151
|
Gong Y, Li K, Qin Y, Zeng K, Liu J, Huang S, Chen Y, Yu H, Liu W, Ye L, Yang Y. Norcholic Acid Promotes Tumor Progression and Immune Escape by Regulating Farnesoid X Receptor in Hepatocellular Carcinoma. Front Oncol 2021; 11:711448. [PMID: 34888230 PMCID: PMC8648605 DOI: 10.3389/fonc.2021.711448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence shows a close association between various types of bile acids (BAs) and hepatocellular carcinoma (HCC), and they have been revealed to affect tumor immune response and progression mainly by regulating Farnesoid X receptor (FXR). Nevertheless, the roles of Norcholic acid(NorCA) in HCC progression remain unknown yet. In this study, herein we demonstrate that NorCA can promote HCC cell proliferation, migration and invasion through negatively regulating FXR. Additionally, NorCA can increase PD-L1 level on the surfaces of HCC cells and their exosomes, and NorCA-induced exosomes dramatically dampen the function of CD4+T cells, thereby inducing an immunosuppressive microenvironment. Meanwhile, a negative correlation between PD-L1 and FXR expression in human HCC specimens was identified, and HCC patients with FXRlowPD-L1high expression exhibit a rather dismal survival outcome. Importantly, FXR agonist (GW4064) can synergize with anti-PD-1 antibody (Ab) to inhibit HCC growth in tumor-bearing models. Taken together, NorCA can promote HCC progression and immune invasion by inhibiting FXR signaling, implying a superiority of the combination of FXR agonist and anti-PD-1 Ab to the monotherapy of immune checkpoint inhibitor in combating HCC. However, more well-designed animal experiments and clinical trials are warranted to further confirm our findings in future due to the limitations in our study.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Department of Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kaining Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianrong Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaozhuo Huang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yewu Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
152
|
Zhong Z, Nan K, Weng M, Yue Y, Zhou W, Wang Z, Chu Y, Liu R, Miao C. Pro- and Anti- Effects of Immunoglobulin A- Producing B Cell in Tumors and Its Triggers. Front Immunol 2021; 12:765044. [PMID: 34868013 PMCID: PMC8640120 DOI: 10.3389/fimmu.2021.765044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
B cells are well known as key mediators of humoral immune responses via the production of antibodies. Immunoglobulin A (IgA) is the most abundantly produced antibody isotype and provides the first line of immune protection at mucosal surfaces. However, IgA has long been a divisive molecule with respect to tumor progression. IgA exerts anti- or pro-tumor effect in different tumor types. In this review, we summarize emerging evidence regarding the production and effects of IgA and IgA+ cells in the tumor microenvironment (TME). Moreover, we discuss that the TME cytokines, host diet, microbiome, and metabolites play a pivotal role in controlling the class-switch recombination (CSR) of IgA. The analysis of intratumoral Ig repertoires and determination of metabolites that influence CSR may help establish novel therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Fifth People's Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
153
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W, Wang X. Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol 2021; 9:775462. [PMID: 34869376 PMCID: PMC8633569 DOI: 10.3389/fcell.2021.775462] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.
Collapse
Affiliation(s)
- Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
154
|
Gu WJ, Shen YW, Zhang LJ, Zhang H, Nagle DG, Luan X, Liu SH. The multifaceted involvement of exosomes in tumor progression: Induction and inhibition. MedComm (Beijing) 2021; 2:297-314. [PMID: 34766148 PMCID: PMC8554660 DOI: 10.1002/mco2.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As key performers in intercellular communication, exosomes released by tumor cells play an important role in cancer development, including angiogenesis, cancer‐associated fibroblasts activation, epithelial‐mesenchymal transformation (EMT), immune escape, and pre‐metastatic niche formation. Meanwhile, other cells in tumor microenvironment (TME) can secrete exosomes and facilitate tumor progression. Elucidating mechanisms regarding these processes may offer perspectives for exosome‐based antitumor strategies. In this review, we mainly introduce the versatile roles of tumor or stromal cell derived exosomes in cancer development, with a particular focus on the biological capabilities and functionalities of their diverse contents, such as miRNAs, lncRNAs, and circRNAs. The potential clinical application of exosomes as biomarkers in cancer diagnosis and prognosis is also discussed. Finally, the current antitumor strategies based on exosomes in immunotherapy and targeted delivery for chemotherapeutic or biological agents are summarized.
Collapse
Affiliation(s)
- Wen-Jie Gu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Yi-Wen Shen
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences School of Pharmacy University of Mississippi University Mississippi USA
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| |
Collapse
|
155
|
Shenoy GN, Bhatta M, Bankert RB. Tumor-Associated Exosomes: A Potential Therapeutic Target for Restoring Anti-Tumor T Cell Responses in Human Tumor Microenvironments. Cells 2021; 10:cells10113155. [PMID: 34831378 PMCID: PMC8619102 DOI: 10.3390/cells10113155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) that are released by cells and play a variety of physiological roles including regulation of the immune system. Exosomes are heterogeneous and present in vast numbers in tumor microenvironments. A large subset of these vesicles has been demonstrated to be immunosuppressive. In this review, we focus on the suppression of T cell function by exosomes in human tumor microenvironments. We start with a brief introduction to exosomes, with emphasis on their biogenesis, isolation and characterization. Next, we discuss the immunosuppressive effect of exosomes on T cells, reviewing in vitro studies demonstrating the role of different proteins, nucleic acids and lipids known to be associated with exosome-mediated suppression of T cell function. Here, we also discuss initial proof-of-principle studies that established the potential for rescuing T cell function by blocking or targeting exosomes. In the final section, we review different in vivo models that were utilized to study as well as target exosome-mediated immunosuppression, highlighting the Xenomimetic mouse (X-mouse) model and the Omental Tumor Xenograft (OTX) model that were featured in a recent study to evaluate the efficacy of a novel phosphatidylserine-binding molecule for targeting immunosuppressive tumor-associated exosomes.
Collapse
Affiliation(s)
- Gautam N. Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Maulasri Bhatta
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Correspondence: ; Tel.: +1-716-829-2701
| |
Collapse
|
156
|
The Role of Exosomes and Their Applications in Cancer. Int J Mol Sci 2021; 22:ijms222212204. [PMID: 34830085 PMCID: PMC8622108 DOI: 10.3390/ijms222212204] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are very small extracellular vesicles secreted by multiple cell types and are extensively distributed in various biological fluids. Recent research indicated that exosomes can participate in regulating the tumor microenvironment and impacting tumor proliferation and progression. Due to the extensive enrollment in cancer development, exosomes have become a focus of the search for a new therapeutic method for cancer. Exosomes can be utilized for the therapeutic delivery of small molecules, proteins and RNAs to target cancer cells with a high efficiency. Exosome-carried proteins, lipids and nucleic acids are being tested as promising biomarkers for cancer diagnosis and prognosis, even as potential treatment targets for cancer. Moreover, different sources of exosomes exhibit multiple performances in cancer applications. In this review, we elaborate on the specific mechanism by which exosomes affect the communication between tumors and the microenvironment and state the therapeutic and diagnostic applications of exosomes in cancers.
