151
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
152
|
Kuo CW, Chen DH, Tsai MT, Lin CC, Cheng HW, Tsay YG, Wang HT. Pyruvate kinase M2 modification by a lipid peroxidation byproduct acrolein contributes to kidney fibrosis. Front Med (Lausanne) 2023; 10:1151359. [PMID: 37007793 PMCID: PMC10050374 DOI: 10.3389/fmed.2023.1151359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Renal fibrosis is a hallmark of diabetic nephropathy (DN) and is characterized by an epithelial-to-mesenchymal transition (EMT) program and aberrant glycolysis. The underlying mechanisms of renal fibrosis are still poorly understood, and existing treatments are only marginally effective. Therefore, it is crucial to comprehend the pathophysiological mechanisms behind the development of renal fibrosis and to generate novel therapeutic approaches. Acrolein, an α-,β-unsaturated aldehyde, is endogenously produced during lipid peroxidation. Acrolein shows high reactivity with proteins to form acrolein-protein conjugates (Acr-PCs), resulting in alterations in protein function. In previous research, we found elevated levels of Acr-PCs along with kidney injuries in high-fat diet-streptozotocin (HFD-STZ)-induced DN mice. This study used a proteomic approach with an anti-Acr-PC antibody followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis to identify several acrolein-modified protein targets. Among these protein targets, pyruvate kinase M2 (PKM2) was found to be modified by acrolein at Cys358, leading to the inactivation of PKM2 contributing to the pathogenesis of renal fibrosis through HIF1α accumulation, aberrant glycolysis, and upregulation of EMT in HFD-STZ-induced DN mice. Finally, PKM2 activity and renal fibrosis in DN mice can be reduced by acrolein scavengers such as hydralazine and carnosine. These results imply that acrolein-modified PKM2 contributes to renal fibrosis in the pathogenesis of DN.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dong-Hao Chen
- Molecular Medicine Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctor Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Hsiang-Tsui Wang,
| |
Collapse
|
153
|
Fang Y, Zhao T, Ni H, Li Y, Zhu Y, Gao R, Zhang L, Jia Z, Chen G. USP11 exacerbates neuronal apoptosis after traumatic brain injury via PKM2-mediated PI3K/AKT signaling pathway. Brain Res 2023; 1807:148321. [PMID: 36898475 DOI: 10.1016/j.brainres.2023.148321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Ubiquitin-specific protease 11 (USP11) is a ubiquitin-specific protease involved in the regulation of protein ubiquitination. However, its role in traumatic brain injury (TBI) remains unclear. This experiment suggests that USP11 is possibly involved in regulating neuronal apoptosis in TBI. Therefore, we use precision impactor device to established a TBI rat model and assayed the role of USP11 by overexpressing and inhibiting USP11. We found that Usp11 expression increased after TBI. In addition, we hypothesized that pyruvate kinase M2 (PKM2) is a potential USP11 target and experimentally confirmed that upregulation of Usp11 increased Pkm2 expression. Furthermore, elevated USP11 levels exacerbate blood-brain barrier damage, brain edema, and neurobehavioral impairment and cause apoptosis induction through Pkm2 upregulation. Moreover, we hypothesize that PKM2-induced neuronal apoptosis is mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Our findings were confirmed by changes in Pi3k and Akt expression with Usp11 upregulation and downregulation and PKM2 inhibition. In conclusion, our findings show that USP11 exacerbates injury in TBI through PKM2 and causes neurological impairment and neuronal apoptosis through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yiling Fang
- Department of General Practice, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Tianheng Zhao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yajun Li
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yongkui Zhu
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| | - Zhenyu Jia
- Department of General Practice, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
154
|
Wu H, Jiao Y, Zhou C, Guo X, Wu Z, Lv Q. miR-140-3p/usp36 axis mediates ubiquitination to regulate PKM2 and suppressed the malignant biological behavior of breast cancer through Warburg effect. Cell Cycle 2023; 22:680-692. [PMID: 36305548 PMCID: PMC9980702 DOI: 10.1080/15384101.2022.2139554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022] Open
Abstract
Breast cancer is a phenomenon in which breast epithelial cells proliferate out of control under the action of various carcinogenic factors. However, the role of USP36 in breast cancer is unknown. We analyzed the expression of USP36 in breast cancer and its association with poor prognosis in breast cancer patients. The effect of USP36 on malignant biological behavior of breast cancer was verified by cell functional experiments. The upstream regulatory mechanism of USP36 was analyzed by Western blot and quantitative RT-qPCR. The influence of USP36 on the Warburg effect of breast cancer was analyzed by detecting the metabolism of cellular energy substances. We found that USP36 is highly expressed in breast tumor tissues and breast cancer cell lines. High expression of USP36 predicts poor prognosis in patients with breast cancer. Effectively reducing the expression of USP36 can significantly inhibit the proliferation, invasion and migration of breast cancer cells, and promote the apoptosis of breast cancer cells. Meanwhile, inhibiting the expression of USP36 can significantly inhibit the production of ATP, lactate, pyruvate and glucose uptake in breast cancer cells. miR-140-3p is an upstream regulator of USP36, which can partially reverse the regulatory effect of USP36 on breast cancer cells. Importantly, USP36 regulates the expression of PKM2 through ubiquitination, which plays a role in regulating the Warburg effect. We confirmed that miR-140-3p regulates the expression of USP36, which mediates ubiquitination and regulates the expression of PKM2, and regulates the malignant biological behavior of breast cancer through the energy metabolism process.
Collapse
Affiliation(s)
- Hao Wu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yile Jiao
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Guo
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
155
|
Borbor M, Yin D, Brockmeier U, Wang C, Doeckel M, Pillath-Eilers M, Kaltwasser B, Hermann DM, Dzyubenko E. Neurotoxicity of ischemic astrocytes involves STAT3-mediated metabolic switching and depends on glycogen usage. Glia 2023; 71:1553-1569. [PMID: 36810803 DOI: 10.1002/glia.24357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Astrocytic responses are critical for the maintenance of neuronal networks in health and disease. In stroke, reactive astrocytes undergo functional changes potentially contributing to secondary neurodegeneration, but the mechanisms of astrocyte-mediated neurotoxicity remain elusive. Here, we investigated metabolic reprogramming in astrocytes following ischemia-reperfusion in vitro, explored their role in synaptic degeneration, and verified the key findings in a mouse model of stroke. Using indirect cocultures of primary mouse astrocytes and neurons, we demonstrate that transcription factor STAT3 controls metabolic switching in ischemic astrocytes promoting lactate-directed glycolysis and hindering mitochondrial function. Upregulation of astrocytic STAT3 signaling associated with nuclear translocation of pyruvate kinase isoform M2 and hypoxia response element activation. Reprogrammed thereby, the ischemic astrocytes induced mitochondrial respiration failure in neurons and triggered glutamatergic synapse loss, which was prevented by inhibiting astrocytic STAT3 signaling with Stattic. The rescuing effect of Stattic relied on the ability of astrocytes to utilize glycogen bodies as an alternative metabolic source supporting mitochondrial function. After focal cerebral ischemia in mice, astrocytic STAT3 activation was associated with secondary synaptic degeneration in the perilesional cortex. Inflammatory preconditioning with LPS increased astrocytic glycogen content, reduced synaptic degeneration, and promoted neuroprotection post stroke. Our data indicate the central role of STAT3 signaling and glycogen usage in reactive astrogliosis and suggest novel targets for restorative stroke therapy.
Collapse
Affiliation(s)
- Mina Borbor
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Ulf Brockmeier
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Marius Doeckel
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Matthias Pillath-Eilers
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| |
Collapse
|
156
|
Li X, Ma TK, Wang M, Zhang XD, Liu TY, Liu Y, Huang ZH, Zhu YH, Zhang S, Yin L, Xu YY, Ding H, Liu C, Shi H, Fan QL. YY1-induced upregulation of LncRNA-ARAP1-AS2 and ARAP1 promotes diabetic kidney fibrosis via aberrant glycolysis associated with EGFR/PKM2/HIF-1α pathway. Front Pharmacol 2023; 14:1069348. [PMID: 36874012 PMCID: PMC9974832 DOI: 10.3389/fphar.2023.1069348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objectives: Dimeric pyruvate kinase (PK) M2 (PKM2) plays an important role in promoting the accumulation of hypoxia-inducible factor (HIF)-1α, mediating aberrant glycolysis and inducing fibrosis in diabetic kidney disease (DKD). The aim of this work was to dissect a novel regulatory mechanism of Yin and Yang 1 (YY1) on lncRNA-ARAP1-AS2/ARAP1 to regulate EGFR/PKM2/HIF-1α pathway and glycolysis in DKD. Materials and methods: We used adeno-associated virus (AAV)-ARAP1 shRNA to knocked down ARAP1 in diabetic mice and overexpressed or knocked down YY1, ARAP1-AS2 and ARAP1 expression in human glomerular mesangial cells. Gene levels were assessed by Western blotting, RT-qPCR, immunofluorescence staining and immunohistochemistry. Molecular interactions were determined by RNA pull-down, co-immunoprecipitation, ubiquitination assay and dual-luciferase reporter analysis. Results: YY1, ARAP1-AS2, ARAP1, HIF-1α, glycolysis and fibrosis genes expressions were upregulated and ARAP1 knockdown could inhibit dimeric PKM2 expression and partly restore tetrameric PKM2 formation, while downregulate HIF-1α accumulation and aberrant glycolysis and fibrosis in in-vivo and in-vitro DKD models. ARAP1 knockdown attenuates renal injury and renal dysfunction in diabetic mice. ARAP1 maintains EGFR overactivation in-vivo and in-vitro DKD models. Mechanistically, YY1 transcriptionally upregulates ARAP1-AS2 and indirectly regulates ARAP1 and subsequently promotes EGFR activation, HIF-1α accumulation and aberrant glycolysis and fibrosis. Conclusion: Our results first highlight the role of the novel regulatory mechanism of YY1 on ARAP1-AS2 and ARAP1 in promoting aberrant glycolysis and fibrosis by EGFR/PKM2/HIF-1α pathway in DKD and provide potential therapeutic strategies for DKD treatments.
