupuncture and Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Zhaojie Han
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Jianyang Ding, ; Xiulin Jiang, ; Chunyan Wang,
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- *Correspondence: Jianyang Ding, ; Xiulin Jiang, ; Chunyan Wang,
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, The People’s Hospital of Lishui, Lishui, China
- *Correspondence: Jianyang Ding, ; Xiulin Jiang, ; Chunyan Wang,
| |
Collapse
|
195
|
Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:85-164. [PMID: 35871897 DOI: 10.1016/bs.apcsb.2022.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past decade, conventional lab work strategies have gradually shifted from being limited to a laboratory setting towards a bioinformatics era to help manage and process the vast amounts of data generated by omics technologies. The present work outlines the latest contributions of bioinformatics in analyzing microarray data and their application to cancer. We dissect different microarray platforms and their use in gene expression in cancer models. We highlight how computational advances empowered the microarray technology in gene expression analysis. The study on protein-protein interaction databases classified into primary, derived, meta-database, and prediction databases describes the strategies to curate and predict novel interaction networks in silico. In addition, we summarize the areas of bioinformatics where neural graph networks are currently being used, such as protein functions, protein interaction prediction, and in silico drug discovery and development. We also discuss the role of deep learning as a potential tool in the prognosis, diagnosis, and treatment of cancer. Integrating these resources efficiently, practically, and ethically is likely to be the most challenging task for the healthcare industry over the next decade; however, we believe that it is achievable in the long term.
Collapse
Affiliation(s)
- R Hephzibah Cathryn
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
196
|
Shi YX, Zhang WD, Dai PH, Deng J, Tan LH. Comprehensive analysis of KCTD family genes associated with hypoxic microenvironment and immune infiltration in lung adenocarcinoma. Sci Rep 2022; 12:9938. [PMID: 35705627 PMCID: PMC9200823 DOI: 10.1038/s41598-022-14250-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
To obtain novel insights into the tumor biology and therapeutic targets of LUAD, we performed a comprehensive analysis of the KCTD family genes. The expression patterns and clinical significance of the KCTD family were identified through multiple bioinformatics mining. Moreover, the molecular functions and potential mechanisms of differentially expressed KCTDs were evaluated using TIMER 2.0, cBioPortal, GeneMANIA, LinkedOmics and GSEA. The results indicated that the mRNA and protein expression levels of KCTD9, KCTD10, KCTD12, KCTD15 and KCTD16 were significantly decreased in LUAD, while those of KCTD5 were significantly increased. High KCTD5 expression was significantly associated with advanced tumor stage, lymph node metastasis, TP53 mutation and poor prognosis. In addition, KCTD5 was positively correlated with CD8 + T cell, neutrophil, macrophage and dendritic cell infiltration. Additionally, KCTDs demonstrate promising prospects in the diagnosis of LUAD. Importantly, high KCTD5 expression was enriched in signaling pathways associated with the malignant progression of tumors, including the inflammatory response, the IL6/JAK/STAT3 signaling pathway, EMT and hypoxia. Further association analysis showed that KCTD5 was positively correlated with hypoxia-related genes such as HIF1. Overall, KCTDs can be used as molecular targets for the treatment of LUAD, as well as effective molecular biomarkers for diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Wei-Dong Zhang
- Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Peng-Hui Dai
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Li-Hong Tan
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
197
|
Identifying the Potential Roles of PBX4 in Human Cancers Based on Integrative Analysis. Biomolecules 2022; 12:biom12060822. [PMID: 35740947 PMCID: PMC9221482 DOI: 10.3390/biom12060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
PBX4 belongs to the pre-B-cell leukemia homeobox (PBX) transcription factors family and acts as a transcriptional cofactor of HOX proteins participating in several pathophysiological processes. Recent studies have revealed that the dysregulation of PBX4 is closely related to multiple diseases, especially cancers. However, the research on PBX4’s potential roles in 33 cancers from the Cancer Genome Atlas (TCGA) is still insufficient. Therefore, we performed a comprehensive pan-cancer analysis to explore the roles of PBX4with multiple public databases. Our results showed that PBX4 was differentially expressed in 17 types of human cancer and significantly correlated to the pathological stage, tumor grade, and immune and molecular subtypes. We used the Kaplan–Meier plotter and PrognoScan databases to find the significant associations between PBX4 expression and prognostic values of multiple cancers. It was also found that PBX4 expression was statistically related to mutation status, DNA methylation, immune infiltration, drug sensitivity, and immune checkpoint blockade (ICB) therapy. Additionally, we found that PBX4 was involved in different functional states of multiple cancers from the single-cell resolution perspective. Enrichment analysis results showed that PBX4-related genes were enriched in the cell cycle process, MAPK cascade, ncRNA metabolic process, positive regulation of GTPase activity, and regulation of lipase activity and mainly participated in the pathways of cholesterol metabolism, base excision repair, herpes simplex virus 1 infection, transcriptional misregulation in cancer, and Epstein–Barr virus infection. Altogether, our integrative analysis could help in better understanding the potential roles of PBX4 in different human cancers.