Collapse
|
157
|
Abu N, Rus Bakarurraini NAA, Nasir SN. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front Immunol 2021; 12:740548. [PMID: 34721407 PMCID: PMC8554306 DOI: 10.3389/fimmu.2021.740548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
158
|
Ma F, Vayalil J, Lee G, Wang Y, Peng G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2021-003217. [PMID: 34642246 PMCID: PMC8513270 DOI: 10.1136/jitc-2021-003217] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic drugs including immune checkpoint blockade antibodies have been approved to treat patients in many types of cancers. However, some patients have little or no reaction to the immunotherapy drugs. The mechanisms underlying resistance to tumor immunotherapy are complicated and involve multiple aspects, including tumor-intrinsic factors, formation of immunosuppressive microenvironment, and alteration of tumor and stromal cell metabolism in the tumor microenvironment. T cell is critical and participates in every aspect of antitumor response, and T cell dysfunction is a severe barrier for effective immunotherapy for cancer. Emerging evidence indicates that extracellular vesicles (EVs) secreted by tumor is one of the major factors that can induce T cell dysfunction. Tumor-derived EVs are widely distributed in serum, tissues, and the tumor microenvironment of patients with cancer, which serve as important communication vehicles for cancer cells. In addition, tumor-derived EVs can carry a variety of immune suppressive signals driving T cell dysfunction for tumor immunity. In this review, we explore the potential mechanisms employed by tumor-derived EVs to control T cell development and effector function within the tumor microenvironment. Especially, we focus on current understanding of how tumor-derived EVs molecularly and metabolically reprogram T cell fates and functions for tumor immunity. In addition, we discuss potential translations of targeting tumor-derived EVs to reconstitute suppressive tumor microenvironment or to develop antigen-based vaccines and drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Feiya Ma
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Jensen Vayalil
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Grace Lee
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Yuqi Wang
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
159
|
Peritumoral B cells drive proangiogenic responses in HMGB1-enriched esophageal squamous cell carcinoma. Angiogenesis 2021; 25:181-203. [PMID: 34617194 PMCID: PMC8494172 DOI: 10.1007/s10456-021-09819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/04/2021] [Indexed: 01/15/2023]
Abstract
Several B-cell subsets with distinct functions and polarized cytokine profiles that extend beyond antibody production have been reported in different cancers. Here we have demonstrated that proliferating B cells were predominantly found in the peritumoral region of esophageal squamous cell carcinoma (ESCC). These B cells were enriched in tumor nests with high expression of high-mobility group box 1 (HMGB1). High densities of peritumoral proliferating B cells and concomitantly high intratumoral HMGB1 expression showed improved prognostic significance, surpassing prognostic stratification of ESCC patients based on HMGB1 positivity alone. This striking association led us to set up models to test whether cancer-derived HMGB1 could shape tumor microenvironment via modulation on B cells. Overexpression of HMGB1 in ESCC cell lines (KYSE510 and EC18) enhanced proliferation and migration of B cells. Transcriptomic analysis showed that migratory B cells exhibited high enrichment of proangiogenic genes. VEGF expression in proliferating B cells was induced upon co-culture of HMGB1-overexpressing tumor cells and B cells. Secretome array profiling of conditioned media (CM) from the co-culture revealed rich expression of proangiogenic proteins. Consequently, incubation of human umbilical vein endothelial cells with CM promoted angiogenesis in tube formation and migration assays. HMGB1 inhibitor, glycyrrhizin, abolishes all the observed proangiogenic phenotypes. Finally, co-injection of B cells and CM with HMGB1-overexpressing tumor cells, but not with glycyrrhizin, significantly enhanced tumor growth associated with increased microvascular density in ESCC xenograft mice model. Our results indicate that cancer-derived HMGB1 elevates angiogenesis in ESCC by shifting the balance toward proangiogenic signals in proliferating B cells.
Collapse
|
160
|
Karmakova ТА, Sergeeva NS, Kanukoev КY, Alekseev BY, Kaprin АD. Kidney Injury Molecule 1 (KIM-1): a Multifunctional Glycoprotein and Biological Marker (Review). Sovrem Tekhnologii Med 2021; 13:64-78. [PMID: 34603757 PMCID: PMC8482821 DOI: 10.17691/stm2021.13.3.08] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
KIM-1 (kidney injury molecule 1) is a transmembrane glycoprotein also known as HAVcr-1 and TIM-1 belongs to the T-cell immunoglobulin and mucin domain family (TIM) of proteins. TIM glycoproteins are presented on the immune cells and participate in the regulation of immune reactions. KIM-1 differs from other members of its family in that it is expressed not only by immunocompetent cells but epithelial cells as well. Cellular and humoral effects mediated by KIM-1 are involved in a variety of physiological and pathophysiological processes. Current understanding of the mechanisms determining the participation of KIM-1 in viral invasion, the immune response regulation, adaptive reactions of the kidney epithelium to acute ischemic or toxic injury, in progression of chronic renal diseases, and kidney cancer development have been presented in this review. Data of clinical researches demonstrating the association of KIM-1 with viral diseases and immune disorders have also been analyzed. Potential application of KIM-1 as urinary or serological marker in renal and cardiovascular diseases has been considered.
Collapse
Affiliation(s)
- Т А Karmakova
- Leading Researcher, Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - N S Sergeeva
- Professor, Head of the Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia; Professor, Department of Biology; Pirogov Russian National Research Medical University, 1 Ostrovitianova St., Moscow, 117997, Russia
| | - К Yu Kanukoev
- Urologist, Department of Urology with Chemotherapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - B Ya Alekseev
- Professor, Deputy General Director for Science; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - А D Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| |
Collapse
|
161
|
Wu Q, Zhang H, Sun S, Wang L, Sun S. Extracellular vesicles and immunogenic stress in cancer. Cell Death Dis 2021; 12:894. [PMID: 34599143 PMCID: PMC8486873 DOI: 10.1038/s41419-021-04171-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
Tumor progression requires bidirectional cell-to-cell communication within a complex tumor microenvironment (TME). Extracellular vesicles (EVs) as carriers have the capacity to shuttle regulatory molecules, including nucleic acids, proteins, and lipids, between cancer cells and multiple stromal cells, inducing remarkable phenotypic alterations in the TME. Recently proposed the concept “immunogenic stress”, which means in some stressed microenvironment, cancer cells can release EVs containing specific immunoregulatory mediators, depending on the initiating stress-associated pathway, thereby provoking the changes of immune status in the TME. Considerable evidence has revealed that the intracellular mechanisms underlying the response to diverse stresses are mainly autophagy, endoplasmic reticulum (ER) stress reactions and the DNA damage response (DDR). In addition, the activation of immunogenic stress responses endows hosts with immune surveillance capacity; in contrast, several cargoes in EVs under immunogenic stress trigger a passive immune response by mediating the function of immune cells. This review discusses the current understanding of the immunogenic stress pathways in cancer and describes the interrelation between EVs and immunogenic stress to propose potential treatment strategies and biomarkers.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| | - Hanpu Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Lijun Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
162
|
Awadasseid A, Wu Y, Zhang W. Extracellular Vesicles (Exosomes) as Immunosuppressive Mediating Variables in Tumor and Chronic Inflammatory Microenvironments. Cells 2021; 10:cells10102533. [PMID: 34685513 PMCID: PMC8533882 DOI: 10.3390/cells10102533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles released by most of the eukaryotic cells. Exosomes’ components include proteins, lipids, microRNA, circular RNA, long noncoding RNA, DNA, etc. Exosomes may carry both pro and anti-inflammatory cargos; however, exosomes are predominantly filled with immunosuppressive cargos such as enzymes and microRNAs in chronic inflammation. Exosomes have surfaced as essential participants in physiological and pathological intercellular communication. Exosomes may prevent or promote the formation of an aggressive tumor and chronic inflammatory microenvironments, thus influencing tumor and chronic inflammatory progression as well as clinical prognosis. Exosomes, which transmit many signals that may either enhance or constrain immunosuppression of lymphoid and myeloid cell populations in tumors, are increasingly becoming recognized as significant mediators of immune regulation in cancer. In this review, we outline the function of exosomes as mediators of immunosuppression in tumor and chronic inflammatory microenvironments, with the aim to improve cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Correspondence: (Y.W.); (W.Z.); Tel.: +86-571-8711-5282 (Y.W.); +86-571-8887-1507 (W.Z.)
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.W.); (W.Z.); Tel.: +86-571-8711-5282 (Y.W.); +86-571-8887-1507 (W.Z.)
| |
Collapse
|
163
|
Santos NL, Bustos SO, Bhatt D, Chammas R, Andrade LNDS. Tumor-Derived Extracellular Vesicles: Modulation of Cellular Functional Dynamics in Tumor Microenvironment and Its Clinical Implications. Front Cell Dev Biol 2021; 9:737449. [PMID: 34532325 PMCID: PMC8438177 DOI: 10.3389/fcell.2021.737449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer can be described as a dynamic disease formed by malignant and stromal cells. The cellular interaction between these components in the tumor microenvironment (TME) dictates the development of the disease and can be mediated by extracellular vesicles secreted by tumor cells (TEVs). In this review, we summarize emerging findings about how TEVs modify important aspects of the disease like continuous tumor growth, induction of angiogenesis and metastasis establishment. We also discuss how these nanostructures can educate the immune infiltrating cells to generate an immunosuppressive environment that favors tumor progression. Furthermore, we offer our perspective on the path TEVs interfere in cancer treatment response and promote tumor recurrence, highlighting the need to understand the underlying mechanisms controlling TEVs secretion and cargo sorting. In addition, we discuss the clinical potential of TEVs as markers of cell state transitions including the acquisition of a treatment-resistant phenotype, and their potential as therapeutic targets for interventions such as the use of extracellular vesicle (EV) inhibitors to block their pro-tumoral activities. Some of the technical challenges for TEVs research and clinical use are also presented.
