151
|
Abstract
Suppressor of Hairless [Su(H)] is a DNA-binding protein that is the main intracellular transducer of the Notch signaling pathway in Drosophila. Several different mechanisms have been proposed to account for the activation of Su(H) by Notch. To further investigate how Su(H) activity is regulated we have used misexpression assays with wild-type Su(H) and with modified forms of Su(H) that contained a nuclear localization signal [Su(H)NLS], a transcriptional activation domain [Su(H)VP16], or a deletion of the domain required for interaction with the antagonist Hairless [Su(H)DeltaH]. Only Su(H)VP16 was able to mimic Notch activation effectively in the Drosophila wing, in agreement with the model that Notch activity normally confers coactivator function on Su(H). Neither nuclear localization nor elimination of Hairless binding was sufficient for activation. The phenotypes produced by overexpression of Su(H)wt and Su(H)NLS indicated a mixture of both increased and reduced Notch pathway activity and point to a role for Su(H) in both activation and repression of gene expression, as has been proposed for the mammalian homologue CBF1. Some phenotypes were equivalent to Notch loss-of-function, with wing-nicks and inhibition of a subset of target genes, which is most consistent with the ectopic proteins displacing a Su(H)-coactivator complex. Conversely, other phenotypes were equivalent to Notch gain-of-function, with wing-overgrowths and ectopic target-gene expression. These effects can be explained by the ectopic Su(H)/Su(H)NLS titrating a repressor complex. The wing-overgrowth phenotype is sensitive to the dose of Hairless and the phenotypes produced by coexpressing Su(H) and Hairless suggest that Hairless could form a component of this repressive complex.
Collapse
Affiliation(s)
- M Furriols
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | | |
Collapse
|
152
|
Zhao D, Clyde D, Bownes M. Expression of fringe is down regulated by Gurken/Epidermal Growth Factor Receptor signalling and is required for the morphogenesis of ovarian follicle cells. J Cell Sci 2000; 113 Pt 21:3781-94. [PMID: 11034906 DOI: 10.1242/jcs.113.21.3781] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signalling by the Gurken/Epidermal Growth Factor Receptor (Grk/EGFR) pathway is involved in epithelial cell fate decision, morphogenesis and axis establishment in Drosophila oogenesis. In the search for genes downstream of the Grk/EGFR signal transduction pathway (STP), we isolated a number of genes that are components of other STPs. One of them is a known gene, called fringe (fng). Drosophila fng encodes a putative secreted protein that is required at other development stages for mediating interactions between dorsal and ventral cells via Notch signalling. Here we show that fng has a dynamic expression pattern in oogenesis and that its expression in specific groups of follicle cells along the anterior-posterior and dorsal-ventral axes is defined by the repression of fng by Grk. Interfering with fng expression using antisense RNA experiments resulted in a typical fng mutant phenotype in the wing, and malformed egg chambers and abnormal organisation of the follicle cells in the ovaries, revealing that fng is essential in oogenesis for the proper formation of the egg chamber and for epithelial morphogenesis. This has been confirmed by re-examination of fng mutants and analysis of fng mutant clones in oogenesis.
Collapse
Affiliation(s)
- D Zhao
- The University of Edinburgh, Institute of Cell and Molecular Biology, Darwin Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
153
|
Klein T, Seugnet L, Haenlin M, Martinez Arias A. Two different activities of Suppressor of Hairless during wing development in Drosophila. Development 2000; 127:3553-66. [PMID: 10903180 DOI: 10.1242/dev.127.16.3553] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch pathway plays a crucial and universal role in the assignation of cell fates during development. In Drosophila, Notch is a transmembrane protein that acts as a receptor of two ligands Serrate and delta. The current model of Notch signal transduction proposes that Notch is activated upon binding its ligands and that this leads to the cleavage and release of its intracellular domain (also called Nintra). Nintra translocates to the nucleus where it forms a dimeric transcription activator with the Su(H) protein. In contrast with this activation model, experiments with the vertebrate homologue of Su(H), CBF1, suggest that, in vertebrates, Nintra converts CBF1 from a repressor into an activator. Here we have assessed the role of Su(H) in Notch signalling during the development of the wing of Drosophila. Our results show that, during this process, Su(H) can activate the expression of some Notch target genes and that it can do so without the activation of the Notch pathway or the presence of Nintra. In contrast, the activation of other Notch target genes requires both Su(H) and Nintra, and, in the absence of Nintra, Su(H) acts as a repressor. We also find that the Hairless protein interacts with Notch signalling during wing development and inhibits the activity of Su(H). Our results suggest that, in Drosophila, the activation of Su(H) by Notch involve the release of Su(H) from an inhibitory complex, which contains the Hairless protein. After its release Su(H) can activate gene expression in absence of Nintra.
Collapse
Affiliation(s)
- T Klein
- Institut für Genetik, Universität zu Köln, Weyertal 121, Germany.
| | | | | | | |
Collapse
|
154
|
Tomoyasu Y, Ueno N, Nakamura M. The decapentaplegic morphogen gradient regulates the notal wingless expression through induction of pannier and u-shaped in Drosophila. Mech Dev 2000; 96:37-49. [PMID: 10940623 DOI: 10.1016/s0925-4773(00)00374-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The morphogen gradient of Wingless, a Wnt family member protein, provides positional information to cells in Drosophila imaginal discs. Elucidating the mechanism that precisely restricts the expression domain of wingless is important in understanding the two-dimensional patterning by secreted proteins in imaginal discs. In the pouch region of the wing disc, wingless is induced at the dorsal/ventral compartment boundary by Notch signaling in a compartment-dependent manner. In the notum region of the wing disc, wingless is also expressed across the dorsal/ventral axis, however, regulation of notal wingless expression is not fully understood. Here, we show that notal wingless expression is established through the function of Pannier, U-shaped and Wingless signaling itself. Initial wingless induction is regulated by two transcription factors, Pannier and U-shaped. At a later stage, wingless expression expands ventrally from the pannier expression domain by a Wingless signaling-dependent mechanism. Interestingly, expression of pannier and u-shaped is regulated by Decapentaplegic signaling that provides the positional information along the anterior/posterior axis, in a concentration-dependent manner. This suggests that the Decapentaplegic morphogen gradient is utilized not only for anterior/posterior patterning but also contributes to dorsal/ventral patterning through the induction of pannier, u-shaped and wingless during Drosophila notum development.
Collapse
Affiliation(s)
- Y Tomoyasu
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka Myodaijicho, 444-8585, Okazaki, Japan
| | | | | |
Collapse
|
155
|
Brückner K, Perez L, Clausen H, Cohen S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000; 406:411-5. [PMID: 10935637 DOI: 10.1038/35019075] [Citation(s) in RCA: 542] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ligands that are capable of activating Notch family receptors are broadly expressed in animal development, but their activity is tightly regulated to allow formation of tissue boundaries. Members of the fringe gene family have been implicated in limiting Notch activation during boundary formation, but the mechanism of Fringe function has not been determined. Here we present evidence that Fringe acts in the Golgi as a glycosyltransferase enzyme that modifies the epidermal growth factor (EGF) modules of Notch and alters the ability of Notch to bind its ligand Delta. Fringe catalyses the addition of N-acetylglucosamine to fucose, which is consistent with a role in the elongation of O-linked fucose O-glycosylation that is associated with EGF repeats. We suggest that cell-type-specific modification of glycosylation may provide a general mechanism to regulate ligand-receptor interactions in vivo.