Collapse
Affiliation(s)
- Xin Li
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Tian-Kui Ma
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Xiao-Dan Zhang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Tian-Yan Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Yue Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Zhao-Hui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Yong-Hong Zhu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Li Yin
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Yan Xu
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Cong Liu
- Department of General Surgery, First Hospital of Harbin Medical University, Harbin, China
| | - Hang Shi
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
157
|
Li W, Chen W, Peng H, Xiao Z, Liu J, Zeng Y, Huang T, Song Q, Wang X, Xiao Y. Shikonin improves pulmonary vascular remodeling in monocrotaline‑induced pulmonary arterial hypertension via regulation of PKM2. Mol Med Rep 2023; 27:60. [PMID: 36734266 PMCID: PMC9936259 DOI: 10.3892/mmr.2023.12947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH), a fatal disease with an insidious onset and rapid progression, shows characteristics such as increases in pulmonary circulatory resistance and pulmonary arterial pressure, and progressive right heart failure. Shikonin can reduce right ventricular systolic pressure in chronically hypoxic mice. However, the mechanisms underlying the protective effect of shikonin against PAH pathogenesis have only been sporadically identified. The present study evaluated whether inhibiting the expression of pyruvate kinase M2 (PKM2) contributed to the improvement of pulmonary vascular remodeling in PAH rats induced by monocrotaline (MCT) treatment. Hemodynamic parameters were assessed using echocardiography and right ventricular catheterization. Right ventricular hypertrophy index analysis and hematoxylin and eosin staining were used to evaluate the degree of pulmonary vascular and right heart remodeling. Moreover, PKM2, p‑PKM2, ERK, p‑ERK, glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA) protein expression levels were semi‑quantified using western blotting. The expression and distribution of PKM2 were assessed using immunofluorescence microscopy. The present study demonstrated that MCT treatment caused pulmonary arterial hypertension and pulmonary vascular remodeling in experimental rats. Shikonin improved hemodynamics and pulmonary vascular remodeling in MCT‑induced PAH rats, decreased aerobic glycolysis and downregulated PKM2, p‑PKM2, p‑ERK, GLUT 1 and LDHA protein expression levels. Shikonin improved experimental pulmonary arterial hypertension hemodynamics and pulmonary vascular remodeling at least partly through the inhibition of PKM2 and the resultant suppression of aerobic glycolysis. These results provide a novel understanding of possible new treatment targets for PAH.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Ultrasound, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Wenjuan Chen
- Department of Ultrasound, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Hongyan Peng
- Hunan Children's Research Institute, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Zhenghui Xiao
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Jinqiao Liu
- Department of Ultrasound, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Yunhong Zeng
- Department of Cardiology, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Ting Huang
- Department of Ultrasound, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Qingqing Song
- Department of Cardiology, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Xun Wang
- Department of Cardiology, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China,Correspondence to: Dr Yunbin Xiao, Department of Cardiology, Hunan Children's Hospital, 86 Zi Yuan Road, Yuhua, Changsha, Hunan 410007, P.R. China, E-mail:
| |
Collapse
|
158
|
Zhang Q, Zhang J, Yao A, Tian X, Han Z, Yuan Y, Tao K, Yang X. OTUB2 promotes the progression of endometrial cancer by regulating the PKM2-mediated PI3K/AKT signaling pathway. Cell Biol Int 2023; 47:428-438. [PMID: 36316812 DOI: 10.1002/cbin.11950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Endometrial carcinoma (EC) morbidity and mortality have been increasing in recent years. Otubain 2 (OTUB2) was shown to be upregulated in EC patients, so the aim of this study was to explore the role of OTUB2 in EC. Cell Counting Kit-8 (CCK-8), colony formation, enzyme-linked immunosorbent assay, the wound healing assay, and Transwell invasion assays were used to investigate the specific role of OTUB2 in EC tumorigenesis. Real-time polymerase chain reaction and western blot analysis were used to detect the expression of OTUB2 in EC tissues and cells. OTUB2 is upregulated in EC patients and cell lines and is associated with a poor prognosis. The overexpression of OTUB2 promoted glycolysis and induced the proliferation, migration, and invasion of endometrial cancer cells. The silencing of OTUB2 had the opposite effect. In addition, the silencing of OTUB2 significantly suppressed the expression levels of PKM2. Importantly, inhibition of the PKM2/PI3K/AKT signaling pathway significantly reversed the promoting effect of OTUB2 overexpression on EC. OTUB2 regulated the proliferation and invasion of EC cells by regulating the PKM2/PI3K/AKT signaling pathway. OTUB2 may serve as a potential prognostic and therapeutic target in EC.
Collapse
Affiliation(s)
- Qian Zhang
- Department of The First of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Jing Zhang
- Department of The Fourth of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Anmei Yao
- Department of The Second of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Xiaofei Tian
- Department of The Second of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Zhihong Han
- Department of The Second of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Yuan Yuan
- Department of The Second of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Kai Tao
- Department of The Second of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| | - Xuemei Yang
- Department of The Second of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
159
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
160
|
Park YS, Han JH, Park JH, Choi JS, Kim SH, Kim HS. Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int J Mol Sci 2023; 24:ijms24032683. [PMID: 36769016 PMCID: PMC9916947 DOI: 10.3390/ijms24032683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes. DN progresses to end-stage renal disease, which has a high mortality rate. Current research is focused on identifying non-invasive potential biomarkers in the early stage of DN. We previously indicated that pyruvate kinase M2 (PKM2) is excreted in the urine of rats after cisplatin-induced acute kidney injury (AKI). However, it has not been reported whether PKM2 can be used as a biomarker to diagnose DN. Therefore, we try to compare whether the protein PKM2 can be detected in the urine samples from diabetic patients as shown in the results of DN models. In this study, high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats were used for DN phenotyping. After 19 weeks of receiving a HFD, the DN model's blood glucose, blood urea nitrogen, and serum creatinine levels were significantly increased; severe tubular and glomerular damages were also noted. The following protein-based biomarkers were increased in the urine of these models: kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and PKM2. PKM2 had the earliest detection rate. In the urine samples of patients, PKM2 protein was highly detected in the urine of diabetic patients but was not excreted in the urine of normal subjects. Therefore, PKM2 was selected as the new biomarker for the early diagnosis of DN. Our results reflect current knowledge on the role of PKM2 in DN.
Collapse
Affiliation(s)
- Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hyeon Kim
- St. Mark’s School, 25 Marlboro Rd, Southborough, MA 01772, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: ; Tel.:+82-31-290-7789
| |
Collapse
|
161
|
Epigenetics and Metabolism Reprogramming Interplay into Glioblastoma: Novel Insights on Immunosuppressive Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020220. [PMID: 36829778 PMCID: PMC9952003 DOI: 10.3390/antiox12020220] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The central nervous system represents a complex environment in which glioblastoma adapts skillfully, unleashing a series of mechanisms suitable for its efficient development and diffusion. In particular, changes in gene expression and mutational events that fall within the domain of epigenetics interact complexly with metabolic reprogramming and stress responses enacted in the tumor microenvironment, which in turn fuel genomic instability by providing substrates for DNA modifications. The aim of this review is to analyze this complex interaction that consolidates several conditions that confer a state of immunosuppression and immunoevasion, making glioblastoma capable of escaping attack and elimination by immune cells and therefore invincible against current therapies. The progressive knowledge of the cellular mechanisms that underlie the resistance of the glioblastoma represents, in fact, the only weapon to unmask its weak points to be exploited to plan successful therapeutic strategies.
Collapse
|
162
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
163
|
Kapoor S, Chatterjee DR, Chowdhury MG, Das R, Shard A. Roadmap to Pyruvate Kinase M2 Modulation - A Computational Chronicle. Curr Drug Targets 2023; 24:464-483. [PMID: 36998144 DOI: 10.2174/1389450124666230330103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 04/01/2023]
Abstract
Pyruvate kinase M2 (PKM2) has surfaced as a potential target for anti-cancer therapy. PKM2 is known to be overexpressed in the tumor cells and is a critical metabolic conduit in supplying the augmented bioenergetic demands of the recalcitrant cancer cells. The presence of PKM2 in structurally diverse tetrameric as well as dimeric forms has opened new avenues to design novel modulators. It is also a truism to state that drug discovery has advanced significantly from various computational techniques like molecular docking, virtual screening, molecular dynamics, and pharmacophore mapping. The present review focuses on the role of computational tools in exploring novel modulators of PKM2. The structural features of various isoforms of PKM2 have been discussed along with reported modulators. An extensive analysis of the structure-based and ligand- based in silico methods aimed at PKM2 modulation has been conducted with an in-depth review of the literature. The role of advanced tools like QSAR and quantum mechanics has been established with a brief discussion of future perspectives.
