151
|
Moreno-Miralles I, Ren R, Moser M, Hartnett ME, Patterson C. Bone morphogenetic protein endothelial cell precursor-derived regulator regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced retinopathy. Arterioscler Thromb Vasc Biol 2011; 31:2216-22. [PMID: 21737784 DOI: 10.1161/atvbaha.111.230235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Bone morphogenetic proteins (BMPs) are potently proangiogenic; however, the mechanisms underlying the regulation of vessel development by BMPs are not fully understood. To assess the significance of BMP endothelial cell precursor-derived regulator (BMPER) in blood vessel formation in vivo, we investigated its role in retinal angiogenesis. METHODS AND RESULTS In a model of oxygen-induced retinopathy, Bmper mRNA expression and protein levels are downregulated, correlating with the initiation of Sma and Mad related protein phosphorylation in endothelial cells. Moreover, Bmper haploinsufficiency results in an increased rate of retinal revascularization, with retinas from Bmper+/- mice displaying increased numbers of branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Furthermore, although Bmper haploinsufficiency does not alter Bmp expression, it does lead to an increase in BMP signaling, as evidenced by increased phosphorylated Sma and Mad related protein levels in endothelial cells and increased expression of known BMP target genes. CONCLUSIONS These observations provide compelling evidence that BMPER is important in the regulation of BMP signaling and revascularization in the hypoxic retina. These bring forth the possibility of novel therapeutic approaches for pathological angiogenesis based on manipulation of BMP signaling.
Collapse
|
152
|
Lemke S, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U. BMP signaling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae). BMC Genomics 2011; 12:278. [PMID: 21627820 PMCID: PMC3224130 DOI: 10.1186/1471-2164-12-278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/31/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND In animals, signaling of Bone Morphogenetic Proteins (BMPs) is essential for dorsoventral (DV) patterning of the embryo, but how BMP signaling evolved with changes in embryonic DV differentiation is largely unclear. Based on the extensive knowledge of BMP signaling in Drosophila melanogaster, the morphological diversity of extraembryonic tissues in different fly species provides a comparative system to address this question. The closest relatives of D. melanogaster with clearly distinct DV differentiation are hover flies (Diptera: Syrphidae). The syrphid Episyrphus balteatus is a commercial bio-agent against aphids and has been established as a model organism for developmental studies and chemical ecology. The dorsal blastoderm of E. balteatus gives rise to two extraembryonic tissues (serosa and amnion), whereas in D. melanogaster, the dorsal blastoderm differentiates into a single extraembryonic epithelium (amnioserosa). Recent studies indicate that several BMP signaling components of D. melanogaster, including the BMP ligand Screw (Scw) and other extracellular regulators, evolved in the dipteran lineage through gene duplication and functional divergence. These findings raise the question of whether the complement of BMP signaling components changed with the origin of the amnioserosa. RESULTS To search for BMP signaling components in E. balteatus, we generated and analyzed transcriptomes of freshly laid eggs (0-30 minutes) and late blastoderm to early germband extension stages (3-6 hours) using Roche/454 sequencing. We identified putative E. balteatus orthologues of 43% of all annotated D. melanogaster genes, including the genes of all BMP ligands and other BMP signaling components. CONCLUSION The diversification of several BMP signaling components in the dipteran linage of D. melanogaster preceded the origin of the amnioserosa.[Transcriptome sequence data from this study have been deposited at the NCBI Sequence Read Archive (SRP005289); individually assembled sequences have been deposited at GenBank (JN006969-JN006986).].
Collapse
Affiliation(s)
- Steffen Lemke
- University of Chicago, Dept. of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
- Current Address: University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Dionysios A Antonopoulos
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Folker Meyer
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Marc H Domanus
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
153
|
Cease and desist: modulating short-range Dpp signalling in the stem-cell niche. EMBO Rep 2011; 12:519-26. [PMID: 21546910 PMCID: PMC3128284 DOI: 10.1038/embor.2011.80] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/07/2011] [Indexed: 01/25/2023] Open
Abstract
Drosophila ovarian germline stem cells (GSCs) are maintained by the extracellular BMP2/4 orthologue Dpp, which is produced from the surrounding somatic niche. The Dpp signal has a short range; it induces a response in GSCs within the niche, but is rapidly extinguished in their progeny only one cell-diameter away. To ensure the correct balance between stem-cell maintenance and differentiation, several regulatory mechanisms that modulate the Dpp signal at many stages of the pathway have been described. Here, we discuss the nature of the ovarian Dpp signal and review the catalogue of mechanisms that regulate it, demonstrating how the exquisite modulation of Dpp signalling in this context can result in precise and robust control of stem-cell fate. This modulation is applicable to other stem-cell environments that use BMPs as a niche signal, and the regulatory mechanisms are conceptually relevant to several other stem-cell systems.
Collapse
|
154
|
Mizutani CM, Bier E. EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 2011; 9:663-77. [PMID: 18679435 DOI: 10.1038/nrg2417] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic systems controlling body axis formation trace back as far as the ancestor of diploblasts (corals, hydra, and jellyfish) and triploblasts (bilaterians). Comparative molecular studies, often referred to as evo-devo, provide powerful tools for elucidating the origins of mechanisms for establishing the dorsal-ventral and anterior-posterior axes in bilaterians and reveal differences in the evolutionary pressures acting upon tissue patterning. In this Review, we focus on the origins of nervous system patterning and discuss recent comparative genetic studies; these indicate the existence of an ancient molecular mechanism underlying nervous system organization that was probably already present in the bilaterian ancestor.
Collapse
Affiliation(s)
- Claudia Mieko Mizutani
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, 92093-0349, USA.
| | | |
Collapse
|
155
|
Drosophila TIEG is a modulator of different signalling pathways involved in wing patterning and cell proliferation. PLoS One 2011; 6:e18418. [PMID: 21494610 PMCID: PMC3072976 DOI: 10.1371/journal.pone.0018418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Acquisition of a final shape and size during organ development requires a
regulated program of growth and patterning controlled by a complex genetic
network of signalling molecules that must be coordinated to provide positional
information to each cell within the corresponding organ or tissue. The mechanism
by which all these signals are coordinated to yield a final response is not well
understood. Here, I have characterized the Drosophila ortholog
of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger
proteins that belong to the Krüppel-like factor (KLF) family and were
initially identified in human osteoblasts and pancreatic tumor cells for the
ability to enhance TGF-β response. Using the developing wing of
Drosophila as “in vivo” model, the dTIEG
function has been studied in the control of cell proliferation and patterning.