Collapse
Affiliation(s)
- K Brückner
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
156
|
Milán M, Cohen SM. Temporal regulation of apterous activity during development of the Drosophila wing. Development 2000; 127:3069-78. [PMID: 10862744 DOI: 10.1242/dev.127.14.3069] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of Notch along the dorsoventral compartment boundary. We present evidence that the ability of cells to participate in this Apterous-dependent cell-interaction is under spatial and temporal control. Apterous-dependent expression of dLMO causes downregulation of Serrate and fringe and allows expression of delta in dorsal cells. This limits the time window during which dorsoventral cell interactions can lead to localized activation of Notch and induction of the dorsoventral organizer. Overactivation of Apterous in the absence of dLMO leads to overexpression of Serrate, reduced expression of delta and concomitant defects in differentiation and cell survival in the wing primordium. Thus, downregulation of Apterous activity is needed to allow normal wing development.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Germany
| | | |
Collapse
|
157
|
Lawrence N, Klein T, Brennan K, Martinez Arias A. Structural requirements for notch signalling with delta and serrate during the development and patterning of the wing disc of Drosophila. Development 2000; 127:3185-95. [PMID: 10862754 DOI: 10.1242/dev.127.14.3185] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The delta and Serrate proteins interact with the extracellular domain of the Notch receptor and initiate signalling through the receptor. The two ligands are very similar in structure and have been shown to be interchangeable experimentally; however, loss of function analysis indicates that they have different functions during development and analysis of their signalling during wing development indicates that the Fringe protein can discriminate between the two ligands. This raises the possibility that the signalling of delta and Serrate through Notch requires different domains of the Notch protein. Here we have tested this possibility by examining the ability of delta and Serrate to interact and signal with Notch molecules in which different domains had been deleted. This analysis has shown that EGF-like repeats 11 and 12, the RAM-23 and cdc10/ankyrin repeats and the region C-terminal to the cdc10/ankyrin repeats of Notch are necessary for both delta and Serrate to signal via Notch. They also indicate, however, that delta and Serrate utilise EGF-like repeats 24–26 of Notch for signalling, but there are significant differences in the way they utilise these repeats.
Collapse
Affiliation(s)
- N Lawrence
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | | | | |
Collapse
|
158
|
Munro S, Freeman M. The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr Biol 2000; 10:813-20. [PMID: 10899003 DOI: 10.1016/s0960-9822(00)00578-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Signalling via the Notch receptor is a key regulator of many developmental processes. The differential responsiveness of Notch-expressing cells to the ligands Delta and Serrate is controlled by Fringe, itself essential for normal patterning in Drosophila and vertebrates. The mechanism of Fringe action, however, is not known. The protein has an amino-terminal hydrophobic stretch resembling a cleaved signal peptide, which has led to the widespread assumption that it is a secreted signalling molecule. It also has distant homology to bacterial glycosyltransferases, although it is not clear if this reflects a shared enzymatic activity, or merely a related structure. RESULTS We report that a functional epitope-tagged form of Drosophila Fringe was localised in the Golgi apparatus. When the putative signal peptide was replaced by a confirmed one, Fringe no longer accumulated in the Golgi, but was instead efficiently secreted. This change in localisation dramatically reduced its biological activity, implying that the wild-type protein normally acts inside the cell. We show that Fringe specifically binds the nucleoside diphosphate UDP, a feature of many glycosyltransferases. Furthermore, specific mutation of a DxD motif (in the single-letter amino acid code where x is any amino acid), a hallmark of most glycosyltransferases that use nucleoside diphosphate sugars, did not affect the Golgi localisation of the protein but completely eliminated in vivo activity. CONCLUSIONS These results indicate that Fringe does not exert its effects outside of the cell, but rather acts in the Golgi apparatus, apparently as a glycosyltransferase. They suggest that alteration in receptor glycosylation can regulate the relative efficiency of different ligands.
Collapse
Affiliation(s)
- S Munro
- MRC Laboratory of Molecular Biology, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
159
|
Beckers J, Schlautmann N, Gossler A. The mouse rib-vertebrae mutation disrupts anterior-posterior somite patterning and genetically interacts with a Delta1 null allele. Mech Dev 2000; 95:35-46. [PMID: 10906448 DOI: 10.1016/s0925-4773(00)00323-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rib-vertebrae (rv) is an autosomal recessive mutation in mouse that affects the morphogenesis of the vertebral column. Axial skeleton defects vary along the anterior-posterior body axis, and include split vertebrae and neural arches, and fusions of adjacent segments. Here, we show that defective somite patterning underlies the vertebral malformations and altered Notch signaling may contribute to the phenotype. Somites in affected regions are irregular in size and shape, epithelial morphology is disrupted, and anterior-posterior somite patterning is abnormal, reminiscent of somite defects obtained in loss-of-function alleles of Notch signaling pathway components. Expression of Dll1, Dll3, Lfng and Notch1 is altered in rv mutant embryos, and rv and Dll1(lacZ), a null allele of the Notch ligand Delta1, genetically interact. Mice double heterozygous for rv and Dll1(lacZ), show vertebral defects, and one copy of Dll1(lacZ) on the homozygous rv background enhances the mutant phenotype and is lethal in the majority of cases. However, fine genetic mapping places rv into an interval on chromosome seven that does not contain a gene encoding a known component of the Notch signaling pathway.
Collapse
Affiliation(s)
- J Beckers
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
160
|
Baonza A, de Celis JF, García-Bellido A. Relationships between extramacrochaetae and Notch signalling in Drosophila wing development. Development 2000; 127:2383-93. [PMID: 10804180 DOI: 10.1242/dev.127.11.2383] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The function of extramacrochaetae is required during the development of the Drosophila wing in processes such as cell proliferation and vein differentiation. extramacrochaetae encodes a transcription factor of the HLH family, but unlike other members of this family, Extramacrochaetae lacks the basic region that is involved in interaction with DNA. Some phenotypes caused by extramacrochaetae in the wing are similar to those observed when Notch signalling is compromised. Furthermore, maximal levels of extramacrochaetae expression in the wing disc are restricted to places where Notch activity is higher, suggesting that extramacrochaetae could mediate some aspects of Notch signalling during wing development. We have studied the relationships between extramacrochaetae and Notch in wing development, with emphasis on the processes of vein formation and cell proliferation. We observe strong genetic interaction between extramacrochaetae and different components of the Notch signalling pathway, suggesting a functional relationship between them. We show that the higher level of extramacrochaetae expression coincides with the domain of expression of Notch and its downstream gene Enhancer of split-m(beta). The expression of extramacrochaetae at the dorso/ventral boundary and in boundary cells between veins and interveins depends on Notch activity. We propose that at least during vein differentiation and wing margin formation, extramacrochaetae is regulated by Notch and collaborates with other Notch-downstream genes such as Enhancer of split-m(beta).
Collapse
Affiliation(s)
- A Baonza
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
161
|
Abstract
The Fringe protein of Drosophila and its vertebrate homologues function in boundary determination during pattern formation. Fringe has been proposed to inhibit Serrate-Notch signalling but to potentiate Delta-Notch signalling. Here we show that Fringe and Notch form a complex through both the Lin-Notch repeats and the epidermal growth factor repeats 22-36 (EGF22-36) of Notch when they are co-expressed. The Abruptex59b (Ax59b) and AxM1 mutations, which are caused by missense mutations in EGF repeats 24 and 25, respectively, abolish the Fringe-Notch interaction through EGF22-36, whereas the l(1)N(B) mutation in the third Lin-Notch repeat of Notch abolishes the interaction through Lin-Notch repeats. Ax mutations also greatly affect the Notch response to ectopic Fringe in vivo. Results from in vitro protein mixing experiments and subcellular colocalization experiments indicate that the Fringe-Notch complex may form before their secretion. These findings explain how Fringe acts cell-autonomously to modulate the ligand preference of Notch and why the Fringe-Notch relationship is conserved between phyla and in the development of very diverse structures.