Collapse
Affiliation(s)
- Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
164
|
Shi Y, Li Z, Wang B, Shi X, Ye H, Delafield DG, Lv L, Ye Z, Chen Z, Ma F, Li L. Enabling Global Analysis of Protein Citrullination via Biotin Thiol Tag-Assisted Mass Spectrometry. Anal Chem 2022; 94:17895-17903. [PMID: 36512406 DOI: 10.1021/acs.analchem.2c03844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Citrullination is a key post-translational modification (PTM) that affects protein structures and functions. Although it has been linked to various biological processes and disease pathogenesis, the underlying mechanism remains poorly understood due to a lack of effective tools to enrich, detect, and localize this PTM. Herein, we report the design and development of a biotin thiol tag that enables derivatization, enrichment, and confident identification of citrullination via mass spectrometry. We perform global mapping of the citrullination proteome of mouse tissues. In total, we identify 691 citrullination sites from 432 proteins which represents the largest data set to date. We discover novel distribution and functions of this PTM. This study depicts a landscape of protein citrullination and lays the foundation for further deciphering their physiological and pathological roles.
Collapse
Affiliation(s)
- Yatao Shi
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin─Madison, Madison, Wisconsin 53792, United States
| | - Hui Ye
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Langlang Lv
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengqing Ye
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
165
|
Yang Y, Qin H, Ding M, Ji C, Chen W, Diao W, Yin H, Chen M, Gan W, Guo H. Small ankyrin 1 (sANK1) promotes docetaxel resistance in castration-resistant prostate cancer cells by enhancing oxidative phosphorylation. FEBS Open Bio 2022; 13:257-269. [PMID: 36508323 PMCID: PMC9900087 DOI: 10.1002/2211-5463.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Docetaxel (DTX) plays an important role in treating advanced prostate cancer (PCa). However, nearly all patients receiving DTX therapy ultimately progress to DTX resistance. How to address DTX resistance in PCa remains a key challenge for all urologists. Small ankyrin 1 (sAnk1) is an integral membrane protein in the endoplasmic reticulum. In the present study, we identified that sAnk1 is upregulated in PCa tissues and is positively associated with DTX therapy resistance in PCa. Further investigation demonstrated that overexpression of sAnk1 can significantly increase the DTX-resistant ability of PCa cells in vitro and in vivo. In addition, overexpression of sAnk1 could enhance oxidative phosphorylation (OXPHOS) levels in PCa cells, which was consistent with the higher OXPHOS levels observed in DTX-resistant PCa cells as compared to DTX-sensitive PCa cells. sAnk1 was also found to interact with polypyrimidine-tract-binding protein (PTBP1), an alternative splicing factor, and suppressed PTBP1-mediated alternative splicing of the pyruvate kinase gene (PKM). Thus, overexpression of sAnk1 decreased the ratio of PKM2/PKM1, enhanced the OXPHOS level, and ultimately promoted the resistance of PCa cells to DTX. In summary, our data suggest that sAnk1 enhances DTX resistance in PCa cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Changwei Ji
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haoli Yin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Mengxia Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Weidong Gan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| |
Collapse
|
166
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
167
|
Pyruvate Kinase M2 Promotes Hair Regeneration by Connecting Metabolic and Wnt/β-Catenin Signaling. Pharmaceutics 2022; 14:pharmaceutics14122774. [PMID: 36559274 PMCID: PMC9781674 DOI: 10.3390/pharmaceutics14122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression pattern and activity of PKM2 during the depilation-induced anagen progression in mice. We found that TEPP-46, a selective activator of PKM2, enhanced hair re-growth and proliferation of HFSCs. PKM2 expression was increased via up-regulation of Wnt/β-catenin signaling, which is involved in hair regeneration. Moreover, a combined treatment with KY19382, a small molecule that activates Wnt/β-catenin signaling, and TEPP-46 significantly enhanced hair re-growth and wound-induced hair follicle neogenesis (WIHN). These results indicate that simultaneous activation of the PKM2 and Wnt/β-catenin signaling could be a potential strategy for treating alopecia patients.
Collapse
|
168
|
Magadum A. Modified mRNA Therapeutics for Heart Diseases. Int J Mol Sci 2022; 23:ijms232415514. [PMID: 36555159 PMCID: PMC9779737 DOI: 10.3390/ijms232415514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a substantial global health problem and the leading cause of death worldwide. Although many conventional small-molecule treatments are available to support the cardiac function of the patient with CVD, they are not effective as a cure. Among potential targets for gene therapy are severe cardiac and peripheral ischemia, heart failure, vein graft failure, and some forms of dyslipidemias. In the last three decades, multiple gene therapy tools have been used for heart diseases caused by proteins, plasmids, adenovirus, and adeno-associated viruses (AAV), but these remain as unmet clinical needs. These gene therapy methods are ineffective due to poor and uncontrolled gene expression, low stability, immunogenicity, and transfection efficiency. The synthetic modified mRNA (modRNA) presents a novel gene therapy approach which provides a transient, stable, safe, non-immunogenic, controlled mRNA delivery to the heart tissue without any risk of genomic integration, and achieves a therapeutic effect in different organs, including the heart. The mRNA translation starts in minutes, and remains stable for 8-10 days (pulse-like kinetics). The pulse-like expression of modRNA in the heart induces cardiac repair, cardiomyocyte proliferation and survival, and inhibits cardiomyocyte apoptosis post-myocardial infarction (MI). Cell-specific (cardiomyocyte) modRNA translation developments established cell-specific modRNA therapeutics for heart diseases. With these laudable characteristics, combined with its expression kinetics in the heart, modRNA has become an attractive therapeutic for the treatment of CVD. This review discusses new developments in modRNA therapy for heart diseases.
Collapse
Affiliation(s)
- Ajit Magadum
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
169
|
Qing L, Li Q, Yang Y, Xu W, Dong Z. A prognosis marker MUC1 correlates with metabolism and drug resistance in bladder cancer: a bioinformatics research. BMC Urol 2022; 22:114. [PMID: 35879749 PMCID: PMC9309451 DOI: 10.1186/s12894-022-01067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
MUC1 is a type I transmembrane protein that plays an important role in tumor cell signal transduction. Although current studies have shown that MUC1 is upregulated in bladder cancer (BC), the specific mechanism is still unclear.
Methods
We performed expression analysis, gene set enrichment analysis, survival analysis, immune infiltration analysis, drug sensitivity analysis, and metabolism-related gene expression analysis on TCGA-BLCA, GES31684 and GSE13507.
Results
The expression of MUC1 in the tumor and lymphatic metastasis positive samples was significantly increased. Genes related to MUC1 expression were significantly enriched in immune response, ribosomes, exosomes, and energy metabolism. The results of the immune infiltration analysis showed that M1 macrophages in BC with high MUC1 expression were significantly decreased. Expression of MUC1 increases drug resistance in BC patients. In addition, MUC1 increases glycolysis, glucose uptake, and lactate production by inducing metabolic reprogramming.
Conclusion
MUC1 has a significant effect on the metabolism and immune cell infiltration of BC, which may be the cause of increased drug resistance, and can be used as a molecular target for the diagnosis and treatment of BC.
Collapse
|
170
|
Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation. Eur J Pharmacol 2022; 936:175352. [PMID: 36309049 DOI: 10.1016/j.ejphar.2022.175352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
|
171
|
Guo Y, Hu H, Xu S, Xia W, Li H. Useful genes for predicting the efficacy of transarterial chemoembolization in hepatocellular carcinoma. J Cancer Res Ther 2022; 18:1860-1866. [PMID: 36647943 DOI: 10.4103/jcrt.jcrt_1479_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transarterial chemoembolization (TACE) is generally used to treat patients with hepatocellular carcinoma (HCC), a common and deadly cancer; however, its efficacy varies according to factors such as tumor volume, stage, serum alpha-fetoprotein level, and chosen feeding artery. In addition, gene-related factors have been recently suggested to be involved in the regulation and prediction of TACE outcomes. Accordingly, genes could serve as effective biomarkers to select patients who can benefit from TACE. These gene-related factors can activate signaling pathways affecting cancer cell survival while regulating the epithelial-mesenchymal transition, angiogenesis, and the tumor microenvironment, all directly associated with tumor progression, thereby affecting TACE efficacy. Moreover, this disordered gene expression is associated with poor prognosis in patients with HCC, including TACE resistance, postoperative recurrence, and metastasis. To identify the exact relationship between various genes and TACE efficacy, this review summarizes the involvement of protein-coding and non-coding genes and single nucleotide polymorphisms in TACE efficacy for predicting the efficacy of TACE; the present findings may help improve the efficacy of TACE in clinical settings.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongtao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shijun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Weili Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
172
|
Yang Y, Ren P, Liu X, Sun X, Zhang C, Du X, Xing B. PPP1R26 drives hepatocellular carcinoma progression by controlling glycolysis and epithelial-mesenchymal transition. J Exp Clin Cancer Res 2022; 41:101. [PMID: 35292107 PMCID: PMC8922775 DOI: 10.1186/s13046-022-02302-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/25/2022] [Indexed: 01/17/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is usually diagnosed at an advanced stage due to rapid progression. Glycolysis supports anabolic growth and metastasis to promote HCC progression. However, the molecular mechanisms linking glycolysis and metastasis in HCC are not completely defined. Methods The expression of PPP1R26 in human HCC tissues was evaluated by immunohistochemistry, and the clinical significance of PPP1R26 in the progression and prognosis of the HCC patients were analyzed. The PPP1R26-binding proteins were determined by mass spectrometry analysis. The function of PPP1R26 in glycolysis, EMT and tumorigenesis were evaluated in HCC cells. Glucose uptake and tumor growth were evaluated using PET imaging in mouse xenografts in vivo. Protein binding was confirmed by co-immunoprecipitation and immunofluorescence co-localization. Protein-RNA binding was determined by RNA-immunoprecipitation (RIP) experiment. The binding of protein on the promoter was evaluated by chromatin immunoprecipitation assay (ChIP). Results PPP1R26 is upregulated in human HCC tissues and its upregulation is significantly associated with metastasis and the poor survival of the patients. PPP1R26 activates glycolysis in HCC cells and in mouse xenografts in vivo. PPP1R26 drives glycolysis by binding to PTBP1 to facilitate the mRNA splicing of PKM2. Simultaneously, overexpressed PPP1R26 induces the nuclear accumulation of PKM2 to inhibit the expression of E-cadherin further to drive EMT. Mechanistically, PPP1R26 binds with Ser37-phosphorylated PKM2 and TGIF2 in the nucleus and blocks the binding of TGIF2 with CDH1 promoter to inhibit the transcription of CDH1. Conclusion PPP1R26 promotes glycolysis by enhancing PKM2 splicing and simultaneously activates EMT by forming a PPP1R26-PKM2-TGIF2 complex to drive HCC progression. Therefore, targeting PPP1R26 attenuates HCC progression and provides a potential therapeutic strategy for the HCC patients with upregulation of PPP1R26. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02302-8.