Collapse
Affiliation(s)
- Nathalia Leal Santos
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Darshak Bhatt
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
164
|
Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, Beer A, Strobl J, Stary G, Dolznig H, Bergmann M. Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer 2021; 8:jitc-2020-000667. [PMID: 32817359 PMCID: PMC7437887 DOI: 10.1136/jitc-2020-000667] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAM) constitute the most abundant immune cells in the tumor stroma initiating pro-inflammatory (M1) or immunosuppressive (M2) responses depending on their polarization status. Advances in tumor immunotherapy call for a detailed understanding of potential immunogenic mechanisms of irradiation routinely applied in rectal cancer patients. METHODS To test the effects of radiotherapy on TAM, we ex vivo irradiated tissue samples of human rectal cancer and assessed the phenotype by flow cytometry. We furthermore evaluated the distribution of leucocyte subsets in tissue sections of patients after short-course radiotherapy and compared findings to non-pretreated rectal cancer using an immunostaining approach. Organotypic assays (OTA) consisting of macrophages, cancer-associated fibroblast and cancer cell lines were used to dissect the immunological consequences of irradiation in macrophages. RESULTS We demonstrate that short-course neoadjuvant radiotherapy in rectal cancer patients is associated with a shift in the polarization of TAM towards an M1-like pro-inflammatory phenotype. In addition, ex vivo irradiation caused an increase in the phagocytic activity and enhanced expression of markers associated with stimulatory signals necessary for T-cell activation. In OTA we observed that this alteration in macrophage polarization could be mediated by extracellular vesicles (EV) derived from irradiated tumor cells. We identified high mobility group box 1 in EV from irradiated tumor cells as a potential effector signal in that crosstalk. CONCLUSIONS Our findings highlight macrophages as potential effector cells upon irradiation in rectal cancer by diminishing their immunosuppressive phenotype and activate pro-inflammation. Our data indicate that clinically applied short-term radiotherapy for rectal cancer may be exploited to stimulate immunogenic macrophages and suggest to target the polarization status of macrophages to enhance future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Victoria Stary
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Vienna, Austria
| | - Brigitte Wolf
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Vienna, Austria
| | - Daniela Unterleuthner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Vienna, Austria
| | - Julia List
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Vienna, Austria
| | - Merjem Talic
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Vienna, Austria
| | - Johannes Laengle
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Vienna, Austria
| | - Andrea Beer
- Department of Pathology, Medical University of Vienna, Vienna, Vienna, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of Visceral Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Vienna, Austria
| |
Collapse
|
165
|
Zhu J, Tang B, Gao Y, Xu S, Tu J, Wang Y, Yang W, Fang S, Weng Q, Zhao Z, Xu M, Yang Y, Chen M, Lu C, Ji J. Predictive Models for HCC Prognosis, Recurrence Risk, and Immune Infiltration Based on Two Exosomal Genes: MYL6B and THOC2. J Inflamm Res 2021; 14:4089-4109. [PMID: 34466015 PMCID: PMC8403029 DOI: 10.2147/jir.s315957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a heterogeneous molecular disease with complex molecular pathogenesis that influences the efficacy of therapies. Exosomes play a crucial role in tumorigenesis and poor disease outcomes in HCC. Objective The aim of this study was to identify the optimal gene set derived from exosomes in HCC with substantial predictive value to construct models for determining prognosis, recurrence risk and diagnosis and to identify candidates suitable for immunotherapy and chemotherapy, thereby providing new ideas for the individualized treatment of patients and for improving prognosis. Methods Weighted correlation network analysis (WGCNA) and univariate and multivariate Cox PH regression analyses were applied to identify exosome-related signatures in the TCGA and exoRbase databases associated with clinical relevance, immunogenic features and tumor progression in HCC. Cell experiments were performed to further confirm the oncogenic effect of MYL6B and THOC2. Results The models for prognosis and recurrence risk prediction were built based on two exosomal genes (MYL6B and THOC2) and were confirmed to be independent predictive factors with superior predictive performance. Patients with high prognostic risk had poorer prognosis than patients with low prognostic risk in all HCC datasets, namely, the TCGA cohort (HR=2.5, P<0.001), the ICGC cohort (HR=3.15, P<0.001) and the GSE14520 cohort (HR=1.85, P=0.004). A higher recurrence probability was found in HCC patients with high recurrence risk than in HCC patients with low recurrence risk in the TCGA cohort (HR=2.44, P<0.001) and the GSE14520 cohort (HR=1.54, P=0.025). High prognostic risk patients had higher expression of immune checkpoint genes, such as PD1, B7H3, B7H5, CTLA4 and TIM3 (P<0.05). Diagnostic models based on the same two genes were able to accurately distinguish HCC patients from normal individuals and HCC from dysplastic nodules. Conclusion Our findings lay the foundation for identifying molecular markers to increase the early detection rate of HCC, improve disease outcomes, and determine more effective individualized treatment options for patients.
Collapse
Affiliation(s)
- Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Yang Gao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Suqin Xu
- Clinical Laboratory, Fuyuan Hospital of Yiwu, Jinhua, 321000, People's Republic of China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Yajie Wang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Weibin Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Shiji Fang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Qiaoyou Weng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| |
Collapse
|
166
|
Zheng Y, Li Y, Feng J, Li J, Ji J, Wu L, Yu Q, Dai W, Wu J, Zhou Y, Guo C. Cellular based immunotherapy for primary liver cancer. J Exp Clin Cancer Res 2021; 40:250. [PMID: 34372912 PMCID: PMC8351445 DOI: 10.1186/s13046-021-02030-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer (PLC) is a common malignancy with high morbidity and mortality. Poor prognosis and easy recurrence on PLC patients calls for optimizations of the current conventional treatments and the exploration of novel therapeutic strategies. For most malignancies, including PLC, immune cells play crucial roles in regulating tumor microenvironments and specifically recognizing tumor cells. Therefore, cellular based immunotherapy has its instinctive advantages in PLC therapy as a novel therapeutic strategy. From the active and passive immune perspectives, we introduced the cellular based immunotherapies for PLC in this review, covering both the lymphoid and myeloid cells. Then we briefly review the combined cellular immunotherapeutic approaches and the existing obstacles for PLC treatment.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
167
|
Yanai H, Hangai S, Taniguchi T. Damage-associated molecular patterns and Toll-like receptors in the tumor immune microenvironment. Int Immunol 2021; 33:841-846. [PMID: 34357403 DOI: 10.1093/intimm/dxab050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 11/14/2022] Open
Abstract
As clinically demonstrated by the success of immunotherapies to improve survival outcomes, tumors are known to gain a survival advantage by circumventing immune surveillance. A defining feature of this is the creation and maintenance of a tumor immune microenvironment (TIME) that directly and indirectly alters the host's immunologic signaling pathways through a variety of mechanisms. Tumor-intrinsic mechanisms that instruct the formation and maintenance of the TIME have been an area of intensive study, such as the identification and characterization of soluble factors actively and passively released by tumor cells that modulate immune cell function. In particular, damage-associated molecular pattern molecules (DAMPs) typically released by necrotic tumor cells are recognized by innate immune receptors such as Toll-like receptors (TLRs) and stimulate immune cells within TIME. Given their broad and potent effects on the immune system, a better understanding for how DAMP and TLR interactions sculpt the TIME to favor tumor growth would identify new strategies and approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
168
|
Deng Y, Cao Y, Wang L, Ye D. The Role and Application of Salivary Exosomes in Malignant Neoplasms. Cancer Manag Res 2021; 13:5813-5820. [PMID: 34326665 PMCID: PMC8314680 DOI: 10.2147/cmar.s321225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 11/23/2022] Open
Abstract
The study of salivary exosomes in malignant neoplasms has attracted widespread attention in the clinical setting. Although a variety of diagnostic and treatment approaches have been proposed, there are some limitations to their application. In recent years, the role of salivary exosomes in cancer has been increasingly studied. Salivary exosomes not only renew and regulate the biological behavior of tumor cells, such as malignant proliferation, migration, and invasion, but they also serve as ideal markers for early diagnosis of diseases and may represent an effective therapeutic target. This article reviews the current research on salivary exosomes in malignant neoplasms.