Collapse
Affiliation(s)
- B G Ju
- National Creative Research Initiative Center for Genetic Reprogramming, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
162
|
Casares F, Mann RS. A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 2000; 127:1499-508. [PMID: 10704395 DOI: 10.1242/dev.127.7.1499] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila wing imaginal disc gives rise to three body parts along the proximo-distal (P-D) axis: the wing blade, the wing hinge and the mesonotum. Development of the wing blade initiates along part of the dorsal/ventral (D/V) compartment boundary and requires input from both the Notch and wingless (wg) signal transduction pathways. In the wing blade, wg activates the gene vestigial (vg), which is required for the wing blade to grow. wg is also required for hinge development, but wg does not activate vg in the hinge, raising the question of what target genes are activated by wg to generate hinge structures. Here we show that wg activates the gene homothorax (hth) in the hinge and that hth is necessary for hinge development. Further, we demonstrate that hth also limits where along the D/V compartment boundary wing blade development can initiate, thus helping to define the size and position of the wing blade within the disc epithelium. We also show that the gene teashirt (tsh), which is coexpressed with hth throughout most of wing disc development, collaborates with hth to repress vg and block wing blade development. Our results suggest that tsh and hth block wing blade development by repressing some of the activities of the Notch pathway at the D/V compartment boundary.
Collapse
Affiliation(s)
- F Casares
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, New York, NY 10032 USA
| | | |
Collapse
|
163
|
de Celis JF, Bray SJ. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 2000; 127:1291-302. [PMID: 10683181 DOI: 10.1242/dev.127.6.1291] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Notch signalling pathway regulates cell fate choices during both vertebrate and invertebrate development. In the Drosophila wing disc, the activation of Notch by its ligands Delta and Serrate is required to make the dorsoventral boundary, where several genes, such as wingless and cut, are expressed in a 2- to 4-cell-wide domain. The interactions between Notch and its ligands are modulated by Fringe via a mechanism that may involve post-transcriptional modifications of Notch. The ligands themselves also help to restrict Notch activity to the dorsoventral boundary cells, because they antagonise the activation of the receptor in the cells where their expression is high. This function of the ligands is critical to establish the polarity of signalling, but very little is known about the mechanisms involved in the interactions between Notch and its ligands that result in suppression of Notch activity. The extracellular domain of Notch contains an array of 36 EGF repeats, two of which, repeats 11 and 12, are necessary for direct interactions between Notch with Delta and Serrate. We investigate here the function of a region of the Notch extracellular domain where several missense mutations, called Abruptex, are localised. These Notch alleles are characterised by phenotypes opposite to the loss of Notch function and also by complex complementation patterns. We find that, in Abruptex mutant discs, only the negative effects of the ligands and Fringe are affected, resulting in the failure to restrict the expression of cut and wingless to the dorsoventral boundary. We suggest that Abruptex alleles identify a domain in the Notch protein that mediates the interactions between Notch, its ligands and Fringe that result in suppression of Notch activity.
Collapse
Affiliation(s)
- J F de Celis
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | |
Collapse
|
164
|
Baonza A, Garcia-Bellido A. Notch signaling directly controls cell proliferation in the Drosophila wing disc. Proc Natl Acad Sci U S A 2000; 97:2609-14. [PMID: 10706613 PMCID: PMC15976 DOI: 10.1073/pnas.040576497] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch signaling is involved in cell differentiation and patterning during morphogenesis. In the Drosophila wing, Notch activity regulates the expression of several genes at the dorsal/ventral boundary, and this is thought to elicit wing-cell proliferation. In this work, we show the effect of clones of cells expressing different forms of several members of the Notch signaling pathway, which result in an alteration of Notch activity. The ectopic expression in clones of activated forms of Notch or of its ligands (Delta or Serrate) in the wing causes outgrowths associated with the appearance of ectopic wing margins. These outgrowths consist of mutant territories and of surrounding wild-type cells. However, the ectopic expression of Delta, at low levels in ventral clones, causes large outgrowths that are associated neither with the generation of wing margin structures nor with the expression of genes characteristic of the dorsal/ventral boundary. These results suggest that Notch activity is directly involved in cell proliferation, independently of its role in the formation of the dorsal/ventral boundary. We propose that the nonautonomous effects (induction of extraproliferation and vein differentiation in the surrounding wild-type cells) result from pattern accommodation to positional values caused by the ectopic expression of Notch.
Collapse
Affiliation(s)
- A Baonza
- Centro de Biologia Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Cientificas, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
165
|
Abstract
Notch has been known for many years as a receptor for inhibitory signals that shapes the pattern of the nervous system during its development. Genes in the Notch pathway function to prevent neural determination so that only a subset of the available ectodermal cells become neural precursors. The localization of Notch signaling is crucial for determining where neural precursor cells arise on a cell-by-cell basis. The unresolved problem is that studies of the expression of Notch protein and its ligands are inconsistent with the pattern of neurogenesis. During neural cell fate specification, distributions of Notch protein and of its ligand Delta appear uniform. Under the reigning paradigm, such widespread expression should lead to N signal transduction in all cells and thereby prevent any neural specification. Yet, contrary to this expectation, neural elements still form, in characteristic patterns, hence, Notch signal transduction must have been inactive in the precursor cells. The mechanism preventing Notch signaling in certain cells must be posttranslational but it has not yet been identified. This review will outline the experimental evidence supporting this view of Notch signaling, and briefly evaluate some of the possible mechanisms that have been suggested.
Collapse
Affiliation(s)
- N E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
166
|
Mizutani K, Matsubayashi T, Iwase S, Doi TS, Kasai K, Yazaki M, Wada Y, Takahashi T, Obata Y. Murine Delta homologue, mDelta1, expressed on feeder cells controls cellular differentiation. Cell Struct Funct 2000; 25:21-31. [PMID: 10791891 DOI: 10.1247/csf.25.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Delta/Serrate-Notch pathway is involved in intercellular signaling that controls cell fate during the development of invertebrates and vertebrates. Delta is a prototype of Notch ligands and has been studied extensively in Drosophila. In higher vertebrates, four Delta/Serrate homologues and four Notch homologues have been identified. Recent studies showed that the murine Delta homologue, mDelta1, is essential in early embryogenesis. The biological activity of mammalian Delta and its roles in cellular differentiation, however, have remained unclear. In this study, we first surveyed expression of mDelta1 in the adult mouse and found it to be present in a wide range of tissues. For testing biological activity of mDelta1, we expressed a mDelta1 full-length cDNA in L cells using a eukaryotic expression vector. Effects of mDelta1 on cellular differentiation were examined in two independent systems, featuring C2C12 myogenic differentiation and multipotent murine bone marrow cell differentiation. Inhibition of the former was observed with mDelta1 expression on L cells, associated with suppression of myogenin, a myogenic transcription factor. Expression of mDelta1 in conjunction with GM-CSF promoted differentiation of bone marrow cells to myeloid dendritic cells at the expense of other lineages. Although the effects of mDelta1 on two differentiation systems appeared opposing, as inhibition occurring in one and induction in the other, this can be understood by the unifying concept of generation of diverse cell types from equivalent progenitors. Thus, the present study provided evidence that mammalian Delta participates in intercellular signaling, determining the cell fate in a wide variety of tissues.
