151
|
Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425:3601-8. [PMID: 23353823 DOI: 10.1016/j.jmb.2013.01.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) comprise a class of small RNAs important for the posttranscriptional regulation of numerous biological processes. Their combinatorial mode of function, in which an individual miRNA can target many genes and multiple miRNAs share targets, makes them especially suited for regulating processes and pathways at the "network" level. In particular, miRNAs have recently been implicated in aging, which is a complex process known to involve multiple pathways. Findings from genome-wide miRNA expression profiling studies highlight three themes in miRNA function during aging: many miRNAs are differentially expressed, many such miRNAs target known aging-associated pathways, and there are global trends in miRNA expression change over time. In addition, several miRNAs have emerged as potentially coordinating multiple pathways during aging. Elucidating the underlying network structure of genes and miRNAs involved in aging processes promises to advance our understanding of not only aging and associated pathogenesis but also how miRNAs can connect disparate pathways.
Collapse
Affiliation(s)
- Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
152
|
Is intrinsic aerobic exercise capacity a determinant of COPD susceptibility? Pulm Pharmacol Ther 2013; 26:459-63. [PMID: 23353136 DOI: 10.1016/j.pupt.2013.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 01/06/2023]
Abstract
Chronic obstructive pulmonary disease is a leading cause of morbidity and mortality, which is most commonly associated with smoking or exposure to environmental pollutants. Unfortunately, there is an inadequate understanding of the molecular and physiological determinants governing one's susceptibility for developing COPD. Here, we describe a novel hypothesis: Individuals with intrinsically low aerobic exercise capacity are more likely to develop COPD after exposure to key risk factors. The hypothesis is based on observations that aerobic exercise capacity is tightly associated with mortality across many complex diseases. The premise is supported by recent studies demonstrating that smokers who exercise regularly are less likely to develop or be hospitalized for COPD. Herein, we describe the evolutionary and molecular basis for this hypothesis and how it is a natural extension of previous theories explaining COPD susceptibility.
Collapse
|
153
|
Abstract
Senescence is associated with changes in gene expression, including the upregulation of stress response- and innate immune response-related genes. In addition, aging animals exhibit characteristic changes in movement behaviors including decreased gait speed and a deterioration in sleep/wake rhythms. Here, we describe methods for tracking Drosophila melanogaster movements in 3D with simultaneous quantification of fluorescent transgenic reporters. This approach allows for the assessment of correlations between behavior, aging, and gene expression as well as for the quantification of biomarkers of aging.
Collapse
|
154
|
Lai WF. Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 2013; 12:310-5. [PMID: 22982112 DOI: 10.1016/j.arr.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022]
Abstract
Prolongation of longevity is a history-long desire of humans. Driven by the genetic contribution to longevity and the remarkable plasticity of healthy lifespan as demonstrated in animal models, arduous efforts have been directed to aging and longevity research over the years. Today, our understanding of lifespan determination is much greater than it was in the past, but administrable interventions for longevity enhancement are still virtually absent. The aim of this article is to highlight the technical gap between basic biogerontological research and intervention development, and to explore the importance of nucleic acid (NA) delivery technologies in bridging the gap. It is hoped that this article can engender more awareness of the roles of NA delivery technologies in biogerontological interventions, particularly NA therapy.
Collapse
|
155
|
Xu X, Kim SK. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003108. [PMID: 23271974 PMCID: PMC3521710 DOI: 10.1371/journal.pgen.1003108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Stress is a fundamental aspect of aging, as accumulated damage from a lifetime of stress can limit lifespan and protective responses to stress can extend lifespan. In this study, we identify a conserved Caenorhabditis elegans GATA transcription factor, egl-27, that is involved in several stress responses and aging. We found that overexpression of egl-27 extends the lifespan of wild-type animals. Furthermore, egl-27 is required for the pro-longevity effects from impaired insulin/IGF-1 like signaling (IIS), as reduced egl-27 activity fully suppresses the longevity of worms that are mutant for the IIS receptor, daf-2. egl-27 expression is inhibited by daf-2 and activated by pro-longevity factors daf-16/FOXO and elt-3/GATA, suggesting that egl-27 acts at the intersection of IIS and GATA pathways to extend lifespan. Consistent with its role in IIS signaling, we found that egl-27 is involved in stress response pathways. egl-27 expression is induced in the presence of multiple stresses, its targets are significantly enriched for many types of stress genes, and altering levels of egl-27 itself affects survival to heat and oxidative stress. Finally, we found that egl-27 expression increases between young and old animals, suggesting that increased levels of egl-27 in aged animals may act to promote stress resistance. These results identify egl-27 as a novel factor that links stress and aging pathways.
Collapse
Affiliation(s)
- Xiao Xu
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stuart K. Kim
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
156
|
Sun Y, Zhang NR, Owen AB. Multiple hypothesis testing adjusted for latent variables, with an application to the AGEMAP gene expression data. Ann Appl Stat 2012. [DOI: 10.1214/12-aoas561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
157
|
Monnier V, Iché-Torres M, Rera M, Contremoulins V, Guichard C, Lalevée N, Tricoire H, Perrin L. dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet 2012; 8:e1003081. [PMID: 23209438 PMCID: PMC3510041 DOI: 10.1371/journal.pgen.1003081] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 09/27/2012] [Indexed: 12/11/2022] Open
Abstract
Cardiac aging is a complex process, which is influenced by both environmental and genetic factors. Deciphering the mechanisms involved in heart senescence therefore requires identifying the molecular pathways that are affected by age in controlled environmental and genetic conditions. We describe a functional genomic investigation of the genetic control of cardiac senescence in Drosophila. Molecular signatures of heart aging were identified by differential transcriptome analysis followed by a detailed bio-informatic analysis. This approach implicated the JNK/dJun pathway and the transcription factor Vri/dNFIL3 in the transcription regulatory network involved in cardiac senescence and suggested the possible involvement of oxidative stress (OS) in the aging process. To validate these predictions, we developed a new in vivo assay to analyze heart performance in various contexts of adult heart-specific gene overexpression and inactivation. We demonstrate that, as in mammals, OS plays a central role in cardiac senescence, and we show that pharmacological interventions impinging on OS slow heart senescence. These observations strengthen the idea that cardiac aging is controlled by evolutionarily conserved mechanisms, further validating Drosophila as a model to study cardiac senescence. In addition, we demonstrate that Vri, the ortholog of the vertebrate NFIL3/E4B4 transcription factor, is a major genetic regulator of cardiac aging. Vri overexpression leads to major heart dysfunctions, but its loss of function