Collapse
Affiliation(s)
- Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Liuqian Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| |
Collapse
|
169
|
Ma Y, Zheng L, Gao Y, Zhang W, Zhang Q, Xu Y. A Comprehensive Overview of circRNAs: Emerging Biomarkers and Potential Therapeutics in Gynecological Cancers. Front Cell Dev Biol 2021; 9:709512. [PMID: 34368160 PMCID: PMC8335568 DOI: 10.3389/fcell.2021.709512] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Circular RNA (circRNA) is a highly conserved, stable and abundant non-coding RNA (ncRNA). Also, some circRNAs play an essential part in the progression of human cancers. CircRNA is different from traditional linear RNA. CircRNA has a closed circular structure, so it is resistant to exonuclease-mediated degradation and is more stable than linear RNA. Numerous studies have found that many circRNAs can act as a microRNA (miRNA) sponge, interact with RNA-binding proteins, regulate gene transcription, affect alternative splicing and be translated into proteins. Recently, some studies have also indicated that circRNA participates in the progression of gynecological cancers. In addition, circRNA can act as a promising biomarker for the diagnosis of gynecological tumors. Additionally, they can also play a key role in the prognosis of gynecological tumors. Furthermore, to our delight, circRNA may be a potential therapeutic target in gynecological cancers and widely used in clinical practice. This article reviews the functions and related molecular mechanisms of circRNAs in gynecological tumors, and discusses their potential as biomarkers for diagnostic and prognostic and therapeutic targets for gynecological cancers.
Collapse
Affiliation(s)
- Yalan Ma
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yiyin Gao
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Zhang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
170
|
Kang S, Kang J, Shen H, Wu N. Advances in regulatory B cells in autoimmune thyroid diseases. Int Immunopharmacol 2021; 96:107770. [PMID: 34020391 DOI: 10.1016/j.intimp.2021.107770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Regulatory B cells (Bregs) are a subset of B cells that can downregulate the immune and inflammatory responses. The development of B cells in humans and mice is differs. The Positioning and targeted regulation of Bregs has a positive effect on autoimmune diseases. Autoimmune thyroid disease (AITD) is a common autoimmune disease. This review introduces the history and origins of Bregs. It summarizes the different phenotypes and functionalities of Breg cells related to AITD and analyzes the reasons for the differences in Breg expression frequencies in Graves disease (GD) and Hashimoto's Thyroiditis (HT). A number of functional defects of regulatory B cells may be the newly discovered cause of AITD. This paper sheds new light on the role and prospects of Bregs in the progression and treatment of AITD.
Collapse
Affiliation(s)
- Shaoyang Kang
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Junning Kang
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
171
|
Qin M, Wang D, Fang Y, Zheng Z, Liu X, Wu F, Wang L, Li X, Hui B, Ma S, Tang W, Pan X. Current Perspectives on B Lymphocytes in the Immunobiology of Hepatocellular Carcinoma. Front Oncol 2021; 11:647854. [PMID: 34235074 PMCID: PMC8256159 DOI: 10.3389/fonc.2021.647854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune cells infiltrating tumors are capable of significantly impacting carcinogenesis through cancer promotion and anticancer responses. There are many aspects of hepatocellular carcinoma (HCC) related T lymphocytes that are undergoing extensive studies, whereas the effect exerted by B lymphocytes remains a less researched area. In this study, the latest research on the effect of B lymphocytes as they infiltrate tumors in relation to HCC is presented. Their prognosis-related importance is analyzed, along with their function in the tumor microenvironment (TME), as well as the way that B cell biology can be employed to help create a B cell therapy strategy for HCC.
Collapse
Affiliation(s)
- Miaomiao Qin
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danping Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiying Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijie Ma
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
172
|
Lee YT, Tran BV, Wang JJ, Liang IY, You S, Zhu Y, Agopian VG, Tseng HR, Yang JD. The Role of Extracellular Vesicles in Disease Progression and Detection of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3076. [PMID: 34203086 PMCID: PMC8233859 DOI: 10.3390/cancers13123076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and one of the leading causes of cancer-related death worldwide. Despite the improvements in surveillance and treatment, the prognosis of HCC remains poor. Extracellular vesicles (EVs) are a heterogeneous group of phospholipid bilayer-enclosed particles circulating in the bloodstream and mediating intercellular communication. Emerging studies have shown that EVs play a crucial role in regulating the proliferation, immune escape, and metastasis of HCC. In addition, because EVs are present in the circulation at relatively early stages of disease, they are getting attention as an attractive biomarker for HCC detection. Over the past decade, dedicated efforts have been made to isolate EVs more efficiently and make them useful tools in different clinical settings. In this review article, we provide an overview of the EVs isolation methods and highlight the role of EVs as mediators in the pathogenesis and progression of HCC. Lastly, we summarize the potential applications of EVs in early-stage HCC detection.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Benjamin V. Tran
- Department of Surgery, University of California, Los Angeles, CA 90095, USA; (B.V.T.); (V.G.A.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90048, USA
| | - Jasmine J. Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Icy Y. Liang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Vatche G. Agopian
- Department of Surgery, University of California, Los Angeles, CA 90095, USA; (B.V.T.); (V.G.A.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90048, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Comprehensive Transplant Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
173
|
Qin Y, Peng F, Ai L, Mu S, Li Y, Yang C, Hu Y. Tumor-infiltrating B cells as a favorable prognostic biomarker in breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:310. [PMID: 34118931 PMCID: PMC8199375 DOI: 10.1186/s12935-021-02004-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background Tumor-infiltrating B lymphocytes (TIL-Bs) is a heterogeneous population of lymphocytes. The prognostic value of TIL-Bs in patients with breast cancer remains controversial. Here we conducted this meta-analysis to clarify the association of TIL-Bs with outcomes of patients with breast cancer. Methods We searched PubMed, Embase, and Web of Science to identify relevant studies assessing the prognostic significance of TIL-Bs in patients with breast cancer. Fixed- or random-effects models were used to evaluate the pooled hazard ratios (HRs) for overall survival (OS), breast cancer-specific survival (BCSS), disease-free survival (DFS), and relapse-free survival (RFS) in breast cancer. Results
A total of 8 studies including 2628 patients were included in our study. Pooled analyses revealed that high level of TIL-Bs was associated with longer OS (pooled HR = 0.42, 95% CI 0.24–0.60), BCSS (pooled HR = 0.66, 95% CI 0.47–0.85), and DFS/RFS (pooled HR = 0.41, 95% CI 0.27–0.55). Conclusions This meta-analysis suggests that TIL-Bs could be a promising prognostic marker for breast cancer. Novel therapeutic strategies for breast cancer treatment could be developed by enhancement of B cell-mediated antitumor immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02004-9.
Collapse
Affiliation(s)
- You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China.
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China
| | - Yuting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chensu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China.
| |
Collapse
|
174
|
Li H, Han G, Li X, Li B, Wu B, Jin H, Wu L, Wang W. MAPK-RAP1A Signaling Enriched in Hepatocellular Carcinoma Is Associated With Favorable Tumor-Infiltrating Immune Cells and Clinical Prognosis. Front Oncol 2021; 11:649980. [PMID: 34178637 PMCID: PMC8222816 DOI: 10.3389/fonc.2021.649980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background MAPK-RAP1A signaling, which is involved in cancer progression, remains to be defined. Upregulation of MAPK-RAP1A signaling accounts for most cancers that harbor high incident rate, such as non-small cell lung cancer (NSCLC) and pancreatic cancer, especially in hepatocellular carcinoma (HCC). MAPK-RAP1A signaling plays an important function as clinical diagnosis and prognostic value in cancers, and the role of MAPK-RAP1A signaling related with immune infiltration for HCC should be elucidated. Methods Microarray data and patient cohort information from The Cancer Genome Atlas (TCGA; n = 425) and International Cancer Genome Consortium (ICGC; n = 405) were selected for validation. The Cox regression and least absolute shrinkage and selection operator (LASSO) were used to construct a clinical prognostic model in this analysis and validation study. We also tested the area under the curve (AUC) of the risk signature that could reflect the status of predictive power by determining model. MAPK-RAP1A signaling is also associated with tumor-infiltrating immune cells (TICs) as well as clinical parameters in HCC. The GSEA and CIBERSORT were used to calculate the proportion of TICs, which should be beneficial for the clinical characteristics (clinical stage, distant metastasis) and positively correlated with the survival of HCC patients. Results HCC patients with enrichment of MAPK-RAP1A signaling were associated with clinical characteristics and favorable T cell gamma delta (Vδ T cells), and STMN1, RAP1A, FLT3, HSPA8, ANGPT2, and PGF were used as candidate biomarkers for risk scores of HCC. To determine the molecular mechanism of this signature gene association, Gene Set Enrichment Analysis (GSEA) was proposed. Cytokine-cytokine receptor interaction, TGF-β signaling pathway, and Intestinal immune network for IgA production gene sets were closely related in MAPK-RAP1A gene sets. Thus, we established a novel prognostic prediction of HCC to deepen learning of MAPK-RAP1A signaling pathways. Conclusion Our findings demonstrated that HCC patients with enrichment of MAPK-RAP1A signaling were associated with clinical characteristics and favorable T cell gamma delta (Vδ T cells), which may be a novel prognostic prediction of HCC.