Collapse
|
173
|
Abstract
Lysine succinylation is a novel, broad-spectrum, dynamic, non-enzymatic protein post-translational modification (PTM). Succinylation is essential for the regulation of protein function and control of various signaling and regulatory pathways. It is involved in several life activities, including glucose metabolism, amino acid metabolism, fatty acid metabolism, ketone body synthesis, and reactive oxygen species clearance, by regulating protease activity and gene expression. The level of succinylation is mainly regulated by succinyl donor, succinyltransferase, and desuccinylase. Many studies have confirmed that succinylation plays a role in tumorigenesis by creating tissue heterogeneity, and can promote or inhibit various cancers via the regulation of different substrate targets or signaling pathways. The mechanism of action of some antineoplastic drugs is related to succinylation. To better understand the role of succinylation modification in cancer development and treatment, the present study reviewed the current research content and latest progress of succinylation modification in cancer, which might provide a new direction and target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Keer Lu
- Department of Prescription Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Dongwei Han
- Department of Prescription Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Dongwei Han, Department of Prescription Science, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang 150040, China (e-mail: )
| |
Collapse
|
174
|
Zhang Z, Zheng Y, Chen Y, Yin Y, Chen Y, Chen Q, Hou Y, Shen S, Lv M, Wang T. Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis. Exp Hematol Oncol 2022; 11:88. [DOI: 10.1186/s40164-022-00334-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Accumulating evidence implicates that gut fungi are associated with the pathogenesis of colorectal cancer (CRC). Our previous study has revealed that Candida tropicalis (C. tropicalis) promotes colorectal tumorigenesis by enhancing immunosuppressive function of myeloid-derived suppressor cells (MDSCs) and increasing accumulation of MDSCs, but the underlying mechanisms remain unestablished.
Methods
Bone marrow–derived MDSCs were stimulated with C. tropicalis. RNA-sequencing analysis was performed to screen the differentially expressed genes. Quantitative real-time PCR and western blot were used to measure the expression of related proteins. Co-culture assay of MDSCs and CD8+ T cells was used to determine the immunosuppressive ability of MDSCs. Metabolomic analysis was conducted to detect metabolic reprogramming of MDSCs. Aerobic glycolysis of MDSCs was assessed by extracellular acidification rate (ECAR), glucose consumption and lactate production. A CAC mouse model was induced by AOM and DSS to determine the therapeutic action of TEPP-46. IHC and immunofluorescence were performed to examine the expression of PKM2, PKM2 (p-Y105) and iNOS in human CRC-infiltrated MDSCs.
Results
C. tropicalis facilitates immunosuppressive function of MDSCs by increasing the expression of iNOS, COX2 and NOX2, production of nitric oxide (NO) and reactive oxygen species (ROS). Mechanistically, C. tropicalis facilitates the immunosuppressive function of MDSCs through the C-type lectin receptors Dectin-3 and Syk. C. tropicalis-enhanced immunosuppressive function of MDSCs is further dependent on aerobic glycolysis. On the one hand, NO produced by MDSCs enhanced aerobic glycolysis in a positive feedback manner. On the other hand, C. tropicalis promotes p-Syk binding to PKM2, which results in PKM2 Tyr105 phosphorylation and PKM2 nuclear translocation in MDSCs. Nuclear PKM2 interacts with HIF-1α and subsequently upregulates the expression of HIF-1α target genes encoding glycolytic enzymes, GLUT1, HK2, PKM2, LDHA and PDK1, which are required for the C. tropicalis-induced aerobic glycolysis of MDSCs. Blockade of PKM2 nuclear translocation attenuates C. tropicalis-mediated colorectal tumorigenesis. The high expression of PKM2, PKM2 (p-Y105) and iNOS in CRC-infiltrated MDSCs correlates with the development of human CRC.
Conclusion
C. tropicalis enhances immunosuppressive function of MDSCs via Syk-PKM2-HIF-1α-glycolysis signaling axis, which drives CRC. Therefore, we identify the Syk-PKM2-HIF-1α-glycolysis signaling axis as a potential therapeutic target for CRC.
Collapse
|
175
|
Lorenzana-Carrillo MA, Gopal K, Byrne NJ, Tejay S, Saleme B, Das SK, Zhang Y, Haromy A, Eaton F, Mendiola Pla M, Bowles DE, Dyck JR, Ussher JR, Michelakis ED, Sutendra G. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure. Sci Transl Med 2022; 14:eabm3565. [DOI: 10.1126/scitranslmed.abm3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that translocates to the nucleus to regulate transcription factors in different tissues or pathologic states. Although studied extensively in cancer, its biological role in the heart remains unresolved. PKM1 is more abundant than the PKM2 isoform in cardiomyocytes, and thus, we speculated that PKM2 is not genetically redundant to PKM1 and may be critical in regulating cardiomyocyte-specific transcription factors important for cardiac survival. Here, we showed that nuclear PKM2 (
S37
P-PKM2) in cardiomyocytes interacts with prosurvival and proapoptotic transcription factors, including GATA4, GATA6, and P53. Cardiomyocyte-specific PKM2-deficient mice (
Pkm2
Mut Cre
+
) developed age-dependent dilated cardiac dysfunction and had decreased amounts of GATA4 and GATA6 (GATA4/6) but increased amounts of P53 compared to Control Cre
+
hearts. Nuclear PKM2 prevented caspase-1–dependent cleavage and degradation of GATA4/6 while also providing a molecular platform for MDM2-mediated reduction of P53. In a preclinical heart failure mouse model, nuclear PKM2 and GATA4/6 were decreased, whereas P53 was increased in cardiomyocytes. Loss of nuclear PKM2 was ubiquitination dependent and associated with the induction of the E3 ubiquitin ligase TRIM35. In mice, cardiomyocyte-specific TRIM35 overexpression resulted in decreased
S37
P-PKM2 and GATA4/6 along with increased P53 in cardiomyocytes compared to littermate controls and similar cardiac dysfunction to
Pkm2
Mut Cre
+
mice. In patients with dilated left ventricles, increase in TRIM35 was associated with decreased
S37
P-PKM2 and GATA4/6 and increased P53. This study supports a previously unrecognized role for PKM2 as a molecular platform that mediates cell signaling events essential for cardiac survival.
Collapse
Affiliation(s)
- Maria Areli Lorenzana-Carrillo
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Nikole J. Byrne
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Subhash K. Das
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Farah Eaton
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | | | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Jason R. B. Dyck
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - John R. Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Evangelos D. Michelakis
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
176
|
Zhou N, Shen B, Bai C, Ma L, Wang S, Wu D. Nutritional deficiency induces nucleus pulposus cell apoptosis via the ATF4-PKM2-AKT signal axis. BMC Musculoskelet Disord 2022; 23:946. [PMID: 36324122 PMCID: PMC9628105 DOI: 10.1186/s12891-022-05853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Background The intervertebral disc is the largest avascular tissue in the human body. The nucleus pulposus (NP) consumes glucose and oxygen to generate energy to maintain cellular metabolism via nutrients that diffuse from the cartilage endplate. The microenvironment in the intervertebral disc becomes nutritionally deficient during degeneration, and nutritional deficiency has been shown to inhibit the viability and proliferation of NP cells. Methods To investigate the molecular mechanism by which nutritional deficiency reduces viability and decreases proliferation, we created an in vitro model by using decreasing serum concentration percentages. Results In this study, we found that nutritional deficiency reduced NP cell viability and increased cell apoptosis and that the upregulation of ATF4 expression and the downregulation of PKM2 expression were involved in this process. Moreover, we found that PKM2 inhibition can reduce the cell apoptosis induced by ATF4 silence under nutritional deficiency. Conclusion Our findings revealed that PKM2 inhibition reduces the cell apoptosis induced by ATF4 silence under nutritional deficiency by inhibiting AKT phosphate. Revealing the function and mechanism of NP cell development under nutritional deficiency will provide new insights into the etiology, diagnosis, and treatment of intervertebral disc and related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05853-1.