Collapse
Affiliation(s)
- K Mizutani
- Laboratory of Immunology, Aichi Cancer Center Research Institute, Chikusaku, Nagoya
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Segmentation of the paraxial mesoderm into somites requires a strategy distinct from the division of a preexisting field of cells, as seen in the segmentation of the vertebrate hindbrain into rhombomeres and the formation of the body plan of invertebrates. Each new somite forms from the anterior end of the segmental plate; therefore, the conditions for establishing the anterior-posterior boundary must be re-created prior to the formation of the next somite. It has been established that regulation of this process is native to the anterior end of the segmental plate, however, the components of a genetic pathway are poorly understood. A growing library of candidate genes has been generated from hybridization screens and sequence homology searches, which include cell adhesion molecules, cell surface receptors, growth factors, and transcription factors. With the increasing accessibility of gene knockout technology, many of these genes have been tested for their role in regulating somitogenesis. In this chapter, we will review the significant advances in our understanding of segmentation based on these experiments.
Collapse
Affiliation(s)
- A Rawls
- Department of Biology, Arizona State University, Tempe 85287, USA
| | | | | |
Collapse
|
168
|
Milán M, Cohen SM. Notch signaling is not sufficient to define the affinity boundary between dorsal and ventral compartments. Mol Cell 1999; 4:1073-8. [PMID: 10635331 DOI: 10.1016/s1097-2765(00)80235-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The developing limbs of Drosophila are subdivided into distinct cells populations known as compartments. Short-range interaction between cells in adjacent compartments induces expression of signaling molecules at the compartment boundaries. In addition to serving as the sources of long-range signals, compartment boundaries prevent mixing of the adjacent cell populations. One model for boundary formation proposes that affinity differences between compartments are defined autonomously as one aspect of compartment-specific cell identity. An alternative is that the affinity boundary depends on signaling between compartments. Here, we present evidence that the dorsal selector gene apterous plays a role in establishing the dorsoventral affinity boundary that is independent of Notch-mediated signaling between dorsal and ventral cells.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
169
|
Brennan K, Klein T, Wilder E, Arias AM. Wingless modulates the effects of dominant negative notch molecules in the developing wing of Drosophila. Dev Biol 1999; 216:210-29. [PMID: 10588873 DOI: 10.1006/dbio.1999.9502] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development and patterning of the wing in Drosophila relies on a sequence of cell interactions molecularly driven by a number of ligands and receptors. Genetic analysis indicates that a receptor encoded by the Notch gene and a signal encoded by the wingless gene play a number of interdependent roles in this process and display very strong functional interactions. At certain times and places, during wing development, the expression of wingless requires Notch activity and that of its ligands Delta and Serrate. This has led to the proposal that all the interactions between Notch and wingless can be understood in terms of this regulatory relationship. Here we have tested this proposal by analysing interactions between Delta- and Serrate-activated Notch signalling and Wingless signalling during wing development and patterning. We find that the cell death caused by expressing dominant negative Notch molecules during wing development cannot be rescued by coexpressing Nintra. This suggests that the dominant negative Notch molecules cannot only disrupt Delta and Serrate signalling but can also disrupt signalling through another pathway. One possibility is the Wingless signalling pathway as the cell death caused by expressing dominant negative Notch molecules can be rescued by activating Wingless signalling. Furthermore, we observe that the outcome of the interactions between Notch and Wingless signalling differs when we activate Wingless signalling by expressing either Wingless itself or an activated form of the Armadillo. For example, the effect of expressing the activated form of Armadillo with a dominant negative Notch on the patterning of sense organ precursors in the wing resembles the effects of expressing Wingless alone. This result suggests that signalling activated by Wingless leads to two effects, a reduction of Notch signalling and an activation of Armadillo.
Collapse
Affiliation(s)
- K Brennan
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | | | | | | |
Collapse
|
170
|
Abstract
The Notch pathway mediates cell-cell interaction in many developmental processes. Multiple proteins regulate the Notch pathway, among these are the products of the fringe genes. The first fringe gene was identified in Drosophila, where it is involved in the formation of the dorsal/ventral border of the wing disc. It has now been found to be crucial for determining the dorsal/ventral border of the Drosophila eye. In vertebrates, fringe genes play roles in the formation of the apical ectodermal ridge, the dorsal/ventral border in the limb bud, and in the development of somitic borders. The roles of fringe in the neural tube or the eyes of vertebrate embryos are not clear, although it is unlikely that these roles are evolutionarily related to those in the same tissues in Drosophila. Genetic evidences suggest that Fringe protein functions by modulating the Notch signaling pathway, perhaps through differential regulation of Notch activation by different ligands; however, the mechanism underlying Fringe function remains to be investigated.
Collapse
Affiliation(s)
- J Y Wu
- Departments of Pediatrics, and Molecular Biology and Pharmacology Box 8116 Washington University School of Medicine, St Louis, Missouri, 63110, USA.
| | | |
Collapse
|
171
|
Micchelli CA, Blair SS. Dorsoventral lineage restriction in wing imaginal discs requires Notch. Nature 1999; 401:473-6. [PMID: 10519549 DOI: 10.1038/46779] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of boundaries that prevent the intermixing of cells is an important developmental patterning mechanism. The compartmental lineage restrictions that appear in the developing imaginal discs of Drosophila are striking examples of such boundaries. However, little is known about the cellular mechanism underlying compartmental lineage restrictions. The dorsoventral (D/V) lineage restriction that arises late in the developing wing imaginal disc requires the dorsal expression of the transcription factor Apterous and it has been hypothesized that apterous (ap) maintains compartmentalization by directly regulating the expression of molecules that modify cell adhesion or affinity. However, ap expression also regulates signalling between dorsal and ventral compartments, resulting in high levels of Notch signalling at the D/V boundary. Here we show that the formation of Notch-dependent boundary cells is required for the D/V lineage restriction.
Collapse
Affiliation(s)
- C A Micchelli
- Neuroscience Training Program, Department of Zoology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
172
|
Apidianakis Y, Nagel AC, Chalkiadaki A, Preiss A, Delidakis C. Overexpression of the m4 and malpha genes of the E(spl)-complex antagonizes notch mediated lateral inhibition. Mech Dev 1999; 86:39-50. [PMID: 10446264 DOI: 10.1016/s0925-4773(99)00099-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Intercellular signalling mediated by Notch proteins is crucial to many cell fate decisions in metazoans. Its profound effects on cell fate and proliferation require that a complex set of responses involving positive and negative signal transducers be orchestrated around each instance of signalling. In Drosophila the basic-helix-loop-helix (bHLH) repressor encoding genes of the E(spl) locus are induced by Notch signalling and mediate some of its effects, such as suppression of neural fate. Here we report on a novel family of Notch responsive genes, whose products appear to act as antagonists of the Notch signal in the process of adult sensory organ precursor singularization. They, too, reside in the E(spl) locus and comprise transcription units E(spl) m4 and E(spl) malpha. Overexpression of these genes causes downregulation of E(spl) bHLH expression accompanied by cell autonomous overcommitment of sensory organ precursors and tufting of bristles. Interestingly, negative regulation of the Notch pathway by overexpression of E(spl) m4 and malpha is specific to the process of sensory organ precursor singularization and does not impinge on other instances of Notch signalling.