These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG
also regulates the activity of JAK/STAT pathway suggesting a conserved role of
TIEG proteins as positive regulators of TGF-β signalling and as mediators of
the crosstalk between signalling pathways acting in a same cellular context.
Collapse
|
156
|
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 2011; 12:295-307. [PMID: 21448225 DOI: 10.1038/nrm3099] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms.
Collapse
Affiliation(s)
- Caroline Grabbe
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
157
|
Gunbin KV, Suslov VV, Kolchanov NA. Molecular-genetic systems of development: Functional dynamics and molecular evolution. BIOCHEMISTRY (MOSCOW) 2011; 73:219-30. [DOI: 10.1134/s0006297908020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
158
|
Abstract
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Collapse
Affiliation(s)
- Jeremy A. Lynch
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
159
|
BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J Neurosci 2010; 30:15044-51. [PMID: 21068310 DOI: 10.1523/jneurosci.3547-10.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian inner ear detects sound with the organ of Corti, an intricately patterned region of the cochlea in which one row of inner hair cells and three rows of outer hair cells are surrounded by specialized supporting cells. The organ of Corti derives from a prosensory domain that runs the length of the cochlear duct and is bounded by two nonsensory domains, Kölliker's organ on the neural side and the outer sulcus on the abneural side. Although much progress has been made in identifying the signals regulating organ of Corti induction and differentiation, less is known about the mechanisms that establish sensory and nonsensory territories in the cochlear duct. Here, we show that a gradient of bone morphogenetic protein (BMP) signaling is established in the abneural-neural axis of the cochlea. Analysis of compound mutants of Alk3/6 type I BMP receptors shows that BMP signaling is necessary for specification of the prosensory domain destined to form the organ of Corti. Reduction of BMP signaling in Alk3/6 compound mutants eliminates both the future outer sulcus and the prosensory domain, with all cells expressing markers of Kölliker's organ. BMP4 upregulates markers of the future outer sulcus and downregulates marker genes of Kölliker's organ in cochlear organ cultures in a dose-dependent manner. Our results suggest BMP signaling is required for patterning sensory and nonsensory tissue in the mammalian cochlea.
Collapse
|
160
|
Wang X, Ward RE. Sec61alpha is required for dorsal closure during Drosophila embryogenesis through its regulation of Dpp signaling. Dev Dyn 2010; 239:784-97. [PMID: 20112345 DOI: 10.1002/dvdy.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During dorsal closure in Drosophila, signaling events in the dorsalmost row of epidermal cells (DME cells) direct the migration of lateral epidermal sheets towards the dorsal midline where they fuse to enclose the embryo. A Jun amino-terminal kinase (JNK) cascade in the DME cells induces the expression of Decapentaplegic (Dpp). Dpp signaling then regulates the cytoskeleton in the DME cells and amnioserosa to affect the cell shape changes necessary to complete dorsal closure. We identified a mutation in Sec61alpha that specifically perturbs dorsal closure. Sec61alpha encodes the main subunit of the translocon complex for co-translational import of proteins into the ER. JNK signaling is normal in Sec61alpha mutant embryos, but Dpp signaling is attenuated and the DME cells fail to maintain an actinomyosin cable as epithelial migration fails. Consistent with this model, dorsal closure is rescued in Sec61alpha mutant embryos by an activated form of the Dpp receptor Thick veins.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
161
|
Rapid evolution of a novel signalling mechanism by concerted duplication and divergence of a BMP ligand and its extracellular modulators. Dev Genes Evol 2010; 220:235-50. [PMID: 21086136 DOI: 10.1007/s00427-010-0341-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Gene duplication and divergence is widely considered to be a fundamental mechanism for generating evolutionary novelties. The Bone Morphogenetic Proteins (BMPs) are a diverse family of signalling molecules found in all metazoan genomes that have evolved by duplication and divergence from a small number of ancestral types. In the fruit fly Drosophila, there are three BMPs: Decapentaplegic (Dpp) and Glass bottom boat (Gbb), which are the orthologues of vertebrate BMP2/4 and BMP5/6/7/8, respectively, and Screw (Scw), which, at the sequence level, is equally divergent from Dpp and Gbb. It has recently been shown that Scw has arisen from a duplication of Gbb in the lineage leading to higher Diptera. We show that since this duplication event, Gbb has maintained the ancestral BMP5/6/7/8 functionality while Scw has rapidly diverged. The evolution of Scw was accompanied by duplication and divergence of a suite of extracellular regulators that continue to diverge together in the higher Diptera. In addition, Scw has become restricted in its receptor specificity: Gbb proteins can signal through the Type I receptors Thick veins (Tkv) and Saxophone (Sax), while Scw signals through Sax. Thus, in a relatively short span of evolutionary time, the duplication event that gave rise to Scw produced not only a novel ligand but also a novel signalling mode that is functionally distinct from the ancestral Gbb mode. Our results demonstrate the plasticity of the BMP pathway not only in evolving new family members and new functions but also new signalling modes by redeploying key regulators in the pathway.
Collapse
|
162
|
Abstract
Morphogen gradients play a key role in multiple differentiation processes. Both the formation of the gradient and its interpretation by the receiving cells need to occur at high precision to ensure reproducible patterning. This need for quantitative precision is challenged by fluctuations in the environmental conditions and by variations in the genetic makeup of the developing embryos. We discuss mechanisms that buffer morphogen profiles against variations in gene dosage. Self-enhanced morphogen degradation and pre-steady-state decoding provide general means for buffering the morphogen profile against fluctuations in morphogen production rate. A more specific "shuttling" mechanism, which establishes a sharp and robust activation profile of a widely expressed morphogen, and enables the adjustment of morphogen profile with embryo size, is also described. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells. The integration theory and experiments are increasingly used, providing key insights into the system-level functioning of the developmental system.
Collapse
|
163
|
Abstract
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.