Collapse
Affiliation(s)
- Hailin Li
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Guangyu Han
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xing Li
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Bowen Li
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingli Wu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Wang
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
175
|
Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC, Medina TDS. B Cell Orchestration of Anti-tumor Immune Responses: A Matter of Cell Localization and Communication. Front Cell Dev Biol 2021; 9:678127. [PMID: 34164398 PMCID: PMC8215448 DOI: 10.3389/fcell.2021.678127] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The immune system plays a crucial role in cancer development either by fostering tumor growth or destroying tumor cells, which has open new avenues for cancer immunotherapy. It was only over the last decade that the role of B cells in controlling anti-tumor immune responses in the tumor milieu has begun to be appreciated. B and plasma cells can exert anti-tumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade, even though their effector functions extend beyond the classical humoral immunity. In tumor tissues, B cells can be found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs), well-organized non-encapsulated structures composed of immune and stromal cells. These structures reflect a process of lymphoid neogenesis occurring in peripheral tissues upon long-lasting exposure to inflammatory signals. The TLS provides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector functions, as well as the generation of effector B cells, which can be further differentiated in either antibody-secreting plasma cells or memory B cells. Of clinical interest, the crosstalk between B cells and antigen-experienced and exhausted CD8+ T cells within mature TLS was recently associated with improved response to immune checkpoint blockade (ICB) in melanoma, sarcoma and lung cancer. Otherwise, B cells sparsely distributed in the tumor microenvironment or organized in immature TLSs were found to exert immune-regulatory functions, inhibiting anti-tumor immunity through the secretion of anti-inflammatory cytokines. Such phenotype might arise when B cells interact with malignant cells rather than T and dendritic cells. Differences in the spatial distribution likely underlie discrepancies between the role of B cells inferred from human samples or mouse models. Many fast-growing orthotopic tumors develop a malignant cell-rich bulk with reduced stroma and are devoid of TLSs, which highlights the importance of carefully selecting pre-clinical models. In summary, strategies that promote TLS formation in close proximity to tumor cells are likely to favor immunotherapy responses. Here, the cellular and molecular programs coordinating B cell development, activation and organization within TLSs will be reviewed, focusing on their translational relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Gabriela Sarti Kinker
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Pathological Sciences, Londrina State University, Londrina, Brazil
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | - Alexandre Silva Chaves
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
176
|
Hou PP, Chen HZ. Extracellular vesicles in the tumor immune microenvironment. Cancer Lett 2021; 516:48-56. [PMID: 34082025 DOI: 10.1016/j.canlet.2021.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have gained significant attention in recent decades as major mediators of intercellular communication that are involved in various essential physiological and pathological processes. They are secreted by almost all cell types and carry bioactive materials, such as proteins, lipids and nucleic acids, that can be transmitted from host cells to recipient cells, thereby eliciting phenotypic and functional alterations in the recipient cells. Recent evidence shows that EVs play essential roles in remodeling the tumor immune microenvironment (TIME). EVs derived from tumor cells and immune cells mediate mutual communication at proximal and distal sites, which determines tumor fate and antitumor therapeutic effectiveness. In this review, the current understanding of EVs and their roles in remodeling the TIME and modulating tumor-specific immunity are summarized. We mainly discuss the mutual regulation between tumor cells and tumor-infiltrating immune cells through the delivery of EVs in the TIME. We also describe the limitations of current studies and discuss directions for further research.
Collapse
Affiliation(s)
- Pei-Pei Hou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
177
|
Calunduloside E inhibits HepG2 cell proliferation and migration via p38/JNK-HMGB1 signalling axis. J Pharmacol Sci 2021; 147:18-26. [PMID: 34294368 DOI: 10.1016/j.jphs.2021.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a highly conserved chromosome protein, is considered as a potential therapeutic target and novel biomarker because of its regulation in the proliferation and metastasis of Hepatocellular carcinoma (HCC). Calenduloside E (CE), a natural active product, has been reported to anti-cancer effect. However, the role and underlying molecular mechanism of CE in HCC is still unclear. The purpose of this study is to investigate the effects of CE on the proliferation and migration of HCC, and then explore the possible underlying molecular mechanism. HepG2 cells were treated with CE or transfected with HMGB1 shRNA plasmids, EdU and colony formation assays were used to detect cell proliferation ability. Wound healing and transwell assays were used to determine the role of CE in cell migration. The expression of Cyclins, PCNA, MMPs, HMGB1, N-cadherin, E-cadherin and phosphorylation of p38, ERK and JNK were all detected using Western blotting. Our results showed that CE inhibited HepG2 cells proliferation and migration in a dose dependent manner; reduced the expression levels of Cycins, PCNA, HMGB1, MMPs and N-cadherin; up-regulated E-cadherin expression; enhanced the phosphorylation of p38 and JNK signalling pathways. Blocking the activation of p38 and JNK obviously reversed CE-mediated inhibitory effects on HepG2 cell proliferation and migration; reversed CE-induced down-regulation of Cyclins, PCNA, MMPs, N-cadherin and HMGB1, as well as E-cadherin up-regulation. In conclusion, our study suggested that CE reduces the expression levels of Cyclins, MMPs and epithelial-mesenchymal transformation (EMT) through p38/JNK-HMGB1 signaling axis and then inhibits HepG2 cells proliferation and migration in HepG2 cells. This study provides a new perspective for the anti-tumour molecular mechanism of CE in HCC.
Collapse
|
178
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
179
|
Lindblad KE, Ruiz de Galarreta M, Lujambio A. Tumor-Intrinsic Mechanisms Regulating Immune Exclusion in Liver Cancers. Front Immunol 2021; 12:642958. [PMID: 33981303 PMCID: PMC8107356 DOI: 10.3389/fimmu.2021.642958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Representing the fourth leading cause of cancer-related mortality worldwide, liver cancers constitute a major global health concern. Hepatocellular carcinoma (HCC), the most frequent type of liver cancer, is associated with dismal survival outcomes and has traditionally had few treatment options available. In fact, up until 2017, treatment options for advanced HCC were restricted to broad acting tyrosine kinase inhibitors, including Sorafenib, which has been the standard of care for over a decade. Since 2017, a multitude of mono- and combination immunotherapies that include pembrolizumab, nivolumab, ipilumumab, atezolizumab, and bevacizumab have been FDA-approved for the treatment of advanced HCC with unprecedented response rates ranging from 20 to 30% of patients. However, this also means that ~70% of patients do not respond to this treatment and currently very little is known regarding mechanisms of action of these immunotherapies as well as predictors of response to facilitate patient stratification. With the recent success of immunotherapies in HCC, there is a pressing need to understand mechanisms of tumor immune evasion and resistance to these immunotherapies in order to identify biomarkers of resistance or response. This will enable better patient stratification as well as the rational design of combination immunotherapies to restore sensitivity in resistant patients. The aim of this review is to summarize the current knowledge to date of tumor-intrinsic mechanisms of immune escape in liver cancer, specifically in the context of HCC.