Collapse
Affiliation(s)
- Y Apidianakis
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, Box 1527, Heraklion GR-71 110, Greece
| | | | | | | | | |
Collapse
|
173
|
Abstract
Compartment boundaries have fascinated biologists for more than 25 years. We now know that these boundaries play important roles in pattern formation, yet how these boundaries are established during development remained a mystery. Here, we describe the exciting progress that has been made recently towards elucidating the mechanisms of boundary formation.
Collapse
Affiliation(s)
- C Dahmann
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
174
|
Cornell M, Evans DA, Mann R, Fostier M, Flasza M, Monthatong M, Artavanis-Tsakonas S, Baron M. The Drosophila melanogaster Suppressor of deltex gene, a regulator of the Notch receptor signaling pathway, is an E3 class ubiquitin ligase. Genetics 1999; 152:567-76. [PMID: 10353900 PMCID: PMC1460625 DOI: 10.1093/genetics/152.2.567] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During development, the Notch receptor regulates many cell fate decisions by a signaling pathway that has been conserved during evolution. One positive regulator of Notch is Deltex, a cytoplasmic, zinc finger domain protein, which binds to the intracellular domain of Notch. Phenotypes resulting from mutations in deltex resemble loss-of-function Notch phenotypes and are suppressed by the mutation Suppressor of deltex [Su(dx)]. Homozygous Su(dx) mutations result in wing-vein phenotypes and interact genetically with Notch pathway genes. We have previously defined Su(dx) genetically as a negative regulator of Notch signaling. Here we present the molecular identification of the Su(dx) gene product. Su(dx) belongs to a family of E3 ubiquitin ligase proteins containing membrane-targeting C2 domains and WW domains that mediate protein-protein interactions through recognition of proline-rich peptide sequences. We have identified a seven-codon deletion in a Su(dx) mutant allele and we show that expression of Su(dx) cDNA rescues Su(dx) mutant phenotypes. Overexpression of Su(dx) also results in ectopic vein differentiation, wing margin loss, and wing growth phenotypes and enhances the phenotypes of loss-of-function mutations in Notch, evidence that supports the conclusion that Su(dx) has a role in the downregulation of Notch signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- Drosophila Proteins
- Drosophila melanogaster/chemistry
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Genes, Suppressor/genetics
- Genetic Complementation Test
- Insect Proteins/genetics
- Ligases/genetics
- Membrane Proteins/physiology
- Molecular Sequence Data
- Mutation
- Phenotype
- Phylogeny
- Receptors, Cell Surface/physiology
- Receptors, Notch
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction
- Transfection
- Ubiquitin-Protein Ligases
- Wings, Animal/embryology
- Wings, Animal/growth & development
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- M Cornell
- University of Manchester, School of Biological Sciences, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Rollins RA, Morcillo P, Dorsett D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 1999; 152:577-93. [PMID: 10353901 PMCID: PMC1460629 DOI: 10.1093/genetics/152.2.577] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
How enhancers are able to activate promoters located several kilobases away is unknown. Activation by the wing margin enhancer in the cut gene, located 85 kb from the promoter, requires several genes that participate in the Notch receptor pathway in the wing margin, including scalloped, vestigial, mastermind, Chip, and the Nipped locus. Here we show that Nipped mutations disrupt one or more of four essential complementation groups: l(2)41Ae, l(2)41Af, Nipped-A, and Nipped-B. Heterozygous Nipped mutations modify Notch mutant phenotypes in the wing margin and other tissues, and magnify the effects that mutations in the cis regulatory region of cut have on cut expression. Nipped-A and l(2)41Af mutations further diminish activation by a wing margin enhancer partly impaired by a small deletion. In contrast, Nipped-B mutations do not diminish activation by the impaired enhancer, but increase the inhibitory effect of a gypsy transposon insertion between the enhancer and promoter. Nipped-B mutations also magnify the effect of a gypsy insertion in the Ultrabithorax gene. Gypsy binds the Suppressor of Hairy-wing insulator protein [Su(Hw)] that blocks enhancer-promoter communication. Increased insulation by Su(Hw) in Nipped-B mutants suggests that Nipped-B products structurally facilitate enhancer-promoter communication. Compatible with this idea, Nipped-B protein is homologous to a family of chromosomal adherins with broad roles in sister chromatid cohesion, chromosome condensation, and DNA repair.
Collapse
MESH Headings
- Animals
- Cadherins/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Drosophila/embryology
- Drosophila/genetics
- Drosophila Proteins
- Enhancer Elements, Genetic
- Gene Deletion
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Genes, Lethal
- Genetic Complementation Test
- Heterozygote
- Homeodomain Proteins/genetics
- Insect Proteins/genetics
- Membrane Proteins/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Nerve Tissue Proteins/genetics
- Nuclear Proteins/genetics
- Phenotype
- Receptors, Notch
- Retroelements
- Sequence Analysis, DNA
- Transcription Factors
- Wings, Animal/embryology
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- R A Rollins
- Molecular Biology Program, Sloan-Kettering Institute-Cornell University Medical College, Weill Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | | |
Collapse
|
176
|
Abstract
Patterning of multicellular fields requires mechanisms to coordinate developmental decisions made by populations of cells. Evidence is accumulating that the necessary information is provided by localized sources of secreted signalling proteins which act as morphogens. We review evidence that Wingless, Dpp and Hedgehog proteins act as morphogens in the developing wing of Drosophila and discuss recent work illustrating that signalling helps to shape their activity gradients by regulating ligand distribution and by modulating the responsiveness of target cells. These studies suggest that there is more to being a morphogen than formation of a ligand gradient by passive diffusion.
Collapse
Affiliation(s)
- M Strigini
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, Heidelberg, D-69117, Germany
| | | |
Collapse
|
177
|
Wiellette EL, McGinnis W. Hox genes differentially regulate Serrate to generate segment-specific structures. Development 1999; 126:1985-95. [PMID: 10101132 DOI: 10.1242/dev.126.9.1985] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diversification of Drosophila segmental morphologies requires the functions of Hox transcription factors. However, there is little information describing pathways through which Hox activities effect the discrete cellular changes that diversify segmental architecture. We have identified the Drosophila signaling protein Serrate as the product of a Hox downstream gene that acts in many segments as a component of such pathways. In the embryonic epidermis, Serrate is required for morphogenesis of normal abdominal denticle belts and maxillary mouth hooks, both Hox-dependent structures. The Hox genes Ultrabithorax and abdominal-A are required to activate an early stripe of Serrate transcription in abdominal segments. In the abdominal epidermis, Serrate promotes denticle diversity by precisely localizing a single cell stripe of rhomboid expression, which generates a source of EGF signal that is not produced in thoracic epidermis. In the head, Deformed is required to activate Serrate transcription in the maxillary segment, where Serrate is required for normal mouth hook morphogenesis. However, Serrate does not require rhomboid function in the maxillary segment, suggesting that the Hox-Serrate pathway to segment-specific morphogenesis can be linked to more than one downstream function.
Collapse
Affiliation(s)
- E L Wiellette
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
178
|
|
179
|
|
180
|
Nagaraj R, Pickup AT, Howes R, Moses K, Freeman M, Banerjee U. Role of the EGF receptor pathway in growth and patterning of the Drosophila wing through the regulation of vestigial. Development 1999; 126:975-85. [PMID: 9927598 DOI: 10.1242/dev.126.5.975] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth and patterning of the Drosophila wing disc depends on the coordinated expression of the key regulatory gene vestigial both in the Dorsal-Ventral (D/V) boundary cells and in the wing pouch. We propose that a short-range signal originating from the core of the D/V boundary cells is responsible for activating EGFR in a zone of organizing cells on the edges of the D/V boundary. Using loss-of-function mutations and ectopic expression studies, we show that EGFR signaling is essential for vestigial transcription in these cells and for making them competent to undergo subsequent vestigial-mediated proliferation within the wing pouch.