Collapse
Affiliation(s)
- Ningfeng Zhou
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Shen
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Bai
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Ma
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanjin Wang
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Desheng Wu
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
177
|
Lu GF, Geng F, Deng LP, Lin DC, Huang YZ, Lai SM, Lin YC, Gui LX, Sham JSK, Lin MJ. Reduced CircSMOC1 Level Promotes Metabolic Reprogramming via PTBP1 (Polypyrimidine Tract-Binding Protein) and miR-329-3p in Pulmonary Arterial Hypertension Rats. Hypertension 2022; 79:2465-2479. [PMID: 35997022 DOI: 10.1161/hypertensionaha.122.19183] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension maintains rapid cell proliferation and vascular remodeling through metabolic reprogramming. Recent studies suggested that circRNAs play important role in pulmonary vascular remodeling and pulmonary arterial smooth muscle cells proliferation. However, the relationship between circRNA, cell proliferation, and metabolic reprogramming in pulmonary arterial hypertension has not been investigated. METHODS RNA-seq and qRT-PCR reveal the differential expression profile of circRNA in pulmonary arteries of pulmonary arterial hypertension rat models. Transfection was used to examine the effects of circSMOC1 on pulmonary artery smooth muscle cells, and the roles of circSMOC1 in vivo were investigated by adenoassociated virus. Mass spectrometry, RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assay were performed to investigate the signaling pathway of circSMOC1 regulating the metabolic reprogramming. RESULTS CircSMOC1 was significantly downregulated in pulmonary arteries of pulmonary arterial hypertension rats. CircSMOC1 knockdown promoted proliferation and migration and enhanced aerobic glycolysis of pulmonary artery smooth muscle cells. CircSMOC1 overexpression in vivo alleviates pulmonary vascular remodeling, right ventricular pressure, and right heart hypertrophy. In the nucleus, circSMOC1 directly binds to PTBP1 (polypyrimidine tract-binding protein), competitively inhibits the specific splicing of PKM (pyruvate kinase M) premRNA, resulting in the upregulation of PKM2 (pyruvate kinase M2), the key enzyme of aerobic glycolysis, to enhance glycolysis. In the cytoplasm, circSMOC1 acted as a miR-329-3p sponge, and its reduction in pulmonary arterial hypertension suppressed PDHB (pyruvate dehydrogenase E1 subunit beta) expression, leading to the impairment of mitochondrial oxidative phosphorylation. CONCLUSIONS circSMOC1 is crucially involved in the metabolic reprogramming of pulmonary artery smooth muscle cells through PTBP1 and miR-329-3p to regulate pulmonary vascular remodeling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gui-Feng Lu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Fei Geng
- Department of Physiology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong province, People’s Republic of China
| | - Li-Ping Deng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Da-Cen Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yan-Zhen Huang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Su-Mei Lai
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yi-Chen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Long-Xin Gui
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
178
|
Zandi M, Shokri S, Mahmoudvand S, Hosseinzadeh Adli A, Mohammadi R, Haddadi A. Interplay between cellular metabolism and DNA viruses. J Med Virol 2022; 94:5163-5173. [PMID: 35869415 DOI: 10.1002/jmv.28018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Viruses as intracellular pathogens take over the host metabolism and reprogram to facilitate optimal virus production. DNA viruses can cause alterations in several metabolic pathways, including aerobic glycolysis also known as the Warburg effect, pentose phosphate pathway activation, and amino acid catabolism such as glutaminolysis, nucleotide biosynthesis, lipid metabolism, and amino acid biosynthesis. The available energy for productive infection can be increased in infected cells via modification of different carbon source utilization. This review discusses the metabolic alterations of the DNA viruses that will be the basis for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Hosseinzadeh Adli
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohammadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
179
|
Panax notoginseng saponins alleviates inflammation induced by microglial activation and protects against ischemic brain injury via inhibiting HIF-1α/PKM2/STAT3 signaling. Biomed Pharmacother 2022; 155:113479. [DOI: 10.1016/j.biopha.2022.113479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022] Open
|
180
|
Dai T, Zhang X, Zhou X, Hu X, Huang X, Xing F, Tian H, Li Y. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer. Clin Transl Med 2022; 12:e1088. [PMID: 36229913 PMCID: PMC9561166 DOI: 10.1002/ctm2.1088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common types of cancer worldwide, which leads to more than 10% of cancer-related deaths. Metabolism reprogramming presents as a pivotal event in cancer initiation and progression through enhancing aerobic glycolysis and anabolic metabolism. However, the underlying regulatory mechanisms in GC remain unknown. METHODS VAL was identified by bioinformatics analyses in GC. Cell-based assays and mouse model illustrate the role of VAL in GC. RNA pull-down, immunoprecipitation assay and Western blot elucidate the interaction between VAL and PKM2. Pyruvate kinase activity, ECAR and OCR were measured to validate aerobic glycolysis of GC cells. RESULTS Long non-coding RNA (lncRNA) VAL is significantly upregulated in GCs and indicates poor prognosis. Functional assays showed that VAL promotes GC malignant progression. Mechanistically, VAL strengthens the enzymatic activity of PKM2 and aerobic glycolysis of GC cells through directly binding with PKM2 to abrogate the PKM2-Parkin interaction, and to suppress Parkin-induced polyubiquitination of PKM2. In addition, glucose starvation induces VAL expression to enhance this process. CONCLUSIONS Our study provides an insight into an lncRNA-dependent regulation on the enzymatic activity of PKM2, and suggests a potential of targeting VAL or PKM2 as promising biomarkers in GC diagnosis and treatment.
Collapse
Affiliation(s)
- Ting Dai
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina,GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central HospitalAffiliated Jiangmen Hospital of Sun Yat‐sen UniversityJiangmenChina
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoxia Hu
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| | - Xiaodi Huang
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| | - Han Tian
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yun Li
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
181
|
Zhou J, Lei N, Tian W, Guo R, Chen M, Qiu L, Wu F, Li Y, Chang L. Recent progress of the tumor microenvironmental metabolism in cervical cancer radioresistance. Front Oncol 2022; 12:999643. [PMID: 36313645 PMCID: PMC9597614 DOI: 10.3389/fonc.2022.999643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 08/01/2023] Open
Abstract
Radiotherapy is widely used as an indispensable treatment option for cervical cancer patients. However, radioresistance always occurs and has become a big obstacle to treatment efficacy. The reason for radioresistance is mainly attributed to the high repair ability of tumor cells that overcome the DNA damage caused by radiotherapy, and the increased self-healing ability of cancer stem cells (CSCs). Accumulating findings have demonstrated that the tumor microenvironment (TME) is closely related to cervical cancer radioresistance in many aspects, especially in the metabolic processes. In this review, we discuss radiotherapy in cervical cancer radioresistance, and focus on recent research progress of the TME metabolism that affects radioresistance in cervical cancer. Understanding the mechanism of metabolism in cervical cancer radioresistance may help identify useful therapeutic targets for developing novel therapy, overcome radioresistance and improve the efficacy of radiotherapy in clinics and quality of life of patients.
Collapse
Affiliation(s)
- Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
182
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
183
|
Wang S, Wo L, Zhang Z, Zhu C, Wang C, Wang Y, Hou L, Cao H, Zhao Q, Zhao E. Delivery of LINC00589 via mesoporous silica nanoparticles inhibits peritoneal metastasis in gastric cancer. Cancer Lett 2022; 549:215916. [PMID: 36126899 DOI: 10.1016/j.canlet.2022.215916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Peritoneal metastasis is one of the common forms of metastasis in gastric cancer (GC). In this study, we identified the expression pattern of LINC00589 in GC patients and investigate the biological function in GC cells. RNA-pulldown assay was performed to explore the underlying molecular mechanism. Further, we utilize polyethyleneimine-modified mesoporous silica nanoparticles (PMSNs) as the nanocarriers for delivery of LINC00589 encoding plasmid and tested its therapeutic potential for GC with peritoneal dissemination. We revealed that LINC00589 was downregulated in GC tissues and suppressed the metastatic ability of GC cells. Mechanistically, LINC00589 exerted tumor suppressive function by promoting hnRNPA1 protein ubiquitination and proteasomal degradation, thus blocking alternative splicing of PKM to PKM2. Furthermore, LINC00589 delivered by PMSNs could suppress the peritoneal metastasis of GC in vivo and in vitro. This work may provide a new treatment option in GC peritoneal metastasis.