significantly reduces age-related cardiac dysfunctions. Furthermore, we unambiguously show that the JNK/AP1 pathway, the role of which in cardiac aging in mammals is controversial, is activated during cardiac aging and has a detrimental effect on cardiac senescence. This data-driven functional genomic analysis therefore led to the identification of key components of the Gene Regulatory Network of cardiac aging in Drosophila and may prompt to investigate the involvement of their counterparts in the cardiac aging process in mammals. Age-associated changes in cardiac structure and function have been implicated in the markedly increased risk of cardiovascular disease, but the molecular basis of these processes is ill-defined. It is difficult to study the genetics of heart aging in mammalian models because of their long life spans and their complexity, involving notably genetic redundancy. Here, we address this issue through identification of molecular signatures of cardiac aging in Drosophila, a model organism in which heart senescence occurs within 2 months. Tissue-specific transcriptome comparison of young and aging fly hearts were performed followed by in silico predictions of the regulatory networks involved. This analysis implicated oxidative stress (OS), the JNK/dJun pathway, and Vri/dNFIL3 in the gene regulatory network that drives cardiac senescence. Measuring heart variables in vivo following heart-specific genetic and pharmacological manipulations confirmed these predictions. We show that OS has a central role in the aging of the fly heart. Moreover, heart-specific partial knockdown of dJun and Vri prevented cardiac senescence, demonstrating that they are essential regulators of cardiac aging. Thus, our results uncover two major genetic determinants of Drosophila cardiac aging whose activities enhance heart senescence. It may therefore be valuable to investigate their involvement in the cardiac aging process in mammals.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA) EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (VM); (LP)
| | - Magali Iché-Torres
- Technologies Avancées pour le Génome et la Clinique (TAGC), UMR 1090 INSERM- Université d'Aix-Marseille, Parc Scientifique de Luminy, Case 928, Marseille, France
- IBDML, UMR6216 CNRS-Université d'Aix-Marseille, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Michael Rera
- Unité de Biologie Fonctionnelle et Adaptative (BFA) EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vincent Contremoulins
- ImagoSeine, Institut Jacques Monod, UMR 7592, CNRS and Université Paris-Diderot, Paris, France
| | - Céline Guichard
- Technologies Avancées pour le Génome et la Clinique (TAGC), UMR 1090 INSERM- Université d'Aix-Marseille, Parc Scientifique de Luminy, Case 928, Marseille, France
| | - Nathalie Lalevée
- Technologies Avancées pour le Génome et la Clinique (TAGC), UMR 1090 INSERM- Université d'Aix-Marseille, Parc Scientifique de Luminy, Case 928, Marseille, France
| | - Hervé Tricoire
- Unité de Biologie Fonctionnelle et Adaptative (BFA) EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Laurent Perrin
- Technologies Avancées pour le Génome et la Clinique (TAGC), UMR 1090 INSERM- Université d'Aix-Marseille, Parc Scientifique de Luminy, Case 928, Marseille, France
- * E-mail: (VM); (LP)
| |
Collapse
|
158
|
Kumar A, Gibbs JR, Beilina A, Dillman A, Kumaran R, Trabzuni D, Ryten M, Walker R, Smith C, Traynor BJ, Hardy J, Singleton AB, Cookson MR. Age-associated changes in gene expression in human brain and isolated neurons. Neurobiol Aging 2012. [PMID: 23177596 DOI: 10.1016/j.neurobiolaging.2012.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies have suggested that there are genes whose expression levels are associated with chronological age. However, which genes show consistent age association across studies, and which are specific to a given organism or tissue remains unresolved. Here, we reassessed this question using 2 independently ascertained series of human brain samples from 2 anatomic regions, the frontal lobe of the cerebral cortex and cerebellum. Using microarrays to estimate gene expression, we found 60 associations between expression and chronological age that were statistically significant and were replicated in both series in at least 1 tissue. There were a greater number of significant associations in the frontal cortex compared with the cerebellum. We then repeated the analysis in a subset of samples using laser capture microdissection to isolate Purkinje neurons from the cerebellum. We were able to replicate 5 gene associations from either frontal cortex or cerebellum in the Purkinje cell dataset, suggesting that there is a subset of genes which have robust changes with aging. Of these, the most consistent and strongest association was with expression of RHBDL3, a rhomboid protease family member. We confirmed several hits using an independent technique (quantitative reverse transcriptase polymerase chain reaction) and in an independent published sample series that used a different array platform. We also interrogated larger patterns of age-related gene expression using weighted gene correlation network analysis. We found several modules that showed significant associations with chronological age and, of these, several that showed negative associations were enriched for genes encoding components of mitochondria. Overall, our results show that there is a distinct and reproducible gene signature for aging in the human brain.
Collapse
Affiliation(s)
- Azad Kumar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol 2012; 33:194-212. [PMID: 23109432 DOI: 10.1128/mcb.01036-12] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.
Collapse
|
160
|
Abstract
Many genes and pathways are known to modulate lifespan in various organisms, but it remains unclear whether there exists a common aging program, and how individual variations of lifespan can occur in an isogenic population. Recent studies on aging regulation at the systems and epigenetic levels point to the possibility of regulating and potentially reversing the aging epigenome and transcriptome, resulting in differential aging status and aging rate in different individuals. Here, the author summarize some of these findings and discuss the possibility of integrating multiple layers of aging regulation at the systems level, to identify an aging program that can explain lifespan variations introduced by environmental and developmental history.
Collapse
Affiliation(s)
- Jing-Dong Jackie Han
- Chinese Academy of Sciences Key laboratory for Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
161
|
Chang ALS, Bitter PH, Qu K, Lin M, Rapicavoli NA, Chang HY. Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study. J Invest Dermatol 2012; 133:394-402. [PMID: 22931923 PMCID: PMC3547222 DOI: 10.1038/jid.2012.287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Studies in model organisms suggest that aged cells can be functionally rejuvenated, but whether this concept applies to human skin is unclear. Here we apply 3′-end sequencing for expression quantification (“3-seq”) to discover the gene expression program associated with human photoaging and intrinsic skin aging (collectively termed “skin aging”), and the impact of broadband light (BBL) treatment. We find that skin aging was associated with a significantly altered expression level of 2,265 coding and noncoding RNAs, of which 1,293 became “rejuvenated” after BBL treatment; i.e., they became more similar to their expression level in youthful skin. Rejuvenated genes (RGs) included several known key regulators of organismal longevity and their proximal long noncoding RNAs. Skin aging is not associated with systematic changes in 3′-end mRNA processing. Hence, BBL treatment can restore gene expression pattern of photoaged and intrinsically aged human skin to resemble young skin. In addition, our data reveal, to our knowledge, a previously unreported set of targets that may lead to new insights into the human skin aging process.