Collapse
Affiliation(s)
- R Nagaraj
- Department of Molecular, Cell and Developmental Biology, Department of Biological Chemistry and Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Halder G, Polaczyk P, Kraus ME, Hudson A, Kim J, Laughon A, Carroll S. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev 1998; 12:3900-9. [PMID: 9869643 PMCID: PMC317267 DOI: 10.1101/gad.12.24.3900] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A small number of major regulatory (selector) genes have been identified in animals that control the development of particular organs or complex structures. In Drosophila, the vestigial gene is required for wing formation and is able to induce wing-like outgrowths on other structures. However, the molecular function of the nuclear Vestigial protein, which bears no informative similarities to other proteins, was unknown. Here, we show that Vestigial requires the function of the Scalloped protein, a member of the TEA family of transcriptional regulators, to directly activate the expression of genes involved in wing morphogenesis. Genetic and molecular analyses reveal that Vestigial regulates wing identity by forming a complex with the Scalloped protein that binds sequence specifically to essential sites in wing-specific enhancers. These enhancers also require the direct inputs of signaling pathways, and the response of an enhancer can be switched to another pathway through changes in signal-transducer binding sites. Combinatorial regulation by selector proteins and signal transducers is likely to be a general feature of the tissue-specific control of gene expression during organogenesis.
Collapse
Affiliation(s)
- G Halder
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706 USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Rusconi JC, Corbin V. Evidence for a novel Notch pathway required for muscle precursor selection in Drosophila. Mech Dev 1998; 79:39-50. [PMID: 10349619 DOI: 10.1016/s0925-4773(98)00170-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch pathway mediates cell fate choice in many species and developmental contexts. In the Drosophila mesoderm, phenotypic differences were observed when different components of the pathway were defective. To determine if these differences reflect variations in the signaling pathway or in the persistence of wild-type maternal products, we examined muscle precursors in embryos that lacked both maternally- and zygotically-derived gene products, called holonull embryos. Most holonull neurogenic embryos have the same number and arrangement of extra muscle precursors, but in Notch holonull embryos many additional cells also become muscle precursors. Thus Notch is active in cells where its known ligands and downstream effectors are not. These results indicate that Notch acts in two pathways to determine cell fates in mesoderm: the Delta-to-Notch-to-Suppressor of Hairless-to-Enhancer of split signaling pathway previously defined, and a second pathway that acts independently.
Collapse
Affiliation(s)
- J C Rusconi
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | |
Collapse
|
184
|
Fostier M, Evans DA, Artavanis-Tsakonas S, Baron M. Genetic characterization of the Drosophila melanogaster Suppressor of deltex gene: A regulator of notch signaling. Genetics 1998; 150:1477-85. [PMID: 9832525 PMCID: PMC1460411 DOI: 10.1093/genetics/150.4.1477] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Notch receptor signaling pathway regulates cell differentiation during the development of multicellular organisms. A number of genes are known to be components of the pathway or regulators of the Notch signal. One candidate for a modifier of Notch function is the Drosophila Suppressor of deltex gene [Su(dx)]. We have isolated four new alleles of Su(dx) and mapped the gene between 22B4 and 22C2. Loss-of-function Su(dx) mutations were found to suppress phenotypes resulting from loss-of-function of Notch signaling and to enhance gain-of-function Notch mutations. Hairless, a mutation in a known negative regulator of the Notch pathway, was also enhanced by Su(dx). Phenotypes were identified for Su(dx) in wing vein development, and a role was demonstrated for the gene between 20 and 30 hr after puparium formation. This corresponds to the period when the Notch protein is involved in refining the vein competent territories. Taken together, our data indicate a role for Su(dx) as a negative regulator of Notch function.
Collapse
Affiliation(s)
- M Fostier
- University of Manchester, School of Biological Sciences, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
185
|
de Celis JF, Tyler DM, de Celis J, Bray SJ. Notch signalling mediates segmentation of the Drosophila leg. Development 1998; 125:4617-26. [PMID: 9806911 DOI: 10.1242/dev.125.23.4617] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The legs of Drosophila are divided into segments along the proximodistal axis by flexible structures called joints. The separation between segments is already visible in the imaginal disc as folds of the epithelium, and cells at segment boundaries have different morphology during pupal development. We find that Notch is locally activated in distal cells of each segment, as demonstrated by the restricted expression of the Enhancer of split mbeta gene, and is required for the formation of normal joints. The genes fringe, Delta, Serrate and Suppressor of Hairless, also participate in Notch function during leg development, and their expression is localised within the leg segments with respect to segment boundaries. The failure to form joints when Notch signalling is compromised leads to shortened legs, suggesting that the correct specification of segment boundaries is critical for normal leg growth. The requirement for Notch during leg development resembles that seen during somite formation in vertebrates and at the dorsal ventral boundary of the wing, suggesting that the creation of boundaries of gene expression through Notch activation plays a conserved role in co-ordinating growth and patterning.
Collapse
Affiliation(s)
- J F de Celis
- Department of Genetics and Department of Anatomy, University of Cambridge, Downing Street, Cambridge, UK.
| | | | | | | |
Collapse
|
186
|
Rodriguez-Esteban C, Schwabe JW, Peña JD, Rincon-Limas DE, Magallón J, Botas J, Izpisúa Belmonte JC. Lhx2, a vertebrate homologue of apterous, regulates vertebrate limb outgrowth. Development 1998; 125:3925-34. [PMID: 9735354 DOI: 10.1242/dev.125.20.3925] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
apterous specifies dorsal cell fate and directs outgrowth of the wing during Drosophila wing development. Here we show that, in vertebrates, these functions appear to be performed by two separate proteins. Lmx-1 is necessary and sufficient to specify dorsal identity and Lhx2 regulates limb outgrowth. Our results suggest that Lhx2 is closer to apterous than Lmx-1, yet, in vertebrates, Lhx2 does not specify dorsal cell fate. This implies that in vertebrates, unlike Drosophila, limb outgrowth can be dissociated from the establishment of the dorsoventral axis.
Collapse
|
187
|
Milán M, Diaz-Benjumea FJ, Cohen SM. Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: a model for LMO oncogene function. Genes Dev 1998; 12:2912-20. [PMID: 9744867 PMCID: PMC317163 DOI: 10.1101/gad.12.18.2912] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1998] [Accepted: 07/08/1998] [Indexed: 11/24/2022]
Abstract
Formation of the dorsal-ventral axis of the Drosophila wing depends on activity of the LIM-homeodomain protein Apterous (Ap). Here we report that Ap activity levels are modulated by dLMO, the protein encoded by the Beadex (Bx) gene. Overexpression of dLMO in Bx mutants interferes with Apterous function. Conversely, Bx loss-of-function mutants fail to down-regulate Apterous activity at late stages of wing development. Biochemical analysis shows that dLMO protein competes for binding of Apterous to its cofactor Chip. These data suggest that Apterous activity depends on formation of a functional complex with Chip and that the relative levels of dLMO, Apterous, and Chip determine the level of Apterous activity. The dominant interference mechanism of dLMO action may serve as a model for the mechanism by which LMO oncogenes cause cancer when misexpressed in T cells.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | |
Collapse
|
188
|
Ligoxygakis P, Yu SY, Delidakis C, Baker NE. A subset of notch functions during Drosophila eye development require Su(H) and the E(spl) gene complex. Development 1998; 125:2893-900. [PMID: 9655811 DOI: 10.1242/dev.125.15.2893] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch signalling pathway is involved in many processes where cell fate is decided. Previous work showed that Notch is required at successive steps during R8 specification in the Drosophila eye. Initially, Notch enhances atonal expression and promotes atonal function. After atonal autoregulation has been established, Notch signalling represses atonal expression during lateral specification. In this paper we investigate which known components of the Notch pathway are involved in each signalling process. Using clonal analysis we show that a ligand of Notch, Delta, is required along with Notch for both proneural enhancement and lateral specification, while the downstream components Suppressor-of-Hairless and Enhancer-of-Split are involved only in lateral specification. Our data point to a distinct signal transduction pathway during proneural enhancement by Notch. Using misexpression experiments we also show that particular Enhancer-of-split bHLH genes can differ greatly in their contribution to lateral specification.