Collapse
Affiliation(s)
- Shuchang Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lulu Wo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chaojie Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangyang Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lechun Hou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
184
|
SMYD3 promotes aerobic glycolysis in diffuse large B-cell lymphoma via H3K4me3-mediated PKM2 transcription. Cell Death Dis 2022; 13:763. [PMID: 36057625 PMCID: PMC9440895 DOI: 10.1038/s41419-022-05208-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Genetic abnormalities in histone methyltransferases (HMTs) frequently occur in diffuse large B-cell lymphoma (DLBCL) and are related to its progression. SET and MYND domain containing 3 (SMYD3) is an HMT that is upregulated in various tumors and promotes their malignancy. However, to the best of our knowledge, the function of SMYD3 in DLBCL has not been investigated thus far. In the present study, 22 HMT genes related to cancer development were first selected according to current literature, and it was found that high SMYD3 expression was significantly associated with poor progression-free survival in patients with DLBCL. SMYD3 protein levels were upregulated and positively associated with poor prognosis and poor responsiveness to chemotherapy in patients with DLBCL. Functional examinations demonstrated that SMYD3 increased cell proliferation and the flux of aerobic glycolysis in DLBCL cells in vitro and in vivo and decreased cell sensitivity to doxorubicin in vitro. Moreover, SMYD3 could directly bind to specific sequences of Pyruvate Kinase M2 (PKM2) and promote DLBCL cell proliferation and aerobic glycolysis via H3K4me3-mediated PKM2 transcription. Clinically, SMYD3 expression positively correlated with that of PKM2, and high SMYD3 was significantly associated with high maximum standardized uptake value (SUVmax) detected by [(18)F]-fluorodeoxyglucose ((18)F-FDG) PET/computed tomography (PET/CT) in DLBCL samples. Concomitant expression of SMYD3 and PKM2 positively correlated with poor progression-free and overall survival in patients with DLBCL and may serve as novel biomarkers in DLBCL.
Collapse
|
185
|
Beaumont JEJ, Beelen NA, Wieten L, Rouschop KMA. The Immunomodulatory Role of Hypoxic Tumor-Derived Extracellular Vesicles. Cancers (Basel) 2022; 14:4001. [PMID: 36010994 PMCID: PMC9406714 DOI: 10.3390/cancers14164001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor-associated immune cells frequently display tumor-supportive phenotypes. These phenotypes, induced by the tumor microenvironment (TME), are described for both the adaptive and the innate arms of the immune system. Furthermore, they occur at all stages of immune cell development, up to effector function. One major factor that contributes to the immunosuppressive nature of the TME is hypoxia. In addition to directly inhibiting immune cell function, hypoxia affects intercellular crosstalk between tumor cells and immune cells. Extracellular vesicles (EVs) play an important role in this intercellular crosstalk, and changes in both the number and content of hypoxic cancer-cell-derived EVs are linked to the transfer of hypoxia tolerance. Here, we review the current knowledge about the role of these hypoxic cancer-cell-derived EVs in immunosuppression. In addition, we provide an overview of hypoxia-induced factors (i.e., miRNA and proteins) in tumor-derived EVs, and their role in immunomodulation.
Collapse
Affiliation(s)
- Joel E. J. Beaumont
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
186
|
Ahn SS, Kim HM, Park Y. Assessment of disease activity in patients with rheumatoid arthritis using plasma tumour M2-pyruvate kinase test. Front Immunol 2022; 13:901555. [PMID: 36059477 PMCID: PMC9433835 DOI: 10.3389/fimmu.2022.901555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pyruvate kinase M2 (PKM2) is an enzyme that regulates the final process of glycolysis and exists in tetrameric and dimeric forms. The dimeric form of PKM2, also known as tumour M2-PK, increases when aerobic glycolysis is augmented, a feature observed in rheumatoid arthritis (RA). We investigated whether plasma tumour M2-PK is elevated in patients with RA and whether its levels correlate with disease activity. Methods Plasma levels of tumour M2-PK were measured for patients with RA (n=151), those with osteoarthritis (OA) (n=37), and controls (n=37). We evaluated the association between plasma tumour M2-PK and continuous variables using Pearson’s correlation analysis, and multivariate logistic regression analysis to determine the association between plasma tumour M2-PK and disease activity status. Knee synovial tissue blocks from patients with RA and OA were subjected to real-time quantitative PCR (qPCR) using two different primers for PKM2 and tumour M2-PK immunohistochemical (IHC) staining. Results The tumour M2-PK level significantly correlated with the disease activity score in 28 joints (DAS28)-erythrocyte sedimentation rate (ESR) (r=0.546, p<0.001) and DAS28-C-reactive protein (CRP) (r=0.589, p<0.001). Moreover, repeat testing of tumour M2-PK levels in 20 patients revealed a significant decline in tumour M2-PK levels after reduction in inflammation (p<0.001). Area under the receiver operating characteristic curve (AUROC) analysis demonstrated that upon incorporation of tumour M2-PK, ESR, and CRP, the area under the curve was 0.962 for distinguishing moderate/high from remission/low disease activity. Adjusted logistic regression also revealed that a tumour M2-PK >43.9 U/mL (OR 3.672, p=0.042) independently predicted moderate/high disease activity status. Furthermore, tumour M2-PK levels in patients with RA were significantly higher than in those with OA and controls (all p<0.001). However, no differences were found in PKM2 expression in RA and OA synovial tissues as assessed by qPCR, and IHC analysis revealed negligible tumour M2-PK expression in the synovial tissues. Conclusion Circulating plasma tumour M2-PK levels may be a clinically useful indicator for evaluating disease activity and RA diagnosis.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Hye Min Kim
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Younhee Park,
| |
Collapse
|
187
|
Huang B, Wang Q, Jiang L, Lu S, Li C, Xu C, Wang C, Zhang E, Zhang X. Shikonin ameliorated mice colitis by inhibiting dimerization and tetramerization of PKM2 in macrophages. Front Pharmacol 2022; 13:926945. [PMID: 36059938 PMCID: PMC9428403 DOI: 10.3389/fphar.2022.926945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Dysregulated immune response plays a pivotal role in Ulcerative colitis. In lamina propria of inflammatory colonic mucosa, macrophages tend to polarize into M1 type and metabolically reprogram to aerobic glycolysis. PKM2 orchestrates glucose metabolic switch in macrophages, which tetramer has high pyruvate kinase activity, while which dimer mainly works as a protein kinase to stabilize HIF-1α and mediate anabolism. Shikonin is a potent PKM2 inhibitor derived from traditional Chinese medicine Arnebiae Radix with anti-inflammatory and anticarcinogen activities. However, it is unclear which conformation of PKM2 is inhibited by Shikonin, and whether this inhibition mediates pharmacological effect of Shikonin. In this study, we examined the efficacy of Shikonin on dextran sulfate sodium-induced mice colitis and determined the states of PKM2 aggregation after Shikonin treatment. Results showed that Shikonin dose-dependently alleviated mice colitis, down-regulated expression of F4/80, iNOS and CD86, decreased IFN-γ, IL-1β, IL-6 and TNF-α, while increased IL-10 in mice colon. Furthermore, Shikonin suppressed the pyruvate, lactate production and glucose consumption, inhibited the pyruvate kinase activity and nuclear translocation of PKM2, and decreased both dimerization and tetramerization of PKM2 in macrophages. In vitro assay revealed that Shikonin bounded to PKM2 protein, inhibited the formation of both dimer and tetramer, while promoted aggregation of PKM2 macromolecular polymer. TEPP-46, an activator of PKM2 tetramerization, attenuated the ameliorative effect of Shikonin on disuccinimidyl suberate mice. In summary, Shikonin improved mice colitis, which mechanism may be mediated by inhibiting dimerization and tetramerization of PKM2, suppressing aerobic glycolysis reprogram, improving mitochondrial dynamic, and therefore alleviating inflammatory response of macrophages.
Collapse
Affiliation(s)
- Baoyuan Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiumei Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Jiang
- International Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuru Lu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengcheng Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunqi Xu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caiyan Wang
- International Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Caiyan Wang, ; Enxin Zhang, ; Xiaojun Zhang,
| | - Enxin Zhang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Caiyan Wang, ; Enxin Zhang, ; Xiaojun Zhang,
| | - Xiaojun Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Caiyan Wang, ; Enxin Zhang, ; Xiaojun Zhang,
| |
Collapse
|
188
|
Single-Cell FISH Analysis Reveals Distinct Shifts in PKM Isoform Populations during Drug Resistance Acquisition. Biomolecules 2022; 12:biom12081082. [PMID: 36008976 PMCID: PMC9405743 DOI: 10.3390/biom12081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The Warburg effect, i.e., the utilization of glycolysis under aerobic conditions, is recognized as a survival advantage of cancer cells. However, how the glycolytic activity is affected during drug resistance acquisition has not been explored at single-cell resolution. Because the relative ratio of the splicing isoform of pyruvate kinase M (PKM), PKM2/PKM1, can be used to estimate glycolytic activity, we utilized a single-molecule fluorescence in situ hybridization (SM-FISH) method to simultaneously quantify the mRNA levels of PKM1 and PKM2. Treatment of HCT116 cells with gefitinib (GE) resulted in two distinct populations of cells. However, as cells developed GE resistance, the GE-sensitive population with reduced PKM2 expression disappeared, and GE-resistant cells (Res) demonstrated enhanced PKM1 expression and a tightly regulated PKM2/PKM1 ratio. Our data suggest that maintaining an appropriate PKM2 level is important for cell survival upon GE treatment, whereas increased PKM1 expression becomes crucial in GE Res. This approach demonstrates the importance of single-cell-based analysis for our understanding of cancer cell metabolic responses to drugs, which could aid in the design of treatment strategies for drug-resistant cancers.