Collapse
Affiliation(s)
- Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California 94063, USA.
| | | | | | | | | | | |
Collapse
|
162
|
Kent JW, Göring HHH, Charlesworth JC, Drigalenko E, Diego VP, Curran JE, Johnson MP, Dyer TD, Cole SA, Jowett JBM, Mahaney MC, Comuzzie AG, Almasy L, Moses EK, Blangero J, Williams-Blangero S. Genotype×age interaction in human transcriptional ageing. Mech Ageing Dev 2012; 133:581-90. [PMID: 22871458 DOI: 10.1016/j.mad.2012.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 07/05/2012] [Accepted: 07/21/2012] [Indexed: 01/24/2023]
Abstract
Individual differences in biological ageing (i.e., the rate of physiological response to the passage of time) may be due in part to genotype-specific variation in gene action. However, the sources of heritable variation in human age-related gene expression profiles are largely unknown. We have profiled genome-wide expression in peripheral blood mononuclear cells from 1240 individuals in large families and found 4472 human autosomal transcripts, representing ~4349 genes, significantly correlated with age. We identified 623 transcripts that show genotype by age interaction in addition to a main effect of age, defining a large set of novel candidates for characterization of the mechanisms of differential biological ageing. We applied a novel SNP genotype × age interaction test to one of these candidates, the ubiquilin-like gene UBQLNL, and found evidence of joint cis-association and genotype by age interaction as well as trans-genotype by age interaction for UBQLNL expression. Both UBQLNL expression levels at recruitment and cis genotype are associated with longitudinal cancer risk in our study cohort.
Collapse
Affiliation(s)
- Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Wang X. Microarray analysis of ageing-related signatures and their expression in tumors based on a computational biology approach. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:136-41. [PMID: 22917186 PMCID: PMC3586943 DOI: 10.1016/j.gpb.2012.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/03/2012] [Accepted: 01/30/2012] [Indexed: 12/24/2022]
Abstract
Ageing and cancer have been associated with genetic and genomic changes. The identification of common signatures between ageing and cancer can reveal shared molecular mechanisms underlying them. In this study, we collected ageing-related gene signatures from ten published studies involved in six different human tissues and an online resource. We found that most of these gene signatures were tissue-specific and a few were related to multiple tissues. We performed a genome-wide examination of the expression of these signatures in various human tumor types, and found that a large proportion of these signatures were universally differentially expressed among normal vs. tumor phenotypes. Functional analyses of the highly-overlapping genes between ageing and cancer using DAVID tools have identified important functional categories and pathways linking ageing with cancer. The convergent and divergent mechanisms between ageing and cancer are discussed. This study provides insights into the biology of ageing and cancer, suggesting the possibility of potential interventions aimed at postponing ageing and preventing cancer.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
164
|
Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Guo DE, Villadsen R, Park M, Petersen OW, Borowsky AD, Stampfer MR, Labarge MA. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res 2012; 72:3687-701. [PMID: 22552289 DOI: 10.1158/0008-5472.can-12-0157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Women older than 50 years account for 75% of new breast cancer diagnoses, and the majority of these tumors are of a luminal subtype. Although age-associated changes, including endocrine profiles and alterations within the breast microenvironment, increase cancer risk, an understanding of the cellular and molecular mechanisms that underlies these observations is lacking. In this study, we generated a large collection of normal human mammary epithelial cell strains from women ages 16 to 91 years, derived from primary tissues, to investigate the molecular changes that occur in aging breast cells. We found that in finite lifespan cultured and uncultured epithelial cells, aging is associated with a reduction of myoepithelial cells and an increase in luminal cells that express keratin 14 and integrin-α6, a phenotype that is usually expressed exclusively in myoepithelial cells in women younger than 30 years. Changes to the luminal lineage resulted from age-dependent expansion of defective multipotent progenitors that gave rise to incompletely differentiated luminal or myoepithelial cells. The aging process therefore results in both a shift in the balance of luminal/myoepithelial lineages and to changes in the functional spectrum of multipotent progenitors, which together increase the potential for malignant transformation. Together, our findings provide a cellular basis to explain the observed vulnerability to breast cancer that increases with age.
Collapse
Affiliation(s)
- James C Garbe
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P. Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 2012; 227:2297-310. [PMID: 21928343 DOI: 10.1002/jcp.23021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sébastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
166
|
Midlife gene expressions identify modulators of aging through dietary interventions. Proc Natl Acad Sci U S A 2012; 109:E1201-9. [PMID: 22509016 DOI: 10.1073/pnas.1119304109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dietary interventions are effective ways to extend or shorten lifespan. By examining midlife hepatic gene expressions in mice under different dietary conditions, which resulted in different lifespans and aging-related phenotypes, we were able to identify genes and pathways that modulate the aging process. We found that pathways transcriptionally correlated with diet-modulated lifespan and physiological changes were enriched for lifespan-modifying genes. Intriguingly, mitochondrial gene expression correlated with lifespan and anticorrelated with aging-related pathological changes, whereas peroxisomal gene expression showed an opposite trend. Both organelles produce reactive oxygen species, a proposed causative factor of aging. This finding implicates a contribution of peroxisome to aging. Consistent with this hypothesis, lowering the expression levels of peroxisome proliferation genes decreased the cellular peroxide levels and extended the lifespan of Drosophila melanogaster and Caenorhabditis elegans. These findings show that transcriptional changes resulting from dietary interventions can effectively reflect causal factors in aging and identify previously unknown or under-appreciated longevity pathways, such as the peroxisome pathway.
Collapse
|
167
|
Loram J, Bodnar A. Age-related changes in gene expression in tissues of the sea urchin Strongylocentrotus purpuratus. Mech Ageing Dev 2012; 133:338-47. [PMID: 22475988 DOI: 10.1016/j.mad.2012.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
The life history of sea urchins is fundamentally different from that of traditional models of aging and therefore they provide the opportunity to gain new insight into this complex process. Sea urchins grow indeterminately, reproduce throughout their life span and some species exhibit negligible senescence. Using a microarray and qRT-PCR, age-related changes in gene expression were examined in three tissues (muscle, esophagus and nerve) of the sea urchin species Strongylocentrotus purpuratus. The results indicate age-related changes in gene expression involving many key cellular functions such as the ubiquitin-proteasome pathway, DNA metabolism, signaling pathways and apoptosis. Although there are tissue-specific differences in the gene expression profiles, there are some characteristics that are shared between tissues providing insight into potential mechanisms that promote lack of senescence in these animals. As an example, there is an increase in expression of genes encoding components of the Notch signaling pathway with age in all three tissues and a decrease in expression of the Wnt1 gene in both muscle and nerve. The interplay between the Notch and Wnt pathways may be one mechanism that ensures continued regeneration of tissues with advancing age contributing to the general lack of age-related decline in these animals.