Collapse
Affiliation(s)
- Dong Yan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
164
|
Zhang JL, Patterson LJ, Qiu LY, Graziussi D, Sebald W, Hammerschmidt M. Binding between Crossveinless-2 and Chordin von Willebrand factor type C domains promotes BMP signaling by blocking Chordin activity. PLoS One 2010; 5:e12846. [PMID: 20886103 PMCID: PMC2944808 DOI: 10.1371/journal.pone.0012846] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background Crossveinless-2 (CV2) is an extracellular BMP modulator protein of the Chordin family, which can either enhance or inhibit BMP activity. CV2 binds to BMP2 via subdomain 1 of the first of its five N-terminal von Willebrand factor type C domains (VWC1). Previous studies showed that this BMP binding is required for the anti-, but not for the pro-BMP effect of CV2. More recently, it was shown that CV2 can also bind to the BMP inhibitor Chordin. However, it remained unclear which domains mediate this binding, and whether it accounts for an anti- or pro-BMP effect. Principal Findings Here we report that a composite interface of CV2 consisting of subdomain 2 of VWC1 and of VWC2-4, which are dispensable for BMP binding, binds to the VWC2 domain of Chordin. Functional data obtained in zebrafish embryos indicate that this binding of Chordin is required for CV2's pro-BMP effect, which actually is an anti-Chordin effect and, at least to a large extent, independent of Tolloid-mediated Chordin degradation. We further demonstrate that CV2 mutant versions that per se are incapable of BMP binding can attenuate the Chordin/BMP interaction. Conclusions We have physically dissected the anti- and pro-BMP effects of CV2. Its anti-BMP effect is obtained by binding to BMP via subdomain1 of the VWC1 domain, a binding that occurs in competition with Chordin. In contrast, its pro-BMP effect is achieved by direct binding to Chordin via subdomain 2 of VWC1 and VWC2-4. This binding seems to induce conformational changes within the Chordin protein that weaken Chordin's affinity to BMP. We propose that in ternary Chordin-CV2-BMP complexes, both BMP and Chordin are directly associated with CV2, whereas Chordin is pushed away from BMP, ensuring that BMPs can be more easily delivered to their receptors.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (MH); (JLZ)
| | - Lucy J. Patterson
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Li-Yan Qiu
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Daria Graziussi
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Walter Sebald
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, Cologne, Germany
- * E-mail: (MH); (JLZ)
| |
Collapse
|
165
|
Zakin L, Chang EY, Plouhinec JL, De Robertis EM. Crossveinless-2 is required for the relocalization of Chordin protein within the vertebral field in mouse embryos. Dev Biol 2010; 347:204-15. [PMID: 20807528 DOI: 10.1016/j.ydbio.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMPs), as well as the BMP-binding molecules Chordin (Chd), Crossveinless-2 (CV2) and Twisted Gastrulation (Tsg), are essential for axial skeletal development in the mouse embryo. We previously reported a strong genetic interaction between CV2 and Tsg and proposed a role for this interaction in the shaping of the BMP morphogenetic field during vertebral development. In the present study we investigated the roles of CV2 and Chd in the formation of the vertebral morphogenetic field. We performed immunostainings for CV2 and Chd protein on wild-type, CV2(-/-) or Chd(-/-) mouse embryo sections at the stage of onset of the vertebral phenotypes. By comparing mRNA and protein localizations we found that CV2 does not diffuse away from its place of synthesis, the vertebral body. The most interesting finding of this study was that Chd synthesized in the intervertebral disc accumulates in the vertebral body. This relocalization does not take place in CV2(-/-) mutants. Instead, Chd was found to accumulate at its site of synthesis in CV2(-/-) embryos. These results indicate a CV2-dependent flow of Chd protein from the intervertebral disc to the vertebral body. Smad1/5/8 phosphorylation was decreased in CV2(-/-)vertebral bodies. This impaired BMP signaling may result from the decreased levels of Chd/BMP complexes diffusing from the intervertebral region. The data indicate a role for CV2 and Chd in the establishment of the vertebral morphogenetic field through the long-range relocalization of Chd/BMP complexes. The results may have general implications for the formation of embryonic organ-forming morphogenetic fields.
Collapse
Affiliation(s)
- Lise Zakin
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | |
Collapse
|
166
|
Sopory S, Kwon S, Wehrli M, Christian JL. Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain. Dev Biol 2010; 346:102-12. [PMID: 20659445 DOI: 10.1016/j.ydbio.2010.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/11/2010] [Accepted: 07/17/2010] [Indexed: 12/20/2022]
Abstract
BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 sites of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range.
Collapse
Affiliation(s)
- Shailaja Sopory
- Department of Cell and Developmental Biology, Oregon Health and Science University, School of Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
167
|
Zheng Y, Wu G, Zhao J, Wang L, Sun P, Gu Z. rhBMP2/7 heterodimer: an osteoblastogenesis inducer of not higher potency but lower effective concentration compared with rhBMP2 and rhBMP7 homodimers. Tissue Eng Part A 2010; 16:879-87. [PMID: 19814588 DOI: 10.1089/ten.tea.2009.0312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterodimeric bone morphogenetic proteins (BMPs) were exhibited to be more potent than and thus potential substitutes for homodimeric BMPs whose clinical application is limited for the drawbacks resulted from their higher effective doses. This study aims to delineate the biofunctional characteristics of recombinant human BMP2/7 (rhBMP2/7) heterodimer in inducing osteoblastogenesis of MC3T3-E1 through in vitro time-course and dose-response studies. rhBMP2/7 heterodimer induced cell migration with a significantly lower optimal concentration and higher peak effect than the respective homodimers. rhBMP2/7 heterodimer induced cell differentiation with significantly lower threshold concentrations but similar maximum effects. On day 28, the area of calcium depositions induced by 50 ng/mL rhBMP2/7 was 12- or 38-fold more than that of 50 ng/mL rhBMP2 or 50 ng/mL rhBMP7, respectively. The results indicated that rhBMP2/7 heterodimer was an osteoblastogenesis inducer of not higher potency but lower effective concentration compared with rhBMP2 and rhBMP7 homodimers.
Collapse
Affiliation(s)
- Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | |
Collapse
|
168
|
Nunes da Fonseca R, van der Zee M, Roth S. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol 2010; 345:80-93. [PMID: 20510683 DOI: 10.1016/j.ydbio.2010.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/09/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.