Collapse
Affiliation(s)
- Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
180
|
Xue D, Han J, Liu Y, Tuo H, Peng Y. Current perspectives on exosomes in the diagnosis and treatment of hepatocellular carcinoma (review). Cancer Biol Ther 2021; 22:279-290. [PMID: 33847207 PMCID: PMC8183537 DOI: 10.1080/15384047.2021.1898728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC), a malignant tumor, is poor. Tumor recurrence and metastasis are the major challenges for the treatment of HCC. Various studies have demonstrated that exosomes, which are loaded with various biomolecules including nucleic acids, lipids, and proteins are involved in the recurrence and metastasis of HCC. Additionally, exosomes mediate various biological processes, such as immune response, cell apoptosis, angiogenesis, thrombosis, autophagy, and intercellular signal transduction. In cancer, exosomes regulate cancer cell differentiation, development, and drug resistance. Circular RNAs, microRNAs, and proteins in the exosomes can serve as early diagnostic and prognostic markers for HCC. As exosomes are characterized by low immunogenicity and high stability in the tissues and circulation, they can be used to deliver the drugs in cancer therapies.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
181
|
Qi X, Chen S, He H, Wen W, Wang H. The role and potential application of extracellular vesicles in liver cancer. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1281-1294. [PMID: 33847910 DOI: 10.1007/s11427-020-1905-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Liver cancer is one of the most common causes of cancer-related death worldwide and mainly includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Extracellular vesicles (EVs) are membrane-derived nanometer-sized vesicles that can be released by different cell types under normal and pathological conditions and thus play important roles in the transmission of biological information between cells. Increasing evidence suggests that liver cancer cell-derived EVs may help establish a favorable microenvironment to support the proliferation, invasion and metastasis of cancer cells. In this review, we summarized the role of EVs in the tumor microenvironment (TME) during the development and progression of liver cancer. As messenger carriers, EVs are loaded by various biomolecules, such as proteins, RNA, DNA, lipids and metabolites, making them potential liquid biopsy biomarkers for the diagnosis and prognosis of liver cancer. We also highlighted the progress of EVs as antigen carriers and EV-based therapeutics in preclinical studies of liver cancer.
Collapse
Affiliation(s)
- Xuewei Qi
- Cancer Research Center, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Huisi He
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
182
|
Ni YA, Chen H, Nie H, Zheng B, Gong Q. HMGB1: An overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 2021; 110:987-998. [PMID: 33784425 DOI: 10.1002/jlb.3mr0121-277r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant architectural chromosomal protein that has multiple biologic functions: gene transcription, DNA replication, DNA-damage repair, and cell signaling for inflammation. HMGB1 can be released passively by necrotic cells or secreted actively by activated immune cells into the extracellular milieu after injury. Extracellular HMGB1 acts as a damage-associated molecular pattern to initiate the innate inflammatory response to infection and injury by communicating with neighboring cells through binding to specific cell-surface receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Numerous studies have suggested HMGB1 to act as a key protein mediating the pathogenesis of chronic and acute liver diseases, including nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic ischemia/reperfusion injury. Here, we provide a detailed review that focuses on the role of HMGB1 and HMGB1-mediated inflammatory signaling pathways in the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Yuan-Ao Ni
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| |
Collapse
|
183
|
N J, J T, Sl N, Gt B. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology 2021; 10:1900508. [PMID: 33854820 PMCID: PMC8018489 DOI: 10.1080/2162402x.2021.1900508] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic cellular aggregates that resemble secondary lymphoid organs in their composition and structural organization. In contrast to secondary lymphoid organs, TLS are not imprinted during embryogenesis but are formed in non-lymphoid tissues in response to local inflammation. TLS structures exhibiting a variable degree of maturation are found in solid tumors. They are composed of various immune cell types including dendritic cells and antigen-specific B and T lymphocytes, that together, actively drive the immune response against tumor development and progression. This review highlights the successive steps leading to tumor TLS formation and its association with clinical outcomes. We discuss the role played by tumor-infiltrating B lymphocytes and plasma cells, their prognostic value in solid tumors and immunotherapeutic responses and their potential for future targeting.
Collapse
Affiliation(s)
- Jacquelot N
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Tellier J
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nutt Sl
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Belz Gt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,The University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Australia
| |
Collapse
|
184
|
He R, Wang Z, Shi W, Yu L, Xia H, Huang Z, Liu S, Zhao X, Xu Y, Yam JWP, Cui Y. Exosomes in hepatocellular carcinoma microenvironment and their potential clinical application value. Biomed Pharmacother 2021; 138:111529. [PMID: 34311529 DOI: 10.1016/j.biopha.2021.111529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become a challenging disease in the world today. Due to the limitations on the current diagnosis and treatment as well as its high metastatic ability and high recurrence rate, HCC gradually becomes the second deadliest tumor. Exosomes are one of the types of cell-derived vesicles and can carry intracellular materials such as genetic materials, lipids, and proteins. In recent years, it has been verified that exosomes are linked to numerous physiological and pathological processes, including HCC. However, how exosomes affect HCC progression remains largely unknown. In this review, the exosome-mediated cellular material transfer between cells of different types in the HCC microenvironment and their effects on the behaviors and functions of recipient cells are studied. Furthermore, we also addressed the underlying molecular mechanisms. We believe that new light on the diagnosis of this cancer as well as its treatment strategies will be shed after a collation of literature in this area.
Collapse
Affiliation(s)
- Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhongrui Wang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wenguang Shi
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Liang Yu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Shuqiang Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
185
|
Zhang J, Song Q, Wu M, Zheng W. The Emerging Roles of Exosomes in the Chemoresistance of Hepatocellular Carcinoma. Curr Med Chem 2021; 28:93-109. [PMID: 32000636 DOI: 10.2174/0929867327666200130103206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a leading incidence of cancer-related mortality worldwide. Despite the progress of treatment options, there remains low efficacy for patients with intermediate-advanced HCC, due to tumor metastasis, recurrence and chemoresistance. Increasing evidence suggests that exosomes in the tumor microenvironment (TME), along with other extracellular vesicles (EVs) and cytokines, contribute to the drug chemosensitivity of cancer cells. Exosomes, the intercellular communicators in various biological activities, have shown to play important roles in HCC progression. This review summarizes the underlying associations between exosomes and chemoresistance of HCC cells. The exosomes derived from distinct cell types mediate the drug resistance by regulating drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cell (CSC) properties, autophagic phenotypes, as well as the immune response. In summary, TME-related exosomes can be a potential target to reverse chemoresistance and a candidate biomarker of drug efficacy in HCC patients.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, 27157 NC, United States
| | - Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| |
Collapse
|
186
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
187
|
Use of Toll-Like Receptor (TLR) Ligation to Characterize Human Regulatory B-Cells Subsets. Methods Mol Biol 2021; 2270:235-261. [PMID: 33479902 DOI: 10.1007/978-1-0716-1237-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs), which constitute key components in the recognition of pathogens, thereby initiating innate immune responses and promoting adaptive immune responses. In B cells, TLR ligation is important for their activation and, together with CD40, for their differentiation. TLR ligands are also strong promoters of regulatory B (Breg)-cell development, by enhancing the production of IL-10 and their capacity to induce tolerance. In inflammatory diseases, such as autoimmunity or allergies, Breg-cell function is often impaired, while in chronic infections, such as with helminths, or cancer, Breg-cell function is boosted. Following pathogen exposure, B cells can respond directly by producing cytokines and/or IgM (innate response) and develop into various memory B (Bmem)-cell subsets with class-switched immunoglobulin receptors. Depending on the disease state or chronic infection conditions, various Breg subsets can be recognized as well. Currently, a large array of surface markers is known to distinguish between these large range of B-cell subsets. In recent years, the development of mass cytometers and spectral flow cytometry has allowed for high-dimensional detection of up to 48 markers, including both surface and intracellular/intranuclear markers. Therefore, this novel technology is highly suitable to provide a comprehensive overview of Bmem/Breg-cell subsets in different disease states and/or in clinical intervention trials. Here, we provide detailed instructions of the steps necessary to obtain high-quality data for high-dimensional analysis of multiple human Breg-cell subsets using various TLR ligands.
Collapse
|
188
|
Toll-Like Receptor 2 at the Crossroad between Cancer Cells, the Immune System, and the Microbiota. Int J Mol Sci 2020; 21:ijms21249418. [PMID: 33321934 PMCID: PMC7763461 DOI: 10.3390/ijms21249418] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor 2 (TLR2) expressed on myeloid cells mediates the recognition of harmful molecules belonging to invading pathogens or host damaged tissues, leading to inflammation. For this ability to activate immune responses, TLR2 has been considered a player in anti-cancer immunity. Therefore, TLR2 agonists have been used as adjuvants for anti-cancer immunotherapies. However, TLR2 is also expressed on neoplastic cells from different malignancies and promotes their proliferation through activation of the myeloid differentiation primary response protein 88 (MyD88)/nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathway. Furthermore, its activation on regulatory immune cells may contribute to the generation of an immunosuppressive microenvironment and of the pre-metastatic niche, promoting cancer progression. Thus, TLR2 represents a double-edge sword, whose role in cancer needs to be carefully understood for the setup of effective therapies. In this review, we discuss the divergent effects induced by TLR2 activation in different immune cell populations, cancer cells, and cancer stem cells. Moreover, we analyze the stimuli that lead to its activation in the tumor microenvironment, addressing the role of danger, pathogen, and microbiota-associated molecular patterns and their modulation during cancer treatments. This information will contribute to the scientific debate on the use of TLR2 agonists or antagonists in cancer treatment and pave the way for new therapeutic avenues.