Collapse
Affiliation(s)
- Jeannette Loram
- Bermuda Institute of Ocean Sciences, St. George's GE 01, Bermuda
| | | |
Collapse
|
168
|
Pilling LC, Harries LW, Powell J, Llewellyn DJ, Ferrucci L, Melzer D. Genomics and successful aging: grounds for renewed optimism? J Gerontol A Biol Sci Med Sci 2012; 67:511-9. [PMID: 22454374 DOI: 10.1093/gerona/gls091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Successful aging depends in part on delaying age-related disease onsets until later in life. Conditions including coronary artery disease, Alzheimer's disease, prostate cancer, and type 2 diabetes are moderately heritable. Genome-wide association studies have identified many risk associated single-nucleotide polymorphisms for these conditions, but much heritability remains unaccounted for. Nevertheless, a great deal is being learned. METHODS Here, we review age-related disease associated single-nucleotide polymorphisms and identify key underlying pathways including lipid handling, specific immune processes, early tissue development, and cell cycle control. RESULTS Most age-related disease associated single-nucleotide polymorphisms do not affect coding regions of genes or protein makeup but instead influence regulation of gene expression. Recent evidence indicates that evolution of gene regulatory sites is fundamental to interspecies differences. Animal models relevant to human aging may therefore need to focus more on gene regulation rather than testing major disruptions to fundamental pathway genes. Recent larger scale human studies of in vivo genome-wide expression (notably from the InCHIANTI aging study) have identified changes in splicing, the "fine tuning" of protein sequences, as a potentially important factor in decline of cellular function with age. Studies of expression with muscle strength and cognition have shown striking concordance with certain mice models of muscle repair and beta-amyloid phagocytosis respectively. CONCLUSIONS The emerging clearer picture of the genetic architecture of age-related diseases in humans is providing new insights into the underlying pathophysiological pathways involved. Translation of genomics into new approaches to prevention, tests and treatments to extend successful aging is therefore likely in the coming decades.
Collapse
Affiliation(s)
- L C Pilling
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | | | | | | | | | | |
Collapse
|
169
|
Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J, Moraes CT. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet 2012; 21:2288-97. [PMID: 22357654 DOI: 10.1093/hmg/dds049] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aging is an intricate process that increases susceptibility to sarcopenia and cardiovascular diseases. The accumulation of mitochondrial DNA (mtDNA) mutations is believed to contribute to mitochondrial dysfunction, potentially shortening lifespan. The mtDNA mutator mouse, a mouse model with a proofreading-deficient mtDNA polymerase γ, was shown to develop a premature aging phenotype, including sarcopenia, cardiomyopathy and decreased lifespan. This phenotype was associated with an accumulation of mtDNA mutations and mitochondrial dysfunction. We found that increased expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a crucial regulator of mitochondrial biogenesis and function, in the muscle of mutator mice increased mitochondrial biogenesis and function and also improved the skeletal muscle and heart phenotypes of the mice. Deep sequencing analysis of their mtDNA showed that the increased mitochondrial biogenesis did not reduce the accumulation of mtDNA mutations but rather caused a small increase. These results indicate that increased muscle PGC-1α expression is able to improve some premature aging phenotypes in the mutator mice without reverting the accumulation of mtDNA mutations.
Collapse
Affiliation(s)
- Lloye M Dillon
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Shahbaba B, Shachaf CM, Yu Z. A pathway analysis method for genome-wide association studies. Stat Med 2012; 31:988-1000. [PMID: 22302470 DOI: 10.1002/sim.4477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022]
Abstract
For genome-wide association studies, we propose a new method for identifying significant biological pathways. In this approach, we aggregate data across single-nucleotide polymorphisms to obtain summary measures at the gene level. We then use a hierarchical Bayesian model, which takes the gene-level summary measures as data, in order to evaluate the relevance of each pathway to an outcome of interest (e.g., disease status). Although shifting the focus of analysis from individual genes to pathways has proven to improve the statistical power and provide more robust results, such methods tend to eliminate a large number of genes whose pathways are unknown. For these genes, we propose to use a Bayesian multinomial logit model to predict the associated pathways by using the genes with known pathways as the training data. Our hierarchical Bayesian model takes the uncertainty regarding the pathway predictions into account while assessing the significance of pathways. We apply our method to two independent studies on type 2 diabetes and show that the overlap between the results from the two studies is statistically significant. We also evaluate our approach on the basis of simulated data.
Collapse
Affiliation(s)
- Babak Shahbaba
- Department of Statistics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
171
|
Dillon LM, Rebelo AP, Moraes CT. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB Life 2012; 64:231-41. [PMID: 22279035 DOI: 10.1002/iub.608] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/05/2011] [Indexed: 12/11/2022]
Abstract
Aging is the progressive decline in cellular, tissue, and organ function. This complex process often manifests as loss of muscular strength, cardiovascular function, and cognitive ability. Mitochondrial dysfunction and decreased mitochondrial biogenesis are believed to participate in metabolic abnormalities and loss of organ function, which will eventually contribute to aging and decreased lifespan. In this review, we discuss what is currently known about mitochondrial dysfunction in the aging skeletal muscle and heart. We focused our discussion on the role of PGC-1 coactivators in the regulation of mitochondrial biogenesis and function and possible therapeutic benefits of increased mitochondrial biogenesis in compensating for mitochondrial dysfunction and circumventing aging and aging-related diseases.
Collapse
Affiliation(s)
- Lloye M Dillon
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, FL, USA
| | | | | |
Collapse
|
172
|
Dumaual CM, Sandusky GE, Soo HW, Werner SR, Crowell PL, Randall SK. Tissue-specific alterations of PRL-1 and PRL-2 expression in cancer. Am J Transl Res 2012; 4:83-101. [PMID: 22347524 PMCID: PMC3276379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/30/2011] [Indexed: 05/31/2023]
Abstract
The PRL-1 and PRL-2 phosphatases have been implicated as oncogenic, however the involvement of these molecules in human neoplasms is not well understood. To increase understanding of the role PRL-1 and PRL-2 play in the neoplastic process, in situ hybridization was used to examine PRL-1 and PRL-2 mRNA expression in 285 normal, benign, and malignant human tissues of diverse origin. Immunohistochemical analysis was performed on a subset of these. PRL-1 and PRL-2 mRNA expression was also assessed in a small set of samples from a variety of diseases other than cancer. Where possible, associations with clinicopathological characteristics were evaluated. Alterations in PRL-1 or -2 expression were a frequent event, but the nature of those alterations was highly tumor type specific. PRL-1 was significantly overexpressed in 100% of hepatocellular and gastric carcinomas, but significantly under-expressed in 100% of ovarian, 80% of breast, and 75% of lung tumors. PRL-2 expression was significantly increased in 100% of hepatocellular carcinomas, yet significantly downregulated in 54% of kidney carcinomas. PRL-1 expression was correlated to patient gender in the bladder and to patient age in the brain and skeletal muscle. PRL-1 expression was also associated with tumor grade in the prostate, ovary, and uterus. These results suggest a pleiotropic role for PRL-1 and PRL-2 in the neoplastic process. These molecules may associate with tumor progression and serve as clinical markers of tumor aggressiveness in some tissues, but be involved in inhibition of tumor formation or growth in others.