Collapse
Affiliation(s)
- Rodrigo Nunes da Fonseca
- Institute of Developmental Biology, University of Cologne, Cologne, Gyrhofstrasse 17, D-50931, Germany
| | | | | |
Collapse
|
169
|
The role of mesodermal signals during liver organogenesis in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2010; 53:455-61. [PMID: 20596911 DOI: 10.1007/s11427-010-0078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
Three germ cell layers, the ectoderm, mesoderm and endoderm, are established during the gastrulation stage. All cell types in different organs and tissues are derived from these 3 germ cell layers at later stages. For example, skin epithelial cells and neuronal cells are derived from the ectoderm, while endothelial cells and muscle cells from the mesoderm and lung, and intestine epithelial cells from the endoderm. While in a normal situation different germ cells are destined to specific cell fates in different organs and tissues, each type of germ cells or its derivatives also produce extracellular signaling molecules to direct and facilitate the specification and differentiation of other germ cells during organogenesis. Liver is derived from the endoderm, but completion of liver organogenesis is regulated at different levels. While the pan-endoderm factors (e.g. FoxA and Gata families) and liver specific factors (e.g. Prox1 and Hhex) are essential intrinsic factors for endoderm cells to be differentiated into hepatoblasts, the role of signals produced by neighboring mesoderm cells for liver organogenesis is equally important. This review summarizes recent progress in studying the role of Bone morphogenetic proteins (Bmp), Fibroblast growth factors (Fgf), retinoic acid (RA) and Wingless and Int (Wnt), the 4 types of signaling molecules produced by the mesoderm cells, in liver organogenesis in zebrafish.
Collapse
|
170
|
Rafiqi AM, Lemke S, Schmidt-Ott U. Postgastrular zen expression is required to develop distinct amniotic and serosal epithelia in the scuttle fly Megaselia. Dev Biol 2010; 341:282-90. [DOI: 10.1016/j.ydbio.2010.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/28/2010] [Accepted: 01/31/2010] [Indexed: 10/19/2022]
|
171
|
Umulis DM, Shimmi O, O'Connor MB, Othmer HG. Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev Cell 2010; 18:260-74. [PMID: 20159596 PMCID: PMC2848394 DOI: 10.1016/j.devcel.2010.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/16/2009] [Accepted: 01/06/2010] [Indexed: 12/11/2022]
Abstract
Advances in image acquisition and informatics technology have led to organism-scale spatiotemporal atlases of gene expression and protein distributions. To maximize the utility of this information for the study of developmental processes, a new generation of mathematical models is needed for discovery and hypothesis testing. Here, we develop a data-driven, geometrically accurate model of early Drosophila embryonic bone morphogenetic protein (BMP)-mediated patterning. We tested nine different mechanisms for signal transduction with feedback, eight combinations of geometry and gene expression prepatterns, and two scale-invariance mechanisms for their ability to reproduce proper BMP signaling output in wild-type and mutant embryos. We found that a model based on positive feedback of a secreted BMP-binding protein, coupled with the experimentally measured embryo geometry, provides the best agreement with population mean image data. Our results demonstrate that using bioimages to build and optimize a three-dimensional model provides significant insights into mechanisms that guide tissue patterning.
Collapse
Affiliation(s)
- David M Umulis
- Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, and Bindley Bioscience Center, 225 South University Street, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
172
|
Scaling of morphogen gradients by an expansion-repression integral feedback control. Proc Natl Acad Sci U S A 2010; 107:6924-9. [PMID: 20356830 DOI: 10.1073/pnas.0912734107] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite substantial size variations, proportions of the developing body plan are maintained with a remarkable precision. Little is known about the mechanisms that ensure this adaptation (scaling) of pattern with size. Most models of patterning by morphogen gradients do not support scaling. In contrast, we show that scaling arises naturally in a general feedback topology, in which the range of the morphogen gradient increases with the abundance of some diffusible molecule, whose production, in turn, is repressed by morphogen signaling. We term this mechanism "expansion-repression" and show that it can function within a wide range of biological scenarios. The expansion-repression scaling mechanism is analogous to an integral-feedback controller, a key concept in engineering that is likely to be instrumental also in maintaining biological homeostasis.
Collapse
|
173
|
Schmidt-Ott U, Rafiqi AM, Lemke S. Hox3/zen and the evolution of extraembryonic epithelia in insects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:133-44. [PMID: 20795328 DOI: 10.1007/978-1-4419-6673-5_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects have undergone dramatic evolutionary changes in extraembryonic development, which correlate with changes in the expression of the class-3 Hox gene zen. Here, we review the evolution of this gene in insects and point out how changes in zen expression may have affected extraembryonic development at the morphological and the genetic level.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Department of Organismal Biology and Anatomy, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
174
|
Nishihara S. Glycosyltransferases and Transporters that Contribute to Proteoglycan Synthesis in Drosophila. Methods Enzymol 2010; 480:323-51. [DOI: 10.1016/s0076-6879(10)80015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
175
|
The Drosophila LEM-domain protein MAN1 antagonizes BMP signaling at the neuromuscular junction and the wing crossveins. Dev Biol 2009; 339:1-13. [PMID: 20036230 DOI: 10.1016/j.ydbio.2009.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 01/31/2023]
Abstract
BMP signaling responses are refined by distinct secreted and intracellular antagonists in different cellular and temporal contexts. Here, we show that the nuclear LEM-domain protein MAN1 is a tissue-specific antagonist of BMP signaling in Drosophila. MAN1 contains two potential Mad-binding sites. We generated MAN1DeltaC mutants, harbouring a MAN1 protein that lacks part of the C-terminus including the RNA recognition motif, a putative Mad-binding domain. MAN1DeltaC mutants show wing crossvein (CV) patterning defects but no detectable alterations in nuclear morphology. MAN1(DeltaC) pupal wings display expanded phospho-Mad (pMad) accumulation and ectopic expression of the BMP-responsive gene crossveinless-2 (cv-2) indicating that MAN1 restricts BMP signaling. Conversely, MAN1 overexpression in wing imaginal discs inhibited crossvein development and BMP signaling responses. MAN1 is expressed at high levels in pupal wing veins and can be activated in intervein regions by ectopic BMP signaling. The specific upregulation of MAN1 in pupal wing veins may thus represent a negative feedback circuit that limits BMP signaling during CV formation. MAN1DeltaC flies also show reduced locomotor activity, and electrophysiology recordings in MAN1DeltaC larvae uncover a new presynaptic role of MAN1 at the neuromuscular junction (NMJ). Genetic interaction experiments suggest that MAN1 is a BMP signaling antagonist both at the NMJ and during CV formation.