Collapse
|
189
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
190
|
Shang J, Zha H, Sun Y. Phenotypes, Functions, and Clinical Relevance of Regulatory B Cells in Cancer. Front Immunol 2020; 11:582657. [PMID: 33193391 PMCID: PMC7649814 DOI: 10.3389/fimmu.2020.582657] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
In immune system, B cells are classically positive modulators that regulate inflammation and immune responses. Regulatory B cells (Bregs) are a subset of B cells which play crucial roles in various conditions, including infection, allergies, autoimmune diseases, transplantation, and tumors. Until now, unequivocal surface markers for Bregs still lack consensus, although numerous Breg subsets have been identified. Generally, Bregs exert their immunoregulatory functions mainly through cytokine secretion and intercellular contact. In the tumor microenvironment, Bregs suppress effector T cells, induce regulatory T cells and target other tumor-infiltrating immune cells, such as myeloid-derived suppressor cells, natural killer cells and macrophages, to hamper anti-tumor immunity. Meanwhile, the cross-regulations between Bregs and tumor cells often result in tumor escape from immunosurveillance. In addition, accumulating evidence suggests that Bregs are closely associated with many clinicopathological factors of cancer patients and might be potential biomarkers for accessing patient survival. Thus, Bregs are potential therapeutic targets for future immunotherapy in cancer patients. In this review, we will discuss the phenotypes, functions, and clinical relevance of Bregs in cancer.
Collapse
Affiliation(s)
- Jin Shang
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, China
| | - Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yufa Sun
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, China
| |
Collapse
|
191
|
Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J 2020; 288:10-35. [PMID: 32910536 DOI: 10.1111/febs.15558] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are nanosized extracellular vesicles of endosomal origin that enclose a multitude of functional biomolecules. Exosomes have emerged as key players of intercellular communication in physiological and pathological conditions. In cancer, depending on the context, exosomes can oppose or potentiate the development of an aggressive tumor microenvironment, thereby impacting tumor progression and clinical outcome. Increasing evidence has established exosomes as important mediators of immune regulation in cancer, as they deliver a plethora of signals that can either support or restrain immunosuppression of lymphoid and myeloid cell populations in tumors. Here, we review the current knowledge related to exosome-mediated regulation of lymphoid (T lymphocytes, B lymphocytes, and NK cells) and myeloid (macrophages, dendritic cells, monocytes, myeloid-derived suppressor cells, and neutrophils) cell populations in cancer. We also discuss the translational potential of engineered exosomes as immunomodulatory agents for cancer therapy.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
192
|
Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell Signal 2020; 75:109771. [PMID: 32896608 DOI: 10.1016/j.cellsig.2020.109771] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Exosomes represent an evolutionarily conserved signaling pathway which can act as an alarming mechanism in responses to diverse stresses, e.g. chronic inflammation activates the budding of exosomal vesicles in both immune and non-immune cells. Exosomes can contain both pro- and anti-inflammatory cargos but in chronic inflammation, exosomes mostly carry immunosuppressive cargos, e.g. enzymes and miRNAs. The aging process is associated with chronic low-grade inflammation and the accumulation of pro-inflammatory senescent cells into tissues. There is clear evidence that aging increases the number of exosomes in both the circulation and tissues. Especially, the secretion of immunosuppressive exosomes robustly increases from senescent cells. There are observations that the exosomes from senescent cells are involved in the expansion of senescence into neighbouring cells. Interestingly, the age-related exosomes contain immune suppressive cargos which enhance the immunosuppression within recipient immune cells, i.e. tissue-resident and recruited immune cells including M2 macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). It seems that increased immunosuppression with aging impairs the clearance of senescent cells and their accumulation within tissues augments the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
193
|
Kong X, Fu M, Niu X, Jiang H. Comprehensive Analysis of the Expression, Relationship to Immune Infiltration and Prognosis of TIM-1 in Cancer. Front Oncol 2020; 10:1086. [PMID: 33014768 PMCID: PMC7498659 DOI: 10.3389/fonc.2020.01086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
TIM-1 is a critical gene that regulates T-helper cell development. However, little research has revealed the distribution, prognosis, and immune infiltration of TIM-1 in cancers. TCGA, GEO, Oncomine, TIMER, Kaplan-Meier, PrognoScan, GEPIA, TISIDB, and HPA databases were used to analyze TIM-1 in cancers. High TIM-1 expression was observed in bladder, cholangio, head and neck, colorectal, gastric, kidney, liver, lung adenocarcinoma, skin, uterine corpus endometrial, and pancreatic cancers compared to the normal tissues, and immunofluorescence shows that TIM-1 is mainly localized in vesicles. Simultaneously, high TIM-1 expression was closely related with poorer overall survival in gastric, lung adenocarcinoma, and poorer disease-specific survival in gastric cancer in the TCGA cohort, and was validated in the GEO cohort. Moreover, high expression of TIM-1, correlated with clinical relevance of gastric cancer and lung adenocarcinoma, was associated with tumor-infiltrating lymphocytes in lung adenocarcinoma and gastric cancer. Finally, immunohistochemistry showed TIM-1 expression was higher in lung adenocarcinoma and gastric cancer compared to the normal tissues. In summary, we applied integrated bioinformatics approaches to suggest that TIM-1 can be used as a prognostic biomarker in gastric and lung adenocarcinoma, which might provide a novel direction to explore the pathogenesis of gastric and lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoxiao Kong
- Department of General Surgery, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Meili Fu
- Department of Infectious Diseases, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Hongxing Jiang
- Department of General Surgery, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| |
Collapse
|
194
|
Boussadia Z, Zanetti C, Parolini I. Role of microenvironmental acidity and tumor exosomes in cancer immunomodulation. Transl Cancer Res 2020; 9:5775-5786. [PMID: 35117938 PMCID: PMC8798230 DOI: 10.21037/tcr.2020.03.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is a complex milieu in which tumor grows, develops and progresses through a complex bi-directional cross-talk with immune-, stromal cells, and the extracellular matrix (ECM). In this context, tumor-derived exosomes (TE) drive the fate of tumor cells through a stimulatory or inhibitory role on immune system. In fact, TE can induce the apoptosis of cells of the immune surveillance, and enhance the proliferation and survival of stromal cells that sustain tumor development. However, depending on the molecular cargo, TE are also able to stimulate anti-tumor immune response. TME is mainly characterized by the acidic pH that contributes to tumor development, through multiple mechanisms. Among these, the impairment of tumor immune surveillance does occur within acidic TME, and is directly mediated by acidic pH or by molecular cargo carried by TE. Little is known about the role of TE in immunomodulation in acidic conditions. The present review summarizes the studies describing the role of microenvironmental acidity and TE in immune system modulation.
Collapse
Affiliation(s)
- Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Cristiana Zanetti
- Deparment of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Isabella Parolini
- Deparment of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
195
|
Ma S, Yang X, Zhou H, Zhang C, Kang J, Sun D. Combination of CpG Oligodeoxynucleotide and Anti-4-1BB Antibody in the Treatment of Multiple Hepatocellular Carcinoma in Mice. Onco Targets Ther 2020; 13:6997-7005. [PMID: 32764990 PMCID: PMC7381816 DOI: 10.2147/ott.s260353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background To investigate the effect of topical application of CpG oligodeoxynucleotide (CpG-ODN) combined with anti-4-1BB antibodies on mouse HCC multiple tumor-bearing models and the degree of improvement of anti-tumor immune response in mice. Materials and Methods We inoculated each BALB/c male mouse subcutaneously with one tumor in the axillae of the four limbs and divided them into four groups. We only selected the tumor-bearing part of the left lower limb for drug treatment. We measured the tumor-bearing volume of mice in each group. Then, we tested the organ coefficients of mice, the concentrations of IL-12 and IFN-γ in peripheral blood, the ratio of spleen Tregs and CD8+T cells, the spleen CTL killing activity, and the survival time of mice. Results We found that the tumor-bearing volume decreased significantly after the combination of CpG-ODN and anti-4-1BB antibody (P<0.001). The organ coefficients of treated mice were not significantly different from normal mice (P>0.05). The concentration of IL-12 and IFN-in serum and the ratio of CD8+T cells in spleen were increased, while the ratio of spleen Tregs was decreased. CTL activity of spleen was increased. The survival time of mice was significantly prolonged (P<0.001). Conclusion The treatment programme combining CpG-ODN with an anti-4-1BB antibody can significantly reduce tumor growth at the treatment site, slow the growth rate of metastases and improve host prognosis.