Collapse
Affiliation(s)
- Carmen M Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis723 West Michigan St., Room SL306, Indianapolis, Indiana, 46202, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineVan Nuys Medical Science Building, 635 Barnhill Drive, Room A128, Indianapolis, IN, 46202, USA
| | - Han Weng Soo
- Ministry of DefenceSingapore, MINDEF building, 303 Gombak Drive #Bl-36, Singapore 669645, Singapore
| | - Sean R Werner
- Cook Medical Inc., 750 North Daniels WayBloomington, IN, 47404, USA
| | - Pamela L Crowell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University4600 Sunset Ave., Indianapolis, IN, 46208, USA
| | - Stephen K Randall
- Department of Biology, Indiana University-Purdue University Indianapolis723 West Michigan St., Room SL306, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
173
|
|
174
|
Sriram S, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS, McFarlane CD, Kambadur R, Sharma M. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell 2011; 10:931-48. [PMID: 21771249 PMCID: PMC5028794 DOI: 10.1111/j.1474-9726.2011.00734.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abnormal levels of reactive oxygen species (ROS) and inflammatory cytokines have been observed in the skeletal muscle during muscle wasting including sarcopenia. However, the mechanisms that signal ROS production and prolonged maintenance of ROS levels during muscle wasting are not fully understood. Here, we show that myostatin (Mstn) is a pro‐oxidant and signals the generation of ROS in muscle cells. Myostatin, a transforming growth factor‐β (TGF‐β) family member, has been shown to play an important role in skeletal muscle wasting by increasing protein degradation. Our results here show that Mstn induces oxidative stress by producing ROS in skeletal muscle cells through tumor necrosis factor‐α (TNF‐α) signaling via NF‐κB and NADPH oxidase. Aged Mstn null (Mstn−/−) muscles, which display reduced sarcopenia, also show an increased basal antioxidant enzyme (AOE) levels and lower NF‐κB levels indicating efficient scavenging of excess ROS. Additionally, our results indicate that both TNF‐α and hydrogen peroxide (H2O2) are potent inducers of Mstn and require NF‐κB signaling for Mstn induction. These results demonstrate that Mstn and TNF‐α are components of a feed forward loop in which Mstn triggers the generation of second messenger ROS, mediated by TNF‐α and NADPH oxidase, and the elevated TNF‐α in turn stimulates Mstn expression. Higher levels of Mstn in turn induce muscle wasting by activating proteasomal‐mediated catabolism of intracellular proteins. Thus, we propose that inhibition of ROS induced by Mstn could lead to reduced muscle wasting during sarcopenia.
Collapse
Affiliation(s)
- Sandhya Sriram
- Department of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Subha Subramanian
- Department of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Durga Sathiakumar
- Department of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Rithika Venkatesh
- Department of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Craig D. McFarlane
- Growth, Development and Metabolism Program, Singapore Institute of Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Ravi Kambadur
- Department of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Growth, Development and Metabolism Program, Singapore Institute of Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive MD7, Singapore 117597, Singapore
| |
Collapse
|
175
|
Thornton AM, Zhao X, Weisleder N, Brotto LS, Bougoin S, Nosek TM, Reid M, Hardin B, Pan Z, Ma J, Parness J, Brotto M. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle. Aging (Albany NY) 2011; 3:621-34. [PMID: 21666285 PMCID: PMC3164370 DOI: 10.18632/aging.100335] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.
Collapse
Affiliation(s)
- Angela M Thornton
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, Ansari WS, Lo T, Jones DL, Walker DW. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 2011; 14:623-34. [PMID: 22055505 PMCID: PMC3238792 DOI: 10.1016/j.cmet.2011.09.013] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022]
Abstract
In mammals, the PGC-1 transcriptional coactivators are key regulators of energy metabolism, including mitochondrial biogenesis and respiration, which have been implicated in numerous pathogenic conditions, including neurodegeneration and cardiomyopathy. Here, we show that overexpression of the Drosophila PGC-1 homolog (dPGC-1/spargel) is sufficient to increase mitochondrial activity. Moreover, tissue-specific overexpression of dPGC-1 in stem and progenitor cells within the digestive tract extends life span. Long-lived flies overexpressing dPGC-1 display a delay in the onset of aging-related changes in the intestine, leading to improved tissue homeostasis in old flies. Together, these results demonstrate that dPGC-1 can slow aging both at the level of cellular changes in an individual tissue and also at the organismal level by extending life span. Our findings point to the possibility that alterations in PGC-1 activity in high-turnover tissues, such as the intestine, may be an important determinant of longevity in mammals.
Collapse
Affiliation(s)
- Michael Rera
- Department of Integrative Biology and Physiology, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM, Yaghootkar H, Dutta A, Murray A, Frayling TM, Guralnik JM, Bandinelli S, Singleton A, Ferrucci L, Melzer D. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 2011; 10:868-78. [PMID: 21668623 PMCID: PMC3173580 DOI: 10.1111/j.1474-9726.2011.00726.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging is a major risk factor for chronic disease in the human population, but there are little human data on gene expression alterations that accompany the process. We examined human peripheral blood leukocyte in-vivo RNA in a large-scale transcriptomic microarray study (subjects aged 30-104 years). We tested associations between probe expression intensity and advancing age (adjusting for confounding factors), initially in a discovery set (n= 58), following-up findings in a replication set (n=240). We confirmed expression of key results by real-time PCR. Of 16,571 expressed probes, only 295 (2%) were robustly associated with age. Just six probes were required for a highly efficient model for distinguishing between young and old (area under the curve in replication set; 95%). The focused nature of age-related gene expression may therefore provide potential biomarkers of aging. Similarly, only 7 of 1065 biological or metabolic pathways were age-associated, in gene set enrichment analysis, notably including the processing of messenger RNAs (mRNAs); [P<0.002, false discovery rate (FDR) q<0.05]. This is supported by our observation of age-associated disruption to the balance of alternatively expressed isoforms for selected genes, suggesting that modification of mRNA processing may be a feature of human aging.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Cookson MR. Aging--RNA in development and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:133-43. [PMID: 21898829 DOI: 10.1002/wrna.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Given that RNA is involved in virtually all biological processes, it is perhaps not surprising that several RNA-binding proteins are associated with aging and with different age-related disorders. Other articles in this volume will discuss some specific examples of diseases where RNA plays a role that are also associated with aging, such as cancer and inflammation, so here I will discuss some general aspects of how RNA changes with the aging process. I will also discuss some specific examples of RNA-binding proteins that are associated with age-dependent neurological diseases as these provide an interesting framework to examine how lifetime mutations might lead to a late onset disease, although the answers to these questions are still not well understood.