Collapse
Affiliation(s)
- P Ligoxygakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, Box 1527, GR 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
189
|
Bachmann A, Knust E. Positive and negative control of Serrate expression during early development of the Drosophila wing. Mech Dev 1998; 76:67-78. [PMID: 9767116 DOI: 10.1016/s0925-4773(98)00114-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The product of the Drosophila gene Serrate acts as a short-range signal during wing development to induce the organising centre at the dorsal/ventral compartment boundary, from which growth and patterning of the wing is controlled. Regulatory elements reflecting the early Serrate expression in the dorsal compartment of the wing disc have recently been confined to a genomic fragment in the 5'-upstream region of the gene. Here we present data to suggest that this fragment responds to various positive and negative inputs required for the early Serrate expression. First, activation and maintenance of expression in the dorsal compartment of the wing discs of second and early third instar larvae depends on apterous, as revealed by reporter gene expression in discs either lacking or ectopically expressing apterous. Second, transcriptional downregulation during third larval instar is mediated by hiiragi. Finally, this regulatory element responds to Delta signalling in a nonautonomous way to maintain Serrate expression along the dorsal margin. The results clearly show that some of the previously described transactivators of Serrate protein expression, e.g. fringe, act on elements required for later aspects of Serrate expression.
Collapse
Affiliation(s)
- A Bachmann
- Institut für Genetik, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | |
Collapse
|
190
|
Klein T, Arias AM. Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development 1998; 125:2951-62. [PMID: 9655817 DOI: 10.1242/dev.125.15.2951] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch signalling pathway plays an important role during the development of the wing primordium, especially of the wing blade and margin. In these processes, the activity of Notch is controlled by the activity of the dorsal specific nuclear protein Apterous, which regulates the expression of the Notch ligand, Serrate, and the Fringe signalling molecule. The other Notch ligand, Delta, also plays a role in the development and patterning of the wing. It has been proposed that Fringe modulates the ability of Serrate and Delta to signal through Notch and thereby restricts Notch signalling to the dorsoventral boundary of the developing wing blade. Here we report the results of experiments aimed at establishing the relationships between Fringe, Serrate and Delta during wing development. We find that Serrate is not required for the initiation of wing development but rather for the expansion and early patterning of the wing primordium. We provide evidence that, at the onset of wing development, Delta is under the control of apterous and might be the Notch ligand in this process. In addition, we find that Fringe function requires Su(H). Our results suggest that Notch signalling during wing development relies on careful balances between positive and dominant negative interactions between Notch ligands, some of which are mediated by Fringe.
Collapse
Affiliation(s)
- T Klein
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
191
|
Abstract
Segmentation in vertebrates first arises when the unsegmented paraxial mesoderm subdivides to form paired epithelial spheres called somites. The Notch signalling pathway is important in regulating the formation and anterior-posterior patterning of the vertebrate somite. One component of the Notch signalling pathway in Drosophila is the fringe gene, which encodes a secreted signalling molecule required for activation of Notch during specification of the wing margin. Here we show that mice homozygous for a targeted mutation of the lunatic fringe (Lfng) gene, one of the mouse homologues of fringe, have defects in somite formation and anterior-posterior patterning of the somites. Somites in the mutant embryos are irregular in size and shape, and their anterior-posterior patterning is disturbed. Marker analysis revealed that in the presomitic mesoderm of the mutant embryos, sharply demarcated domains of expression of several components of the Notch signalling pathway are replaced by even gradients of gene expression. These results indicate that Lfng encodes an essential component of the Notch signalling pathway during somitogenesis in mice.
Collapse
Affiliation(s)
- N Zhang
- The Jackson Laboratory, Bar Harbor, Maine 04609-1500, USA
| | | |
Collapse
|
192
|
Neumann CJ, Cohen SM. Boundary formation in Drosophila wing: Notch activity attenuated by the POU protein Nubbin. Science 1998; 281:409-13. [PMID: 9665883 DOI: 10.1126/science.281.5375.409] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell interactions mediated by Notch-family receptors have been implicated in the specification of tissue boundaries in vertebrate and insect development. Although Notch ligands are often widely expressed, tightly localized activation of Notch is critical for the formation of sharp boundaries. Evidence is presented here that the POU domain protein Nubbin contributes to the formation of a sharp dorsoventral boundary in the Drosophila wing. Nubbin represses Notch-dependent target genes and sets a threshold for Notch activity that defines the spatial domain of boundary-specific gene expression.
Collapse
Affiliation(s)
- C J Neumann
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
193
|
Johnston LA, Edgar BA. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 1998; 394:82-4. [PMID: 9665132 PMCID: PMC10181840 DOI: 10.1038/27925] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In developing organs, the regulation of cell proliferation and patterning of cell fates is coordinated. How this coordination is achieved, however, is unknown. In the developing Drosophila wing, both cell proliferation and patterning require the secreted morphogen Wingless (Wg) at the dorsoventral compartment boundary. Late in wing development, Wg also induces a zone of non-proliferating cells at the dorsoventral boundary. This zone gives rise to sensory bristles of the adult wing margin. Here we investigate how Wg coordinates the cell cycle with patterning by studying the regulation of this growth arrest. We show that Wg, in conjunction with Notch, induces arrest in both the G1 and G2 phases of the cell cycle in separate subdomains of the zone of non-proliferating cells. Wg induces G2 arrest in two subdomains by inducing the proneural genes achaete and scute, which downregulate the mitosis-inducing phosphatase String (Cdc25). Notch activity creates a third domain by preventing arrest at G2 in wg-expressing cells, resulting in their arrest in G1.
Collapse
Affiliation(s)
- L A Johnston
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
194
|
Culí J, Modolell J. Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling. Genes Dev 1998; 12:2036-47. [PMID: 9649507 PMCID: PMC316959 DOI: 10.1101/gad.12.13.2036] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To learn about the acquisition of neural fate by ectodermal cells, we have analyzed a very early sign of neural commitment in Drosophila, namely the specific accumulation of achaete-scute complex (AS-C) proneural proteins in the cell that becomes a sensory organ mother cell (SMC). We have characterized an AS-C enhancer that directs expression specifically in SMCs. This enhancer promotes Scute protein accumulation in these cells, an event essential for sensory organ development in the absence of other AS-C genes. Interspecific sequence comparisons and site-directed mutagenesis show the presence of several conserved motifs necessary for enhancer action, some of them binding sites for proneural proteins. These and other data indicate that the enhancer mediates scute self-stimulation, although only in the presence of additional activating factors, which most likely interact with conserved motifs reminiscent of NF-kappaB-binding sites. Cells neighboring the SMC do not acquire the neural fate because the Notch signaling pathway effectors, the Enhancer of split bHLH proteins, block this proneural gene self-stimulatory loop, possibly by antagonizing the action on the enhancer of the NF-kappaB-like factors or the proneural proteins. These data suggest a mechanism for SMC committment.