Collapse
|
176
|
De Robertis EM. Spemann's organizer and the self-regulation of embryonic fields. Mech Dev 2009; 126:925-41. [PMID: 19733655 PMCID: PMC2803698 DOI: 10.1016/j.mod.2009.08.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/05/2023]
Abstract
Embryos and developing organs have the remarkable ability of self-regenerating after experimental manipulations. In the Xenopus blastula half-embryos can regenerate the missing part, producing identical twins. Studies on the molecular nature of Spemann's organizer have revealed that self-regulation results from the battle between two signaling centers under reciprocal transcriptional control. Long-range communication between the dorsal and ventral sides is mediated by the action of growth factor antagonists - such as the BMP antagonist Chordin - that regulate the flow of BMPs within the embryonic morphogenetic field. BMPs secreted by the dorsal Spemann organizer tissue are released by metalloproteinases of the Tolloid family, which cleave Chordin at a distance of where they were produced. The dorsal center secretes Chordin, Noggin, BMP2 and ADMP. The ventral center of the embryo secretes BMP4, BMP7, Sizzled, Crossveinless-2 and Tolloid-related. Crossveinless-2 binds Chordin/BMP complexes, facilitating their flow towards the ventral side, where BMPs are released by Tolloid allowing peak BMP signaling. Self-regulation occurs because transcription of ventral genes is induced by BMP while transcription of dorsal genes is repressed by BMP signals. This assures that for each action of Spemann's organizer there is a reaction in the ventral side of the embryo. Because both dorsal and ventral centers express proteins of similar biochemical activities, they can compensate for each other. A novel biochemical pathway of extracellular growth factor signaling regulation has emerged from these studies in Xenopus. This remarkable dorsal-ventral positional information network has been conserved in evolution and is ancestral to all bilateral animals.
Collapse
Affiliation(s)
- E M De Robertis
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
177
|
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009; 7:e1000248. [PMID: 19956794 PMCID: PMC2772021 DOI: 10.1371/journal.pbio.1000248] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023] Open
Abstract
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Collapse
Affiliation(s)
- François Lapraz
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
178
|
Umulis D, O'Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development 2009; 136:3715-28. [PMID: 19855014 DOI: 10.1242/dev.031534] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In many cases, the level, positioning and timing of signaling through the bone morphogenetic protein (BMP) pathway are regulated by molecules that bind BMP ligands in the extracellular space. Whereas many BMP-binding proteins inhibit signaling by sequestering BMPs from their receptors, other BMP-binding proteins cause remarkably context-specific gains or losses in signaling. Here, we review recent findings and hypotheses on the complex mechanisms that lead to these effects, with data from developing systems, biochemical analyses and mathematical modeling.
Collapse
Affiliation(s)
- David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, IN 47907, USA
| | | | | |
Collapse
|
179
|
Ballard SL, Jarolimova J, Wharton KA. Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila. Dev Biol 2009; 337:375-85. [PMID: 19914231 DOI: 10.1016/j.ydbio.2009.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/19/2009] [Accepted: 11/06/2009] [Indexed: 12/31/2022]
Abstract
The coordination of animal growth and development requires adequate nutrients. During times of insufficient food, developmental progression is slowed and stored energy is utilized to ensure that cell and tissue survival are maintained. Here, we report our finding that the Gbb/BMP signaling pathway, known to play an important role in many developmental processes in both vertebrates and invertebrates, is critical in the Drosophila larval fat body for regulating energy homeostasis. Animals with mutations in the Drosophila BMP-5,7 orthologue, glass bottom boat (gbb), or in its signaling components, display phenotypes similar to nutrient-deprived and Tor mutant larvae. These phenotypes include a developmental delay with reduced overall growth, a transparent appearance, and altered total lipid, glucose and trehalose levels. We find that Gbb/BMP signaling is required in the larval fat body for maintaining proper metabolism, yet interestingly, following nutrient deprivation larvae in turn show a loss of BMP signaling in fat body cells indicating that Gbb/BMP signaling is a central player in homeostasis. Finally, despite strong phenotypic similarities between nutrient-compromised animals and gbb mutants, distinct differences are observed in the expression of a group of starvation responsive genes. Overall, our results implicate Gbb/BMP signaling as a new pathway critical for positive regulation of nutrient storage and energy homeostasis during development.
Collapse
Affiliation(s)
- Shannon L Ballard
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
180
|
Schulz TJ, Tseng YH. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 2009; 20:523-31. [PMID: 19896888 DOI: 10.1016/j.cytogfr.2009.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate many processes in embryonic development as well as in the maintenance of normal tissue function later in adult life. However, the role of this family of proteins in formation of adipose tissue has been underappreciated in the field of developmental biology. With the growing epidemic of obesity, improved knowledge of adipocyte development and function is urgently needed. Recently, there have been significant advances in understanding the role of different members of the BMP superfamily in control of adipocyte differentiation and systemic energy homeostasis. This review summarizes recent progress in understanding how BMPs specify adipose cell fate in stem/progenitor cells and their potential role in energy metabolism. We propose that BMPs provide instructive signals for adipose cell fate determination and regulate adipocyte function. These findings have opened up exciting opportunities for developing new therapeutic approaches for the treatment of obesity and its many associated metabolic disorders.