Collapse
Affiliation(s)
- Mark R Cookson
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
179
|
The spatial association of gene expression evolves from synchrony to asynchrony and stochasticity with age. PLoS One 2011; 6:e24076. [PMID: 21912663 PMCID: PMC3166296 DOI: 10.1371/journal.pone.0024076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/29/2011] [Indexed: 12/19/2022] Open
Abstract
For multicellular organisms, different tissues coordinate to integrate physiological functions, although this systematically and gradually declines in the aging process. Therefore, an association exists between tissue coordination and aging, and investigating the evolution of tissue coordination with age is of interest. In the past decade, both common and heterogeneous aging processes among tissues were extensively investigated. The results on spatial association of gene changes that determine lifespan appear complex and paradoxical. To reconcile observed commonality and heterogeneity of gene changes among tissues and to address evolution feature of tissue coordination with age, we introduced a new analytical strategy to systematically analyze genome-wide spatio-temporal gene expression profiles. We first applied the approach to natural aging process in three species (Rat, Mouse and Drosophila) and then to anti-aging process in Mouse. The results demonstrated that temporal gene expression alteration in different tissues experiences a progressive association evolution from spatial synchrony to asynchrony and stochasticity with age. This implies that tissue coordination gradually declines with age. Male mice showed earlier spatial asynchrony in gene expression than females, suggesting that male animals are more prone to aging than females. The confirmed anti-aging interventions (resveratrol and caloric restriction) enhanced tissue coordination, indicating their underlying anti-aging mechanism on multiple tissue levels. Further, functional analysis suggested asynchronous DNA/protein damage accumulation as well as asynchronous repair, modification and degradation of DNA/protein in tissues possibly contributes to asynchronous and stochastic changes of tissue microenvironment. This increased risk for a variety of age-related diseases such as neurodegeneration and cancer that eventually accelerate organismal aging and death. Our study suggests a novel molecular event occurring in aging process of multicellular species that may represent an intrinsic molecular mechanism of aging.
Collapse
|
180
|
Hoe N, Huang CM, Landis G, Verhage M, Ford D, Yang J, van Leeuwen FW, Tower J. Ubiquitin over-expression phenotypes and ubiquitin gene molecular misreading during aging in Drosophila melanogaster. Aging (Albany NY) 2011; 3:237-61. [PMID: 21415465 PMCID: PMC3091519 DOI: 10.18632/aging.100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular Misreading (MM) is the inaccurate conversion of genomic information into aberrant proteins. For example, when RNA polymerase II transcribes a GAGAG motif it synthesizes at low frequency RNA with a two-base deletion. If the deletion occurs in a coding region, translation will result in production of misframed proteins. During mammalian aging, misframed versions of human amyloid precursor protein (hApp) and ubiquitin (hUbb) accumulate in the aggregates characteristic of neurodegenerative diseases, suggesting dysfunctional degradation or clearance. Here cDNA clones encoding wild-type hUbb and the frame-shifted version hUbb+1 were expressed in transgenic Drosophila using the doxycycline-regulated system. Misframed proteins were abundantly produced, both from the transgenes and from endogenous Drosophila ubiquitin-encoding genes, and their abundance increased during aging in whole-fly extracts. Over-expression of wild-type hUbb, but not hUbb+1, was toxic during fly development. In contrast, when over-expressed specifically in adult flies, hUbb+1 caused small decreases in life span, whereas hUbb was associated with small increases, preferentially in males. The data suggest that MM occurs in Drosophila and that the resultant misframed proteins accumulate with age. MM of the ubiquitin gene can produce alternative ubiquitin gene products with different and sometimes opposing phenotypic effects.
Collapse
Affiliation(s)
- Nicholas Hoe
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, 90089‐2910, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Zhang K, Wang H, Bathke AC, Harrar SW, Piepho HP, Deng Y. Gene set analysis for longitudinal gene expression data. BMC Bioinformatics 2011; 12:273. [PMID: 21722407 PMCID: PMC3142525 DOI: 10.1186/1471-2105-12-273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 07/03/2011] [Indexed: 11/13/2022] Open
Abstract
Background Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085.
Collapse
Affiliation(s)
- Ke Zhang
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Molecular genetic studies of gene identification for sarcopenia. Hum Genet 2011; 131:1-31. [PMID: 21706341 DOI: 10.1007/s00439-011-1040-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/12/2011] [Indexed: 02/07/2023]
Abstract
Sarcopenia, which is characterized by a progressive decrease of skeletal muscle mass and function with aging, is closely related to several common diseases (such as cardiovascular and airway diseases) and functional impairment/disability. Strong genetic determination has been reported for muscle mass and muscle strength, two most commonly recognized and studied risk phenotypes for sarcopenia, with heritability ranging from 30 to 85% for muscle strength and 45-90% for muscle mass. Sarcopenia has been the subject of increasing genetic research over the past decade. This review is designed to comprehensively summarize the most important and representative molecular genetic studies designed to identify genetic factors associated with sarcopenia. We have methodically reviewed whole-genome linkage studies in humans, quantitative trait loci mapping in animal models, candidate gene association studies, newly reported genome-wide association studies, DNA microarrays and microRNA studies of sarcopenia or related skeletal muscle phenotypes. The major results of each study are tabulated for easy comparison and reference. The findings of representative studies are discussed with respect to their influence on our present understanding of the genetics of sarcopenia. This is a comprehensive review of molecular genetic studies of gene identification for sarcopenia, and an overarching theme for this review is that the currently accumulating results are tentative and occasionally inconsistent and should be interpreted with caution pending further investigation. Consequently, this overview should enhance recognition of the need to validate/replicate the genetic variants underlying sarcopenia in large human cohorts and animal. We believe that further progress in understanding the genetic etiology of sarcopenia will provide valuable insights into important fundamental biological mechanisms underlying muscle physiology that will ultimately lead to improved ability to recognize individuals at risk for developing sarcopenia and our ability to treat this debilitating condition.
Collapse
|
183
|
Activation of the immune response is a key feature of aging in mice. Biogerontology 2011; 10:721-34. [PMID: 19255868 PMCID: PMC2778679 DOI: 10.1007/s10522-009-9219-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 02/20/2009] [Indexed: 12/24/2022]
Abstract
The process of aging is complex involving numerous factors centered on transcriptional changes with advanced age. This study was aimed at elucidating mechanisms involved in mouse aging by conducting both gene expression and biochemical analyses on isolated mouse brain, heart and kidney. The gene expression analysis was not aimed at solely highlighting age-related transcriptional changes but also revealing regulated biological processes, cellular compartments, signaling and metabolic pathways. We have uncovered a conserved increase in the expression of genes mediating immune responses in all the tissues analyzed. In addition, elevated levels of lipid hydroperoxides (LPO)—an indicator of increased levels of radical oxygen species, implicate an oxidative stress-mediated activity of NF-kB signaling. In summary, these results suggest that transcriptional changes are most probably the downstream effect of environmental and endogenous factors constantly affecting the organism during its lifetime. In addition, we propose LPO as a potential biomarker of aging.