Collapse
|
189
|
Zhang CW, Zhou B, Liu YC, Su LW, Meng J, Li SL, Wang XL. LINC00365 inhibited lung adenocarcinoma progression and glycolysis via sponging miR-429/KCTD12 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1853-1866. [PMID: 35426242 DOI: 10.1002/tox.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study researched the function of long non-coding RNA LINC00365 in lung adenocarcinoma (LAD) progression. LINC00365, miR-429, and KCTD12 expression in the LAD clinical tissues and cells were detcetd by qRT-PCR and Western blot. LINC00365, miR-429, and KCTD12 effects on H1975 cells malignant phenotype were detected by cell counting kit-8 assay, clone formation experiment, Transwell experiment, and glycolysis. Dual luciferase reporter gene assay and RNA pull-down assay were implemented. LINC00365 effect on H1975 cells in vivo growth was detected. LINC00365 was low expressed in the LAD patients and cells, associating with poor outcome. LINC00365 up-regulation attenuated H1975 cells proliferation, migration, invasion, glycolysis and in vivo growth. LINC00365 inhibited KCTD12 expression by sponging miR-429. miR-429 up-regulation and KCTD12 down-regulation partial reversed LINC00365 inhibition on H1975 cells malignant phenotype. Thus, LINC00365 inhibited LAD progression and glycolysis via targeting miR-429/KCTD12 axis. LINC00365 might be a potential candidate for LAD target treatment clinically.
Collapse
Affiliation(s)
- Cheng-Wei Zhang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Bin Zhou
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Yan-Chao Liu
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Li-Wei Su
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Jie Meng
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Shao-Lei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| |
Collapse
|
190
|
Babuta J, Hall Z, Athersuch T. Dysregulated Metabolism in EGFR-TKI Drug Resistant Non-Small-Cell Lung Cancer: A Systematic Review. Metabolites 2022; 12:metabo12070644. [PMID: 35888768 PMCID: PMC9316206 DOI: 10.3390/metabo12070644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is a common barrier to continued effective treatment in cancer. In non-small-cell lung cancer (NSCLC), tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR-TKIs) exhibit good efficacy in cancer treatment until acquired resistance occurs. It has been observed that drug resistance is accompanied by numerous molecular-level changes, including significant shifts in cellular metabolism. The purpose of this study was to critically and systematically review the published literature with respect to how metabolism differs in drug-resistant compared to drug-sensitive NSCLC. Understanding the differences between resistant and sensitive cells is vital and has the potential to allow interventions that enable the re-sensitisation of resistant cells to treatment, and consequently reinitiate the therapeutic effect of EGFR-TKIs. The main literature search was performed using relevant keywords in PubMed and Ovid (Medline) and reviewed using the Covidence platform. Of the 1331 potentially relevant literature records retrieved, 27 studies were subsequently selected for comprehensive analysis. Collectively, the literature revealed that NSCLC cell lines resistant to EGFR-TKI treatment possess characteristic metabolic and lipidomic phenotypic signatures that differentiate them from sensitive lines. Further exploration of these reported differences suggests that drug-resistant cell lines are differentially reliant on cellular energy sources and that modulation of relative energy production pathways may lead to the reversal of drug resistance.
Collapse
|
191
|
Salaverry LS, Lombardo T, Cabral-Lorenzo MC, Gil-Folgar ML, Rey-Roldán EB, Kornblihtt LI, Blanco GA. Metabolic plasticity in blast crisis-chronic myeloid leukaemia cells under hypoxia reduces the cytotoxic potency of drugs targeting mitochondria. Discov Oncol 2022; 13:60. [PMID: 35802257 PMCID: PMC9270554 DOI: 10.1007/s12672-022-00524-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolic reprogramming (MR) influences progression of chronic myeloid leukaemia (CML) to blast crisis (BC), but metabolic programs may change transiently in a second dimension (metabolic plasticity, MP), driven by environments as hypoxia, affecting cytotoxic potency (CPot) of drugs targeting mitochondria or mitochondria-related cell stress responses (MRCSR) such as mitophagy and mitochondrial biogenesis. We assessed mitochondrial membrane potential (MMP), mitochondrial mass (MM), apoptosis, glucose uptake (GU), and CPot of arsenic trioxide (ATO), CCCP, valproic acid (VPA), vincristine (VCR), Mdivi1, and dichloroacetic acid (DCA) in CML BC cells K562 (BC-K562) under hypoxia through flow cytometry, and gene expression from GEO database. About 60% of untreated cells were killed after 72 h under hypoxia, but paradoxically, all drugs but ATO rescued cells and increased survival rates to almost 90%. Blocking mitophagy either with VCR or Mdivi1, or increasing mitochondrial biogenesis with VPA enhanced cell-survival with increased MM. DCA increased MM and rescued cells in spite of its role in activating pyruvate dehydrogenase and Krebs cycle. Cells rescued by DCA, VPA and CCCP showed decreased GU. ATO showed equal CPot in hypoxia and normoxia. MP was evidenced by differential expression of genes (DEG) under hypoxia related to Krebs cycle, lipid synthesis, cholesterol homeostasis, mitophagy, and mitochondrial biogenesis (GSE144527). A 25-gene MP-signature of BC-K562 cells under hypoxia identified BC cases among 113 transcriptomes from CML patients (GSE4170). We concluded that hypoxic environment drove a MP change evidenced by DEG that was reflected in a paradoxical pro-survival, instead of cytotoxic, effect of drugs targeting mitochondria and MRCSR.
Collapse
Affiliation(s)
- Luciana S Salaverry
- Department of Immunology IDEHU-CONICET, Faculty of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Tomás Lombardo
- Laboratory of Immunotoxicology (LaITo), IDEHU-CONICET, Clinics Hospital, Jose de San Martin, University of Buenos Aires (UBA), Junin 956 4to piso, Capital Federal (1113), Buenos Aires, Argentina
| | - María C Cabral-Lorenzo
- Department of Pathology, Clinics Hospital, Jose de San Martin, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Martin L Gil-Folgar
- Laboratory of Immunotoxicology (LaITo), IDEHU-CONICET, Clinics Hospital, Jose de San Martin, University of Buenos Aires (UBA), Junin 956 4to piso, Capital Federal (1113), Buenos Aires, Argentina
| | - Estela B Rey-Roldán
- Department of Immunology IDEHU-CONICET, Faculty of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Laura I Kornblihtt
- Department of Hematology, Clinics Hospital, Jose de San Martin, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Guillermo A Blanco
- Laboratory of Immunotoxicology (LaITo), IDEHU-CONICET, Clinics Hospital, Jose de San Martin, University of Buenos Aires (UBA), Junin 956 4to piso, Capital Federal (1113), Buenos Aires, Argentina.
| |
Collapse
|
192
|
Esen I, Jiemy WF, van Sleen Y, Bijzet J, de Jong DM, Nienhuis PH, Slart RHJA, Heeringa P, Boots AMH, Brouwer E. Plasma Pyruvate Kinase M2 as a marker of vascular inflammation in giant cell arteritis. Rheumatology (Oxford) 2022; 61:3060-3070. [PMID: 34730794 PMCID: PMC9258600 DOI: 10.1093/rheumatology/keab814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES GCA is a large vessel vasculitis in which metabolically active immune cells play an important role. GCA diagnosis is based on CRP/ESR and temporal artery biopsies (TABs), in combination with 18F-fluorodeoxyglucose ([18F]FDG)-PET/CT relying on enhanced glucose uptake by glycolytic macrophages. Here, we studied circulating Pyruvate Kinase M2 (PKM2), a glycolytic enzyme, as a possible systemic marker of vessel wall inflammation in GCA. METHODS Immunohistochemical detection of PKM2 was performed on inflamed (n = 12) and non-inflamed (n = 4) TABs from GCA patients and non-GCA (n = 9) patients. Dimeric PKM2 levels were assessed in plasma of GCA patients (n = 44), age-matched healthy controls (n = 41), metastatic melanoma patients (n = 7) and infection controls (n = 11). CRP, ESR and macrophage markers calprotectin and YKL-40 were correlated with plasma PKM2 levels. To detect the cellular source of plasma PKM2 in tissue, double IF staining was performed on inflamed GCA TABs. [18F]FDG-PET scans of 23 GCA patients were analysed and maximum standard uptake values and target to background ratios were calculated. RESULTS PKM2 is abundantly expressed in TABs of GCA patients. Dimeric PKM2 plasma levels were elevated in GCA and correlated with CRP, ESR, calprotectin and YKL-40 levels. Elevated plasma PKM2 levels were downmodulated by glucocorticoid treatment. PKM2 was detected in both macrophages and T cells at the site of vascular inflammation. Circulating PKM2 levels correlated with average target to background ratios PET scores. CONCLUSION Elevated plasma PKM2 levels reflect active vessel inflammation in GCA and may assist in disease diagnosis and in disease monitoring.