Collapse
Affiliation(s)
- Tim J Schulz
- Joslin Diabetes Center, One Joslin Place, and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
181
|
Lee HX, Mendes FA, Plouhinec JL, De Robertis EM. Enzymatic regulation of pattern: BMP4 binds CUB domains of Tolloids and inhibits proteinase activity. Genes Dev 2009; 23:2551-62. [PMID: 19884260 PMCID: PMC2779747 DOI: 10.1101/gad.1839309] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/02/2009] [Indexed: 11/25/2022]
Abstract
In Xenopus embryos, a dorsal-ventral patterning gradient is generated by diffusing Chordin/bone morphogenetic protein (BMP) complexes cleaved by BMP1/Tolloid metalloproteinases in the ventral side. We developed a new BMP1/Tolloid assay using a fluorogenic Chordin peptide substrate and identified an unexpected negative feedback loop for BMP4, in which BMP4 inhibits Tolloid enzyme activity noncompetitively. BMP4 binds directly to the CUB (Complement 1r/s, Uegf [a sea urchin embryonic protein] and BMP1) domains of BMP1 and Drosophila Tolloid with high affinity. Binding to CUB domains inhibits BMP4 signaling. These findings provide a molecular explanation for a long-standing genetical puzzle in which antimorphic Drosophila tolloid mutant alleles displayed anti-BMP effects. The extensive Drosophila genetics available supports the relevance of the interaction described here at endogenous physiological levels. Many extracellular proteins contain CUB domains; the binding of CUB domains to BMP4 suggests a possible general function in binding transforming growth factor-beta (TGF-beta) superfamily members. Mathematical modeling indicates that feedback inhibition by BMP ligands acts on the ventral side, while on the dorsal side the main regulator of BMP1/Tolloid enzymatic activity is the binding to its substrate, Chordin.
Collapse
Affiliation(s)
- Hojoon X. Lee
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Fabio A. Mendes
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jean-Louis Plouhinec
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edward M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
182
|
Eivers E, Demagny H, De Robertis EM. Integration of BMP and Wnt signaling via vertebrate Smad1/5/8 and Drosophila Mad. Cytokine Growth Factor Rev 2009; 20:357-65. [PMID: 19896409 PMCID: PMC2810204 DOI: 10.1016/j.cytogfr.2009.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BMPs pattern the dorsal-ventral axis of vertebrate embryos. Smad1/5/8 transduces the BMP signal, and receives phosphorylation inputs from both MAPK and GSK3. Phosphorylation of Smad1 by MAPK and GSK3 result in its polyubiquitination and transport to the centrosome where it is degraded by the proteasome. These linker phosphorylations inhibit BMP/Smad1signaling by shortening its duration. Wnt, which negatively regulates GSK3 activity, prolongs the BMP/Smad1 signal. Remarkably, linker-phosphorylated Smad1 has been shown to be inherited asymmetrically during cell division. Drosophila contains a single Smad1/5/8 homologue, Mad, and is stabilized by phosphorylation-resistant mutations at GSK3 sites, causing Wingless-like effects. We summarize here the significance of linker-phosphorylated Smad1/Mad in relation to signal intensity and duration, and how this integrates the Wnt and BMP pathways during cell differentiation.
Collapse
Affiliation(s)
- Edward Eivers
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, United States.
| | | | | |
Collapse
|
183
|
Temporal dynamics of patterning by morphogen gradients. Curr Opin Genet Dev 2009; 19:315-22. [DOI: 10.1016/j.gde.2009.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 05/18/2009] [Indexed: 12/21/2022]
|
184
|
Abstract
PURPOSE OF REVIEW The role of bone morphogenetic proteins (BMPs) in vasculogenesis is still not well understood, despite many recent developments in this area of research. In this review, we discuss the most recent studies that identify new critical mechanisms through which BMP signaling acts with a focus on angiogenesis. RECENT FINDINGS New evidence brought to light over the last few years suggests that BMP-binding proteins, formerly thought of as antagonists, can also increase BMP activity under certain conditions. It has also recently been determined that components of the extracellular matrix are involved in the BMP signaling pathways that regulate angiogenesis. Through the BMP pathway, myosin-X and cyclooxygenase 2 serve as target genes that have been determined to play a role in blood vessel formation. BMPs also conduct Smad-independent signaling and crosstalk with other pathways. Finally, BMPs have been shown to play an antiangiogenic role in specific settings. SUMMARY Better understanding of the BMP signaling pathway and its regulators can have potentially great effects on therapeutic strategies from cardiovascular disease to cancer.
Collapse
|
185
|
Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 2009; 183:563-79, 1SI-8SI. [PMID: 19620392 DOI: 10.1534/genetics.109.105585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In metazoans, bone morphogenetic proteins (BMPs) direct a myriad of developmental and adult homeostatic events through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like Kinase1 and -2 (ALK1/ACVRL1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp+. In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sax mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by saxP, a viable allele previously reported to be null, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVRl-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.
Collapse
|
186
|
Li BC, Zhang JJ, Xu C, Zhang LC, Kang JY, Zhao H. Treatment of rabbit femoral defect by firearm with BMP-4 gene combined with TGF-beta1. ACTA ACUST UNITED AC 2009; 66:450-6. [PMID: 19204520 DOI: 10.1097/ta.0b013e3181848cd6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Firearm bone fractures are difficult to treat compared with general ones as both soft tissue and bone are injured more extensively and severely with contamination in the wound track. The bone morphogenetic protein (BMP) and transforming growth factor (TGF)-beta play an important role in bone fracture healing. Therefore, BMP-4 combined with TGF-beta1 was used to improve and accelerate the repair of rabbit femoral defect resulting from firearm. METHODS Femoral defect was made with 0.375 g steel ball fired at 350 m/s. At 6 hours after wounding, the debridement and irrigation were performed, followed by trimming the ends of defected bone at day 7. Plasmid-encoded BMP-4 gene identified in vitro and TGF-beta1 were injected into the tissue of upper and lower parts and the epicenter of the defected area at 2 weeks after wounding, again TGF-beta1 was given at 5 weeks. At 3, 7, 11, and 15 weeks after wounding, the expression of mRNA and protein of BMP-4 were detected by reverse transcription-polymerase chain reaction and Western blot. The activity of alkaline phosphatase and calcium content were measured for describing osteogenetic ability. The course and quality of osteogenesis were determined quantitatively by pathohistological and X-ray examinations. RESULTS In vivo BMP-4 mRNA and protein could be continually expressed for 8 weeks. The determination of alkaline phosphatase activity and calcium content showed osteogenetic ability was significantly enhanced by BMP-4 gene combined with TGF-beta1. The pathohistological and X-ray examinations revealed that osteogenetic speed was prominently accelerated, and the quality was improved after the treatment. CONCLUSION The repair of rabbit femoral defect resulting from firearm can be significantly improved and accelerated by BMP-4 gene combined with TGF-beta1.