Collapse
Affiliation(s)
- Shizhao Ma
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Xinying Yang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Huifang Zhou
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Chaoqun Zhang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Jiwen Kang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Dianxing Sun
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| |
Collapse
|
196
|
Ma S, Kong S, Wang F, Ju S. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Mol Cancer 2020; 19:119. [PMID: 32758239 PMCID: PMC7409473 DOI: 10.1186/s12943-020-01231-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted treatment, which can specifically kill tumour cells without affecting normal cells, is a new approach for tumour therapy. However, tumour cells tend to acquire resistance to targeted drugs during treatment. Circular RNAs (circRNAs) are single-stranded RNA molecules with unique structures and important functions. With the development of RNA sequencing technology, circRNAs have been found to be widespread in tumour-resistant cells and to play important regulatory roles. In this review, we present the latest advances in circRNA research and summarize the various mechanisms underlying their regulation. Moreover, we review the role of circRNAs in the chemotherapeutic resistance of tumours and explore the clinical value of circRNA regulation in treating tumour resistance.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
197
|
Miyazaki Y, Niino M. Regulatory B cells in neuroimmunological diseases. CLINICAL AND EXPERIMENTAL NEUROIMMUNOLOGY 2020; 11:156-162. [DOI: 10.1111/cen3.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2025]
Abstract
AbstractThe idea that B cells participate in immune regulation was initially postulated from observations in animals in the 1970s. It is now established that certain B‐cell populations, known as regulatory B cells, regulate immune reactions in various animal models of autoimmunity, chiefly through the production of interleukin‐10. Subsequent to these findings in animals, several B‐cell subsets have been identified in human blood that are capable of producing interleukin‐10 when stimulated ex vivo. Although we still do not have direct evidence showing that these interleukin‐10‐producing B cells regulate autoimmunity in humans, their functional and phenotypic homology to regulatory B cells in animals, their abnormalities reported in various autoimmune diseases and their alterations in response to treatments all suggest their regulatory role in humans. In this review, the role of regulatory B cells in three neuroimmunological diseases – multiple sclerosis, neuromyelitis optica spectrum disorder and myasthenia gravis – are discussed.
Collapse
Affiliation(s)
- Yusei Miyazaki
- Department of Clinical Research National Hospital Organization Hokkaido Medical Center Sapporo Japan
- Department of Neurology National Hospital Organization Hokkaido Medical Center Sapporo Japan
| | - Masaaki Niino
- Department of Clinical Research National Hospital Organization Hokkaido Medical Center Sapporo Japan
| |
Collapse
|
198
|
Schroeder JC, Puntigam L, Hofmann L, Jeske SS, Beccard IJ, Doescher J, Laban S, Hoffmann TK, Brunner C, Theodoraki MN, Schuler PJ. Circulating Exosomes Inhibit B Cell Proliferation and Activity. Cancers (Basel) 2020; 12:cancers12082110. [PMID: 32751214 PMCID: PMC7464446 DOI: 10.3390/cancers12082110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Head and neck squamous cell carcinoma (HNSCC) is characterized by a distinctive suppression of the anti-tumor immunity, both locally in the tumor microenvironment (TME) and the periphery. Tumor-derived exosomes mediate this immune suppression by directly suppressing T effector function and by inducing differentiation of regulatory T cells. However, little is known about the effects of exosomes on B cells. (2) Methods: Peripheral B cells from healthy donors and HNSCC patients were isolated and checkpoint receptor expression was analyzed by flow cytometry. Circulating exosomes were isolated from the plasma of HNSCC patients (n = 21) and healthy individuals (n = 10) by mini size-exclusion chromatography. B cells from healthy individuals were co-cultured with isolated exosomes for up to 4 days. Proliferation, viability, surface expression of checkpoint receptors, and intracellular signaling were analyzed in B cells by flow cytometry. (3) Results: Expression of the checkpoint receptors PD-1 and LAG3 was increased on B cells from HNSCC patients. The protein concentration of circulating exosomes was increased in HNSCC patients as compared to healthy donors. Both exosomes from healthy individuals and HNSCC patients inhibited B cell proliferation and survival, in vitro. Surface expression of inhibitory and stimulatory checkpoint receptors on B cells was modulated in co-culture with exosomes. In addition, an inhibitory effect of exosomes on B cell receptor (BCR) signaling was demonstrated in B cells. (4) Conclusions: Plasma-derived exosomes show inhibitory effects on the function of healthy B cells. Interestingly, these inhibitory effects are similar between exosomes from healthy individuals and HNSCC patients, suggesting a physiological B cell inhibitory role of circulating exosomes.
Collapse
|
199
|
Knox MC, Ni J, Bece A, Bucci J, Chin Y, Graham PH, Li Y. A Clinician's Guide to Cancer-Derived Exosomes: Immune Interactions and Therapeutic Implications. Front Immunol 2020; 11:1612. [PMID: 32793238 PMCID: PMC7387430 DOI: 10.3389/fimmu.2020.01612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding of the role of immunity in the regulation of cancer growth continues to rapidly increase. This is fuelled by the impressive results yielded in recent years by immune checkpoint inhibitors, which block regulatory pathways to increase immune-mediated cancer destruction. Exosomes are cell-secreted membranous nanoscale vesicles that play important roles in regulating physiological and pathophysiological processes. Cancer-derived exosomes (CDEXs) and their biologically-active cargos have been proven to have varied effects in malignant progression, including the promotion of angiogenesis, metastasis, and favorable microenvironment modification. More recently, there is an increasing appreciation of their role in immune evasion. In addition to CDEXs, there are immune-derived exosomes that facilitate communication between immune cells in the non-malignant setting. Investigation of cancer-mediated mechanisms behind interruption or modification of these normal exosomal pathways may provide further understanding of how malignant immune evasion is accomplished. Accumulating evidence indicates that immune-active CDEXs also have the potential to impact clinical oncological management. Whilst immune checkpoint inhibitors have well-established pharmacologically-targeted pathways involving the immune system, other widely used treatments such as radiation and cytotoxic chemotherapies do not. Thus, investigating exosomes in immunotherapy is important for the development of next-generation combination therapies. In this article, we review the ways in which CDEXs impact individual immune cell types and how this contributes to the development of immune evasion. We discuss the relevance of lymphocytes and myeloid-lineage cells in the control of malignancy. In addition, we highlight the ways that CDEXs and their immune effects can impact current cancer therapies and the resulting clinical implications.
Collapse
Affiliation(s)
- Matthew C Knox
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Jie Ni
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Andrej Bece
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Joseph Bucci
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Yaw Chin
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Peter H Graham
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Yong Li
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Henan, China
| |
Collapse
|
200
|
Jin S, Yang Z, Hao X, Tang W, Ma W, Zong H. Roles of HMGB1 in regulating myeloid-derived suppressor cells in the tumor microenvironment. Biomark Res 2020; 8:21. [PMID: 32551121 PMCID: PMC7298841 DOI: 10.1186/s40364-020-00201-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are notable contributors to the immunosuppressive tumor microenvironment (TME) and are closely associated with tumor progression; in addition, MDSCs are present in most patients with cancer. However, the molecular mechanisms that regulate MDSCs in the etiopathogenesis of human tumor immunity remain unclear. The secreted alarmin high mobility group box 1 (HMGB1) is a proinflammatory factor and inducer of many inflammatory molecules during MDSC development. In this review, we detail the currently reported characteristics of MDSCs in tumor immune escape and the regulatory role of secreted HMGB1 in MDSC differentiation, proliferation, activity and survival. Notably, different posttranslational modifications of HMGB1 may have various effects on MDSCs, and these effects need further identification. Moreover, exosome-derived HMGB1 is speculated to exert a regulatory effect on MDSCs, but no report has confirmed this hypothesis. Therefore, the effects of HMGB1 on MDSCs need more research attention, and additional investigations should be conducted.
Collapse
Affiliation(s)
- Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China
| | - Zhenzhen Yang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China.,Academy of medical science, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xin Hao
- Henan college of Health Cadres, Zhengzhou, 450008 Henan China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan China.,Center for Precision Medicine of Zhengzhou University, Zhengzhou, 450052 Henan China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, NO.40 North Daxue Road, Zhengzhou, 450052 Henan China
| | - Wang Ma
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China
| |
Collapse
|