Collapse
|
184
|
Shahbaba B, Tibshirani R, Shachaf CM, Plevritis SK. Bayesian gene set analysis for identifying significant biological pathways. J R Stat Soc Ser C Appl Stat 2011; 60:541-557. [PMID: 21857748 DOI: 10.1111/j.1467-9876.2011.00765.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We propose a hierarchical Bayesian model for analyzing gene expression data to identify pathways differentiating between two biological states (e.g., cancer vs. non-cancer and mutant vs. normal). Finding significant pathways can improve our understanding of biological processes. When the biological process of interest is related to a specific disease, eliciting a better understanding of the underlying pathways can lead to designing a more effective treatment. We apply our method to data obtained by interrogating the mutational status of p53 in 50 cancer cell lines (33 mutated and 17 normal). We identify several significant pathways with strong biological connections. We show that our approach provides a natural framework for incorporating prior biological information, and it has the best overall performance in terms of correctly identifying significant pathways compared to several alternative methods.
Collapse
Affiliation(s)
- Babak Shahbaba
- Department of Statistics, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
185
|
Han SS, Yang SH, Oh YJ, Cho JY, Moon KC, Ha J, Kim YS. Graft volume as the surrogate marker for nephron number affects the outcomes of living-donor kidney transplantation. Clin Transplant 2011; 25:E327-35. [PMID: 21395690 DOI: 10.1111/j.1399-0012.2011.01426.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-transplant outcome of kidney allografts depends on various factors, one of which may be the compatibility in volume between graft and recipient. However, previous studies adjusted the graft volume only for recipient's size. As the adjusted graft volume for donor's size would be substituted of nephron number more accurately, we adjusted the graft volume for both recipient's and donor's sizes. In 351 cases of living-donor kidney transplantation, we found that the adjusted graft volume for both recipient's and donor's body surface areas (BSAs) yielded larger area under the curves for the transplant outcomes than looking only at the adjusted volume for the recipient's BSA. The recipients were separated into two groups according to the low and high adjusted graft volumes. During the follow-up period (mean 55.6 months), the low-graft-volume group conferred greater risk of rejection, chronic change, glomerulonephritis, and graft loss than the high-graft-volume group (all p's < 0.05). However, the frequency of T-cell infiltration, as evaluated in protocol biopsy, was not different between the two adjusted graft volume groups. In conclusion, the graft volume as the surrogate marker for nephron number should be considered in kidney transplantation, especially in otherwise similar donor conditions.
Collapse
Affiliation(s)
- Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
186
|
Slagboom PE, Beekman M, Passtoors WM, Deelen J, Vaarhorst AAM, Boer JM, van den Akker EB, van Heemst D, de Craen AJM, Maier AB, Rozing M, Mooijaart SP, Heijmans BT, Westendorp RGJ. Genomics of human longevity. Philos Trans R Soc Lond B Biol Sci 2011; 366:35-42. [PMID: 21115528 PMCID: PMC3001312 DOI: 10.1098/rstb.2010.0284] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.
Collapse
Affiliation(s)
- P E Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Wheeler HE, Kim SK. Genetics and genomics of human ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366:43-50. [PMID: 21115529 DOI: 10.1098/rstb.2010.0259] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ageing in humans is typified by the decline of physiological functions in various organs and tissues leading to an increased probability of death. Some individuals delay, escape or survive much of this age-related decline and live past age 100. Studies comparing centenarians to average-aged individuals have found polymorphisms in genes that are associated with long life, including APOE and FOXOA3, which have been replicated many times. However, the associations found in humans account for small percentages of the variance in lifespan and many other gene associations have not been replicated in additional populations. Therefore, ageing is probably a highly polygenic trait. In humans, it is important to also consider differences in age-related decline that occur within and among tissues. Longitudinal data of age-related traits can be used in association studies to test for polymorphisms that predict how an individual will change over time. Transcriptional and genetic association studies of different tissues have revealed common and unique pathways involved in human ageing. Genomic convergence is a method that combines multiple types of functional genomic information such as transcriptional profiling, expression quantitative trait mapping and gene association. The genomic convergence approach has been used to implicate the gene MMP20 in human kidney ageing. New human genetics technologies are continually in development and may lead to additional breakthroughs in human ageing in the near future.
Collapse
Affiliation(s)
- Heather E Wheeler
- Department of Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
| | | |
Collapse
|
188
|
Sarup P, Sørensen P, Loeschcke V. Flies selected for longevity retain a young gene expression profile. AGE (DORDRECHT, NETHERLANDS) 2011; 33:69-80. [PMID: 20607427 PMCID: PMC3063640 DOI: 10.1007/s11357-010-9162-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene expression profile in longevity-selected lines. Among the genes down-regulated in longevity-selected lines, we found a clear over-representation of genes involved in immune functions, supporting the hypothesis of a life-shortening effect of an overactive immune system, known as inflammaging. We judged the physiological age as the level of cumulative mortality. Eighty-four genes were differentially expressed between the control and longevity-selected lines at the same physiological age, and the overlap between the same chronological and physiological age gene lists included 40 candidate genes for increased longevity. Among these candidates were genes with roles in starvation resistance, immune response regulation, and several that have not yet been linked to longevity. Investigating these genes would provide new knowledge of the pathways that affect life span in invertebrates and, potentially, mammals.
Collapse
Affiliation(s)
- Pernille Sarup
- Aarhus Centre for Environmental Stress Research (ACES), Department of Biological Sciences, Aarhus University, Ny Munkegade 114, Aarhus C, Denmark.
| | | | | |
Collapse
|
189
|
Guo Z, Adomas AB, Jackson ED, Qin H, Townsend JP. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:345-55. [PMID: 21306556 DOI: 10.1111/j.1567-1364.2011.00723.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We investigated the mechanism underlying the natural variation in longevity within natural populations using the model budding yeast, Saccharomyces cerevisiae. We analyzed whole-genome gene expression in four progeny of a natural S. cerevisiae strain that display differential replicative aging. Genes with different expression levels in short- and long-lived strains were classified disproportionately into metabolism, transport, development, transcription or cell cycle, and organelle organization (mitochondrial, chromosomal, and cytoskeletal). With several independent validating experiments, we detected 15 genes with consistent differential expression levels between the long- and the short-lived progeny. Among those 15, SIR2, HSP30, and TIM17 were upregulated in long-lived strains, which is consistent with the known effects of gene silencing, stress response, and mitochondrial function on aging. The link between SIR2 and yeast natural life span variation offers some intriguing ties to the allelic association of the human homolog SIRT1 to visceral obesity and metabolic response to lifestyle intervention.