Collapse
Affiliation(s)
- Bing Cang Li
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
187
|
Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 2009; 11:637-43. [PMID: 19377468 PMCID: PMC2757091 DOI: 10.1038/ncb1870] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/09/2009] [Indexed: 02/07/2023]
Abstract
Patterning the embryonic dorsoventral (DV) axis of both vertebrates and invertebrates requires signaling via Bone Morphogenetic Proteins (BMPs)1. Although a well studied process, the physiologically relevant BMP signaling complex in the Drosophila embryo is controversial2, 3 and generally inferred from cell culture studies, and has not been investigated in vertebrates. Here, we demonstrate that DV patterning in zebrafish requires two classes of nonredundant type I BMP receptors, Alk3/6 and Alk8. We show under physiologic conditions in the embryo that these two type I receptor classes form a complex in a manner that depends on both Bmp2 and Bmp7. We found that both Bmp2/7 heterodimers, as well as Bmp2 and Bmp7 homodimers, form in the embryo. However, only recombinant ligand heterodimers can activate BMP signaling in the early embryo, whereas a combination of Bmp2 and Bmp7 homodimers cannot. We propose that only heterodimers, signaling via two distinct classes of type I receptor, possess sufficient receptor affinity in an environment of extracellular antagonists to elicit the signaling response required for DV patterning.
Collapse
|
188
|
Barkai N, Ben-Zvi D. 'Big frog, small frog'--maintaining proportions in embryonic development: delivered on 2 July 2008 at the 33rd FEBS Congress in Athens, Greece. FEBS J 2009; 276:1196-207. [PMID: 19175672 DOI: 10.1111/j.1742-4658.2008.06854.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We discuss mechanisms that enable the scaling of pattern with size during the development of multicellular organisms. Recently, we analyzed scaling in the context of the early Xenopus embryo, focusing on the determination of the dorsal-ventral axis by a gradient of BMP activation. The ability of this system to withstand extreme perturbation was exemplified in classical experiments performed by Hans Spemann in the early 20th century. Quantitative analysis revealed that patterning is governed by a noncanonical 'shuttling-based' mechanism, and defined the feedback enabling the scaling of pattern with size. Robust scaling is due to molecular implementation of an integral-feedback controller, which adjusts the width of the BMP morphogen gradient with the size of the system. We present an 'expansion-repression' feedback topology which generalizes this concept for a wider range of patterning systems, providing a general, and potentially widely applicable model for the robust scaling of morphogen gradients with size.
Collapse
Affiliation(s)
- Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
189
|
Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 2009; 16:329-43. [PMID: 19289080 DOI: 10.1016/j.devcel.2009.02.012] [Citation(s) in RCA: 563] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TGF-beta superfamily signaling pathways emerged with the evolution of multicellular animals, suggesting that these pathways contribute to the increased diversity and complexity required for the development and homeostasis of these organisms. In this review we begin by exploring some key developmental and disease processes requiring TGF-beta ligands to underscore the fundamental importance of these pathways before delving into the molecular mechanism of signal transduction, focusing on recent findings. Finally, we discuss how these ligands act as morphogens, how their activity and signaling range is regulated, and how they interact with other signaling pathways to achieve their specific and varied functional roles.
Collapse
Affiliation(s)
- Mary Y Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
190
|
Pentek J, Parker L, Wu A, Arora K. Follistatin preferentially antagonizes activin rather than BMP signaling inDrosophila. Genesis 2009; 47:261-73. [DOI: 10.1002/dvg.20486] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
191
|
Olivares GH, Carrasco H, Aroca F, Carvallo L, Segovia F, Larraín J. Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development. Dev Biol 2009; 329:338-49. [PMID: 19303002 DOI: 10.1016/j.ydbio.2009.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Extracellular regulation of growth factor signaling is a key event for embryonic patterning. Heparan sulfate proteoglycans (HSPG) are among the molecules that regulate this signaling during embryonic development. Here we study the function of syndecan1 (Syn1), a cell-surface HSPG expressed in the non-neural ectoderm during early development of Xenopus embryos. Overexpression of Xenopus Syn1 (xSyn1) mRNA is sufficient to reduce BMP signaling, induce chordin expression and rescue dorso-ventral patterning in ventralized embryos. Experiments using chordin morpholinos established that xSyn1 mRNA can inhibit BMP signaling in the absence of chordin. Knockdown of xSyn1 resulted in a reduction of BMP signaling and expansion of the neural plate with the concomitant reduction of the non-neural ectoderm. Overexpression of xSyn1 mRNA in xSyn1 morphant embryos resulted in a biphasic effect, with BMP being inhibited at high concentrations and activated at low concentrations of xSyn1. Interestingly, the function of xSyn1 on dorso-ventral patterning and BMP signaling is specific for this HSPG. In summary, we report that xSyn1 regulates dorso-ventral patterning of the ectoderm through modulation of BMP signaling.
Collapse
Affiliation(s)
- Gonzalo H Olivares
- Center for Aging and Regeneration, Center for Cell Regulation and Pathology, MIFAB, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
During the development of some tissues, fields of multipotent cells differentiate into distinct cell types in response to the local concentration of a signalling factor called a morphogen. Typically, individual organisms within a population differ in size, but their body plans appear to be scaled versions of a common template. Similarly, closely related species may differ by three or more orders of magnitude in size, yet common structures between species scale to have similar proportions. In standard reaction-diffusion equations, the morphogen range has a length scale that depends on a balance between kinetic and transport processes and not on the length or size of the field of cells being patterned. However, as shown here for a class of morphogen-patterning systems, a number of conditions lead to scale invariance of the morphogen distribution at equilibrium and during the transient approach to equilibrium. Equilibrium scale invariance requires conservation of the total binding site number and total input flux. Dynamic scale invariance additionally requires sufficient binding to slow the diffusion of ligand. The equations derived herein can be extended to the study of other perturbations to gain further insight into the processes regulating the robustness and scaling of morphogen-mediated pattern formation.