Collapse
|
198
|
Chen X, Guo J, Ren W, Zhou F, Niu X, Jiang X. LncRNA-AL035458.2/hsa-miR-181a-5p Axis-Mediated High Expression of NCAPG2 Correlates With Tumor Immune Infiltration and Non-Small Cell Lung Cancer Progression. Front Oncol 2022; 12:910437. [PMID: 35664767 PMCID: PMC9160743 DOI: 10.3389/fonc.2022.910437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. NCAPG2 (non-SMC condensin II complex subunit G2) has been shown to be upregulated in various human cancers. Nevertheless, the underlying biological function and potential mechanisms of NCAPG2 driving the progression of LUAD remain unclear. In this study, we investigated the role of NCAPG2 in LUAD and found that the expression of NCAPG2 in LUAD tissues was significantly higher than that of NCAPG2 expression in adjacent normal tissues. Kaplan–Meier survival analysis showed that patients with higher NCAPG2 expression correlated with unfavorable clinical outcomes. Receiver operating characteristic (ROC) curve analysis showed that the AUC value of NCAPG2 was 0.914. Correlation analysis showed that NCAPG2 expression was associated with immune infiltration in LUAD. Finally, we found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of NCAPG2 inhibited cell proliferation, cell migration, and cell invasion of LUAD in vitro. More importantly, we established the AL035458.2/hsa-miR-181a-5p axis as the most likely upstream ncRNA-related pathway of NCAPG2 in LUAD. In conclusion, our data demonstrated that ncRNA-mediated high expression of NCAPG2 was correlated with progression and immune infiltration, and could serve as a prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Wenjun Ren
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
199
|
Wang XF, Lei W, Liu CM, Yang J, Zhu YH. BOLA3 is a prognostic-related biomarker and correlated with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol 2022; 107:108652. [DOI: 10.1016/j.intimp.2022.108652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 12/20/2022]
|
200
|
Sain A, Khamrai D, Kandasamy T, Naskar D. Targeting protein tyrosine phosphatase 1B in obesity-associated colon cancer: Possible role of sweet potato (Ipomoea batatas). Proteins 2022; 90:1346-1362. [PMID: 35119127 DOI: 10.1002/prot.26316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has emerged as one of the links between obesity and colon cancer (CC). Anti-obesity and anti-CC attributes of sweet potato (Ipomoea batatas) reported sparsely. Here, we aimed to study the potential of PTP1B as a target in CC, particularly in obese population. Expression and genomic alteration frequency of PTPN1 (PTP1B) were checked in CC. Interacting partners of PTP1B through STRING and hub genes through Cytoscape (MCODE) were identified. Hub genes were subjected to functional enrichment analyses (via Metascape), differential gene expression, copy number variation, and single nucleotide variation analyses (GSCA database). Cancer-related pathways and associated immune infiltrates of the hub genes were checked too. Eleven sweet potato-derived compounds selected through drug likeness (DL) and toxicity filters were explored via molecular docking (AutoDock Vina) to reveal the interactions with PTP1B. Genomic alteration frequency of the PTPN1 was highest in CC compared to all the other TCGA cancers, and a high expression (RNA and protein) is also observed in CC that correlated well to a poor overall survival (OS). Furthermore, PTP1B and related proteins were enriched in different biological processes and signaling pathways related to carcinogenesis including epithelial-mesenchymal transition. Overall, PTP1B identified as a potential target in obesity-linked CC and sweet potato might exert its protective action by targeting the PTP1B. Sweet potato compounds (e.g., pelargonidin and luteolin) interacted with the catalytic P loop and the WPD loop of the PTP1B. Furthermore, MD simulation study ascertained that luteolin has the highest affinity against the PTP1B, whereas pelargonidin and quercetin showed good binding affinity too, thus can be explored further.
Collapse
Affiliation(s)
- Arindam Sain
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Dipshikha Khamrai
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Debdut Naskar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|