Collapse
Affiliation(s)
- Idil Esen
- Department of Rheumatology and Clinical Immunology
| | | | | | - Johan Bijzet
- Department of Rheumatology and Clinical Immunology
| | | | - Pieter H Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
193
|
El-Far AH, Al Jaouni SK, Li X, Fu J. Cancer metabolism control by natural products: Pyruvate kinase M2 targeting therapeutics. Phytother Res 2022; 36:3181-3201. [PMID: 35794729 DOI: 10.1002/ptr.7534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 06/12/2022] [Indexed: 12/13/2022]
Abstract
Glycolysis is the primary source of energy for cancer growth and metastasis. The shift in metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis is called the Warburg effect. Cancer progression due to aerobic glycolysis is often associated with the activation of oncogenes or the loss of tumor suppressors. Therefore, inhibition of glycolysis is one of the effective strategies in cancer control. Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme overexpressed in breast, prostate, lung, colorectal, and liver cancers. Here, we discuss published studies regarding PKM2 inhibitors from natural products that are promising drug candidates for cancer therapy. We have highlighted the potential of natural PKM2 inhibitors for various cancer types. Moreover, we encourage researchers to evaluate the combinational effects between natural and synthetic PKM2 inhibitors. Also, further high-quality studies are needed to firmly establish the clinical efficacy of natural products.
Collapse
Affiliation(s)
- Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xiaotao Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.,School of Arts and Sciences, New York University-Shanghai, Shanghai, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
194
|
Liu YR, Song DD, Liang DM, Li YJ, Yan YF, Sun HF, Zhang ML, Hu JX, Zhao YL, Liang Y, Li YM, Yang Z, Wang RR, Zheng HF, Wang P, Xie SY. Oncogenic TRIB2 interacts with and regulates PKM2 to promote aerobic glycolysis and lung cancer cell procession. Cell Death Dis 2022; 8:306. [PMID: 35790734 PMCID: PMC9256704 DOI: 10.1038/s41420-022-01095-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
PKM2 is an important regulator of the aerobic glycolysis that plays a vital role in cancer cell metabolic reprogramming. In general, Trib2 is considered as a “pseudokinase”, contributing to different kinds of cancer. However, the detailed roles of TRIB2 in regulating cancer metabolism by PKM2 remain unclear. This study demonstrated that TRIB2, not a “pseudokinase”, has the kinase activity to directly phosphorylate PKM2 at serine 37 in cancer cells. The elevated pSer37-PKM2 would subsequently promote the PKM2 dimers to enter into nucleus and increase the expression of LDHA, GLUT1, and PTBP1. The aerobic glycolysis is then elevated to promote cancer cell proliferation and migration in TRIB2- or PKM2-overexpressed cultures. The glucose uptake and lactate production increased, but the ATP content decreased in TRIB2- or PKM2-treated cultures. Experiments of TRIB2−/− mice further supported that TRIB2 could regulate aerobic glycolysis by PKM2. Thus, these results reveal the new kinase activity of TRIB2 and its mechanism in cancer metabolism may be related to regulating PKM2 to promote lung cancer cell proliferation in vitro and in vivo, suggesting promising therapeutic targets for cancer therapy by controlling cancer metabolism.
Collapse
|
195
|
Ferrara AL, Liotti A, Pezone A, De Rosa V. Therapeutic opportunities to modulate immune tolerance through the metabolism-chromatin axis. Trends Endocrinol Metab 2022; 33:507-521. [PMID: 35508518 DOI: 10.1016/j.tem.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The ability of the immune system to discriminate external stimuli from self-components - namely immune tolerance - occurs through a coordinated cascade of events involving a dense network of immune cells. Among them, CD4+CD25+ T regulatory cells are crucial to balance immune homeostasis and function. Growing evidence supports the notion that energy metabolites can dictate T cell fate and function via epigenetic modifications, which affect gene expression without altering the DNA sequence. Moreover, changes in cellular metabolism couple with activation of immune pathways and epigenetic remodeling to finely tune the balance between T cell activation and tolerance. This Review summarizes these aspects and critically evaluates novel possibilities for developing therapeutic strategies to modulate immune tolerance through metabolism via epigenetic drugs.
Collapse
Affiliation(s)
- Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonietta Liotti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Università di Napoli "Federico II", 80131 Napoli, Italy.
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy.
| |
Collapse
|
196
|
Tlili M, Acevedo H, Descoteaux A, Germain M, Heinonen KM. Cell-intrinsic Wnt4 ligand regulates mitochondrial oxidative phosphorylation in macrophages. J Biol Chem 2022; 298:102193. [PMID: 35764169 PMCID: PMC9352913 DOI: 10.1016/j.jbc.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow–derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C–mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow–derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.
Collapse
Affiliation(s)
- Mouna Tlili
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Hamlet Acevedo
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Albert Descoteaux
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Université du Québec, Quebec, CANADA
| | - Krista M Heinonen
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA.
| |
Collapse
|
197
|
The CXCL12/CXCR4/ACKR3 Signaling Axis Regulates PKM2 and Glycolysis. Cells 2022; 11:cells11111775. [PMID: 35681470 PMCID: PMC9179862 DOI: 10.3390/cells11111775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In response to CXCL12, CXCR4 and ACKR3 both recruit β-arrestin 2, regulating the assembly of interacting proteins that drive signaling and contribute to the functions of both receptors in cancer and multiple other diseases. A prior proteomics study revealed that β-arrestin 2 scaffolds pyruvate kinase M2 (PKM2), an enzyme implicated in shifting cells to glycolytic metabolism and poor prognosis in cancer. We hypothesized that CXCL12 signaling regulates PKM2 protein interactions, oligomerization, and glucose metabolism. We used luciferase complementation in cell-based assays and a tumor xenograft model of breast cancer in NSG mice to quantify how CXCR4 and ACKR3 change protein interactions in the β-arrestin-ERK-PKM2 pathway. We also used mass spectrometry to analyze the effects of CXCL12 on glucose metabolism. CXCL12 signaling through CXCR4 and ACKR3 stimulated protein interactions among β-arrestin 2, PKM2, ERK2, and each receptor, leading to the dissociation of PKM2 from β-arrestin 2. The activation of both receptors reduced the oligomerization of PKM2, reflecting a shift from tetramers to dimers or monomers with low enzymatic activity. Mass spectrometry with isotopically labeled glucose showed that CXCL12 signaling increased intermediate metabolites in glycolysis and the pentose phosphate pathway, with ACKR3 mediating greater effects. These data establish how CXCL12 signaling regulates PKM2 and reprograms cellular metabolism.
Collapse
|
198
|
Luo P, Zhang Q, Zhong TY, Chen JY, Zhang JZ, Tian Y, Zheng LH, Yang F, Dai LY, Zou C, Li ZJ, Liu JH, Wang JG. Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect. Mil Med Res 2022; 9:22. [PMID: 35596191 PMCID: PMC9121578 DOI: 10.1186/s40779-022-00381-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sepsis involves life-threatening organ dysfunction and is caused by a dysregulated host response to infection. No specific therapies against sepsis have been reported. Celastrol (Cel) is a natural anti-inflammatory compound that shows potential against systemic inflammatory diseases. This study aimed to investigate the pharmacological activity and molecular mechanism of Cel in models of endotoxemia and sepsis. METHODS We evaluated the anti-inflammatory efficacy of Cel against endotoxemia and sepsis in mice and macrophage cultures treated with lipopolysaccharide (LPS). We screened for potential protein targets of Cel using activity-based protein profiling (ABPP). Potential targets were validated using biophysical methods such as cellular thermal shift assays (CETSA) and surface plasmon resonance (SPR). Residues involved in Cel binding to target proteins were identified through point mutagenesis, and the functional effects of such binding were explored through gene knockdown. RESULTS Cel protected mice from lethal endotoxemia and improved their survival with sepsis, and it significantly decreased the levels of pro-inflammatory cytokines in mice and macrophages treated with LPS (P < 0.05). Cel bound to Cys424 of pyruvate kinase M2 (PKM2), inhibiting the enzyme and thereby suppressing aerobic glycolysis (Warburg effect). Cel also bound to Cys106 in high mobility group box 1 (HMGB1) protein, reducing the secretion of inflammatory cytokine interleukin (IL)-1β. Cel bound to the Cys residues in lactate dehydrogenase A (LDHA). CONCLUSION Cel inhibits inflammation and the Warburg effect in sepsis via targeting PKM2 and HMGB1 protein.
Collapse
Affiliation(s)
- Piao Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Yu Zhong
- Laboratory Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Jia-Yun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun-Zhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Tian
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liu-Hai Zheng
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Fan Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ling-Yun Dai
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Chang Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Jie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jing-Hua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Ji-Gang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Laboratory Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China. .,Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China. .,Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, 523125, Guangdong, China. .,Central People's Hospital of Zhanjiang, Zhanjiang, 524037, Guangdong, China.
| |
Collapse
|
199
|
Abstract
AbstractThe druggable genome is limited by structural features that can be targeted by small molecules in disease-relevant proteins. While orthosteric and allosteric protein modulators have been well studied, they are limited to antagonistic/agonistic functions. This approach to protein modulation leaves many disease-relevant proteins as undruggable targets. Recently, protein-protein interaction modulation has emerged as a promising therapeutic field for previously undruggable protein targets. Molecular glues and heterobifunctional degraders such as PROTACs can facilitate protein interactions and bring the proteasome into proximity to induce targeted protein degradation. In this review, we discuss the function and rational design of molecular glues, heterobifunctional degraders, and hydrophobic tag degraders. We also review historic and novel molecular glues and targets and discuss the challenges and opportunities in this new therapeutic field.
Collapse
|
200
|
The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7702681. [PMID: 35571239 PMCID: PMC9106463 DOI: 10.1155/2022/7702681] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism, susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear. Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical management of cardiovascular and metabolic diseases.
Collapse
|