Collapse
Affiliation(s)
- David M Umulis
- Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
193
|
|
194
|
Jaramillo MS, Lovato CV, Baca EM, Cripps RM. Crossveinless and the TGFbeta pathway regulate fiber number in the Drosophila adult jump muscle. Development 2009; 136:1105-13. [PMID: 19244280 DOI: 10.1242/dev.031567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Skeletal muscles are readily characterized by their location within the body and by the number and composition of their constituent muscle fibers. Here, we characterize a mutation that causes a severe reduction in the number of fibers comprising the tergal depressor of the trochanter muscle (TDT, or jump muscle), which functions in the escape response of the Drosophila adult. The wild-type TDT comprises over 20 large muscle fibers and four small fibers. In crossveinless (cv) mutants, the number of large fibers is reduced by 50%, and the number of small fibers is also occasionally reduced. This reduction in fiber number arises from a reduction in the number of founder cells contributing to the TDT at the early pupal stage. Given the role of cv in TGFbeta signaling, we determined whether this pathway directly impacts TDT development. Indeed, gain- and loss-of-function manipulations in the TGFbeta pathway resulted in dramatic increases and decreases, respectively, in TDT fiber number. By identifying the origins of the TDT muscle, from founder cells specified in the mesothoracic leg imaginal disc, we also demonstrate that the TGFbeta pathway directly impacts the specification of founder cells for the jump muscle. Our studies define a new role for the TGFbeta pathway in the control of specific skeletal muscle characteristics.
Collapse
|
195
|
Abstract
Transforming growth factor-beta (TGF-beta) signaling is tightly regulated to ensure its proper physiological functions in different cells and tissues. Like other cell surface receptors, TGF-beta receptors are internalized into the cell, and this process plays an important regulatory role in TGF-beta signaling. It is well documented that TGF-beta receptors are endocytosed via clathrin-coated vesicles as TGF-beta endocytosis can be blocked by potassium depletion and the GTPase-deficient dynamin K44A mutant. TGF-beta receptors may also enter cells via cholesterol-rich membrane microdomain lipid rafts/caveolae and are found in caveolin-1-positive vesicles. Although receptor endocytosis is not essential for TGF-beta signaling, clathrin-mediated endocytosis has been shown to promote TGF-beta-induced Smad activation and transcriptional responses. Lipid rafts/caveolae are widely regarded as signaling centers for G protein-coupled receptors and tyrosine kinase receptors, but they are indicated to facilitate the degradation of TGF-beta receptors and therefore turnoff of TGF-beta signaling. This review summarizes current understanding of TGF-beta receptor endocytosis, the possible mechanisms underlying this process, and the role of endocytosis in modulation of TGF-beta signaling.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
196
|
Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice. Dev Biol 2009; 328:13-23. [PMID: 19389368 DOI: 10.1016/j.ydbio.2008.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/03/2008] [Accepted: 12/31/2008] [Indexed: 11/23/2022]
Abstract
The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants.
Collapse
|
197
|
Othmer HG, Painter K, Umulis D, Xue C. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2009; 4:3-82. [PMID: 19844610 PMCID: PMC2763616 DOI: 10.1051/mmnp/20094401] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems - Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns - illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago'We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.'
Collapse
Affiliation(s)
- Hans G. Othmer
- School of Mathematics and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kevin Painter
- Department of Mathematics, Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - David Umulis
- Agricultural & Biological Engineering, Purdue University, West Lafayette, IN USA 47907 USA
| | - Chuan Xue
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
198
|
Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 2008; 103:804-12. [PMID: 18787191 DOI: 10.1161/circresaha.108.178434] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are involved in embryonic and adult blood vessel formation in health and disease. BMPER (BMP endothelial cell precursor-derived regulator) is a differentially expressed protein in embryonic endothelial precursor cells. In earlier work, we found that BMPER interacts with BMPs and when overexpressed antagonizes their function in embryonic axis formation. In contrast, in a BMPER-deficient zebrafish model, BMPER behaves as a BMP agonist. Furthermore, lack of BMPER induces a vascular phenotype in zebrafish that is driven by disarray of the intersomitic vasculature. Here, we investigate the impact of BMPER on endothelial cell function and signaling and elucidate its role in BMP-4 function in gain- and loss-of-function models. As shown by Western blotting and immunocytochemistry, BMPER is an extracellular matrix protein expressed by endothelial cells in skin, heart, and lung. We show that BMPER is a downstream target of FoxO3a and consistently exerts activating effects on endothelial cell sprouting and migration in vitro and in vivo. Accordingly, when BMPER is depleted from endothelial cells, sprouting is impaired. In terms of BMPER related intracellular signaling, we show that BMPER is permissive and necessary for Smad 1/5 phosphorylation and induces Erk1/2 activation. Most interestingly, BMPER is necessary for BMP-4 to exert its activating role in endothelial function and to induce Smad 1/5 activation. Vice versa, BMP-4 is necessary for BMPER activity. Taken together, BMPER is a dose-dependent endothelial cell activator that plays a unique and pivotal role in fine-tuning BMP activity in angiogenesis.
Collapse
|
199
|
Bursicon signaling mutations separate the epithelial-mesenchymal transition from programmed cell death during Drosophila melanogaster wing maturation. Genetics 2008; 180:885-93. [PMID: 18780731 DOI: 10.1534/genetics.108.092908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Following eclosion from the pupal case, wings of the immature adult fly unfold and expand to present a flat wing blade. During expansion the epithelia, which earlier produced the wing cuticle, delaminate from the cuticle, and the epithelial cells undergo an epithelial-mesenchymal transition (EMT). The resulting fibroblast-like cells then initiate a programmed cell death, produce an extracellular matrix that bonds dorsal and ventral wing cuticles, and exit the wing. Mutants that block wing expansion cause persistence of intact epithelia within the unexpanded wing. However, the normal progression of chromatin condensation and fragmentation accompanying programmed cell death in these cells proceeds with an approximately normal time course. These observations establish that the Bursicon/Rickets signaling pathway is necessary for both wing expansion and initiation of the EMT that leads to removal of the epithelial cells from the wing. They demonstrate that a different signal can be used to activate programmed cell death and show that two distinct genetic programs are in progress in these cells during wing maturation.
Collapse
|
200
|
Abstract
Extracellular components of the BMP signaling pathway bind specific partners with high affinity, implying regulation by dedicated protein-protein interactions. In this and other recent issues of Developmental Cell, new results by Ambrosio et al. (and others) suggest, however, that these factors interact in more complex ways to regulate BMP signaling on a fine scale.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA.
| |
Collapse
|