Collapse
Affiliation(s)
- J Culí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
195
|
Affiliation(s)
- I Greenwald
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032 USA.
| |
Collapse
|
196
|
Baker NE, Yu SY. The R8-photoreceptor equivalence group in Drosophila: fate choice precedes regulated Delta transcription and is independent of Notch gene dose. Mech Dev 1998; 74:3-14. [PMID: 9651468 DOI: 10.1016/s0925-4773(98)00054-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been suggested that lateral specification of cell fate by Notch signaling depends on feedback on Notch (N) and Delta (Dl) transcription to establish reciprocal distributions of the receptor and its ligand at the protein level. In Drosophila neurogenesis the predicted reciprocal protein distributions have not been observed. Either this model of lateral specification or the description of N and/or Dl protein distributions must be incomplete. We have reexamined R8 photoreceptor specification in the developing eye to resolve this question for this example of lateral specification. N and Dl protein levels were assessed in the cell as a whole and at the cell surface, where these proteins were mostly found at the intercellular cell junctions. Protein levels did not correspond to Notch signaling in wild type. However, Dl transcription and protein levels did correlate with altered N signaling in mutant genotypes. Our findings suggest the difference relates to the speed of lateral specification in vivo. The time required for N signaling to inhibit ato expression was at most 90 min, but changes in the Dl protein distribution in mutant genotypes arose more slowly. N expression was little regulated by N signaling, but protein encoded by the Nts1 allele was temperature-sensitive for appearance at the cell surface. Some aspects of the pattern of Dl protein appeared to be due to endocytosis. We conclude that feedback of N signaling on Dl transcription does occur but is too slow to account for the pattern of R8 specification. Studies of ommatidia mosaic for a Notch duplication, or for the Nts1 allele at semi-restrictive temperatures, found that cells beginning with less N activity were not necessarily predisposed to be selected for R8 differentiation. Our data argue that other signals may be responsible for the pattern of R8 cell fate allocation by N. Potential relevance to other neurogenic regions is discussed.
Collapse
Affiliation(s)
- N E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
| | | |
Collapse
|
197
|
Go MJ, Eastman DS, Artavanis-Tsakonas S. Cell proliferation control by Notch signaling in Drosophila development. Development 1998; 125:2031-40. [PMID: 9570768 DOI: 10.1242/dev.125.11.2031] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch receptor mediates cell interactions controlling the developmental fate of a broad spectrum of undifferentiated cells. By modulating Notch signaling in specific precursor cells during Drosophila imaginal disc development, we demonstrate that Notch activity can influence cell proliferation. The activation of the Notch receptor in the wing disc induces the expression of the wing margin patterning genes vestigial and wingless, and strong mitotic activity. However, the effect of Notch signaling on cell proliferation is not the simple consequence of the upregulation of either vestigial or wingless. Vestigial and Wingless, on the contrary, display synergistic effects with Notch signaling, resulting in the stimulation of cell proliferation in imaginal discs.
Collapse
Affiliation(s)
- M J Go
- Howard Hughes Medical Institute, Department of Cell Biology, Boyer Center for Molecular Medicine, Yale University, New Haven, Connecticut 06536-0812, USA
| | | | | |
Collapse
|
198
|
Johnston LA, Ostrow BD, Jasoni C, Blochlinger K. The homeobox gene cut interacts genetically with the homeotic genes proboscipedia and Antennapedia. Genetics 1998; 149:131-42. [PMID: 9584091 PMCID: PMC1460150 DOI: 10.1093/genetics/149.1.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cut locus (ct) codes for a homeodomain protein (Cut) and controls the identity of a subset of cells in the peripheral nervous system in Drosophila. During a screen to identify ct-interacting genes, we observed that flies containing a hypomorphic ct mutation and a heterozygous deletion of the Antennapedia complex exhibit a transformation of mouthparts into leg and antennal structures similar to that seen in homozygous proboscipedia (pb) mutants. The same phenotype is produced with all heterozygous pb alleles tested and is fully penetrant in two different ct mutant backgrounds. We show that this phenotype is accompanied by pronounced changes in the expression patterns of both ct and pb in labial discs. Furthermore, a significant proportion of ct mutant flies that are heterozygous for certain Antennapedia (Antp) alleles have thoracic defects that mimic loss-of-function Antp phenotypes, and ectopic expression of Cut in antennal discs results in ectopic Antp expression and a dominant Antp-like phenotype. Our results implicate ct in the regulation of expression and/or function of two homeotic genes and document a new role of ct in the control of segmental identity.
Collapse
Affiliation(s)
- L A Johnston
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
199
|
Klein T, Arias AM. Different spatial and temporal interactions between Notch, wingless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dev Biol 1998; 194:196-212. [PMID: 9501029 DOI: 10.1006/dbio.1997.8829] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The wing of Drosophila is composed of a proximal element, the hinge, which attaches it to the thorax, and a distal one, the wing blade. The development of the wing is a complex process that requires the integration of cellular responses to two signaling systems centered along the anteroposterior and the dorsoventral axes. The genes Notch (N) and wingless (wg) play an important role in generating the information from the dorsoventral axis. The vestigial (vg) gene is necessary for the development of the wing and is a target of these signaling systems during the growth of the wing. Here we examine the roles that N, wg, and vg play during the initial stages of wing development. Our results reveal that vg is involved in the specification of the wing primordium under the combined control of Notch and wingless signaling. Furthermore, we show that once cells are assigned to the wing fate, their development relies on a sequence of regulatory loops that involve N, wg, and vg. During this process, cells that are exposed to the activity of both wg and vg will become wing blade and those that are continuously under the influence of wg alone will develop as hinge. Our results also indicate that the growth of the cells in the wing blade results from a synergistic effect of the three genes N, wg, and vg on the cells that have been specified as wing blade.
Collapse
Affiliation(s)
- T Klein
- Department of Zoology, University of Cambridge, United Kingdom.
| | | |
Collapse
|
200
|
Abstract
Notch, LIN-12, and GLP-1 are receptors that mediate a broad range of cell interactions during Drosophila and nematode development. Signaling by these receptors relies on a conserved pathway with three core components: DSL ligand, LNG receptor, and a CSL effector that links the receptor to its transcriptional response. Although key functional regions have been identified in each class of proteins, the mechanism for signal transduction is not yet understood. Diverse regulatory mechanisms influence signaling by the LIN-12/Notch pathway. Inductive signaling relies on the synthesis of ligand and receptor in distinct but neighboring cells. By contrast, lateral signaling leads to the transformation of equivalent cells that express both ligand and receptor into nonequivalent cells that express either ligand or receptor. This transformation appears to rely on regulatory feedback loops within the LIN-12/Notch pathway. In addition, the pathway can be regulated by intrinsic factors that are asymmetrically segregated during cell division or by extrinsic cues via other signaling pathways. Specificity in the pathway does not appear to reside in the particular ligand or receptor used for a given cell-cell interaction. The existence of multiple ligands and receptors may have evolved from the stringent demands placed upon the regulation of genes encoding them.
Collapse
Affiliation(s)
- J Kimble
- Department of Biochemistry and Medical Genetics, University of Wisconsin-Madison, USA.
| | | |
Collapse
|