Collapse
Affiliation(s)
- Zhenhua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
190
|
Kedmi M, Orr-Urtreger A. The effects of aging vs. α7 nAChR subunit deficiency on the mouse brain transcriptome: aging beats the deficiency. AGE (DORDRECHT, NETHERLANDS) 2011; 33:1-13. [PMID: 20526689 PMCID: PMC3063643 DOI: 10.1007/s11357-010-9155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/17/2010] [Indexed: 05/12/2023]
Abstract
Aging is accompanied by expression changes in multiple genes, and the brain is one of the tissues most vulnerable to aging. Since the α7 nicotinic acetylcholine receptor (nAChR) subunit has been associated with neurodevelopmental disorders and cognitive decline during aging, we hypothesized that its absence might affect gene expression profiles in aged brains. To study whether transcriptional changes occur due to aging, α7 deficiency, or both, we analyzed whole-brain transcriptomes of young (8 weeks) and aged (2 years) α7-deficient and wild-type control mice, using Mouse Genome 430 2.0 microarray. Highly significant expression changes were detected in 47 and 1,543 genes [after Bonferroni and false discovery rate (FDR) correction] in the brains of aged mice compared to young mice, regardless of their genotype. These included genes involved in immune system function and ribosome structure, as well as genes that were previously demonstrated as differentially expressed in aging human brains. Genotype-dependent changes were detected in only three genes, Chrna7 which encodes the α7 nAChR subunit, and two closely linked genes, likely due to a "mouse background effect." Expression changes dependent on age-genotype interaction were detected in 207 genes (with a low significance threshold). Age-dependent differential expression levels were approved in all nine genes that were chosen for validation by real-time RT-PCR. Our results suggest that the robust effect of aging on brain transcription clearly overcomes the almost negligible effect of α7 nAChR subunit deletion and that germ line deficiency of this subunit has a minor effect on brain expression profile in aged mice.
Collapse
Affiliation(s)
- Merav Kedmi
- Genetic Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, 64239 Israel
| | - Avi Orr-Urtreger
- Genetic Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, 64239 Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
191
|
Mason CC, Hanson RL, Ossowski V, Bian L, Baier LJ, Krakoff J, Bogardus C. Bimodal distribution of RNA expression levels in human skeletal muscle tissue. BMC Genomics 2011; 12:98. [PMID: 21299892 PMCID: PMC3044673 DOI: 10.1186/1471-2164-12-98] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/07/2011] [Indexed: 01/24/2023] Open
Abstract
Background Many human diseases and phenotypes are related to RNA expression, levels of which are influenced by a wide spectrum of genetic and exposure-related factors. In a large genome-wide study of muscle tissue expression, we found that some genes exhibited a bimodal distribution of RNA expression, in contrast to what is usually assumed in studies of a single healthy tissue. As bimodality has classically been considered a hallmark of genetic control, we assessed the genome-wide prevalence, cause, and association of this phenomenon with diabetes-related phenotypes in skeletal muscle tissue from 225 healthy Pima Indians using exon array expression chips. Results Two independent batches of microarrays were used for bimodal assessment and comparison. Of the 17,881 genes analyzed, eight (GSTM1, HLA-DRB1, ERAP2, HLA-DRB5, MAOA, ACTN3, NR4A2, and THNSL2) were found to have bimodal expression replicated in the separate batch groups, while 24 other genes had evidence of bimodality in only one group. Some bimodally expressed genes had modest associations with pre-diabetic phenotypes, of note ACTN3 with insulin resistance. Most of the other bimodal genes have been reported to be involved with various other diseases and characteristics. Association of expression with cis genetic variation in a subset of 149 individuals found all but one of the confirmed bimodal genes and nearly half of all potential ones to be highly significant expression quantitative trait loci (eQTL). The rare prevalence of these bimodally expressed genes found after controlling for batch effects was much lower than the prevalence reported in other studies. Additional validation in data from separate muscle expression studies confirmed the low prevalence of bimodality we observed. Conclusions We conclude that the prevalence of bimodal gene expression is quite rare in healthy muscle tissue (<0.2%), and is much lower than limited reports from other studies. The major cause of these clearly bimodal expression patterns in homogeneous tissue appears to be cis-polymorphisms, indicating that such bimodal genes are, for the most part, eQTL. The high frequency of disease associations reported with these genes gives hope that this unique feature may identify or actually be an underlying factor responsible for disease development.
Collapse
Affiliation(s)
- Clinton C Mason
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 1550 E, Indian School Rd, Phoenix, AZ 85014, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2011; 2:504-13. [PMID: 20817957 PMCID: PMC2954041 DOI: 10.18632/aging.100190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.
Collapse
|
193
|
Jian B, Yang S, Chen D, Zou L, Chatham JC, Chaudry I, Raju R. Aging influences cardiac mitochondrial gene expression and cardiovascular function following hemorrhage injury. Mol Med 2010; 17:542-9. [PMID: 21193900 DOI: 10.2119/molmed.2010.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/21/2010] [Indexed: 01/07/2023] Open
Abstract
Cardiac dysfunction and mortality associated with trauma and sepsis increase with age. Mitochondria play a critical role in the energy demand of cardiac muscles, and thereby on the function of the heart. Specific molecular pathways responsible for mitochondrial functional alterations after injury in relation to aging are largely unknown. To further investigate this, 6- and 22-month-old rats were subjected to trauma-hemorrhage (T-H) or sham operation and euthanized following resuscitation. Left ventricular tissue was profiled using our custom rodent mitochondrial gene chip (RoMitochip). Our experiments demonstrated a declined left ventricular performance and decreased alteration in mitochondrial gene expression with age following T-H and we have identified c-Myc, a pleotropic transcription factor, to be the most upregulated gene in 6- and 22-month-old rats after T-H. Following T-H, while 142 probe sets were altered significantly (39 up and 103 down) in 6-month-old rats, only 66 were altered (30 up and 36 down) in 22-month-old rats; 36 probe sets (11 up and 25 down) showed the same trend in both groups. The expression of c-Myc and cardiac death promoting gene Bnip3 were increased, and Pgc1-α and Ppar-α a decreased following T-H. Eleven tRNA transcripts on mtDNA were upregulated following T-H in the aged animals, compared with the sham group. Our observations suggest a c-myc-regulated mitochondrial dysfunction following T-H injury and marked decrease in age-dependent changes in the transcriptional profile of mitochondrial genes following T-H, possibly indicating cellular senescence. To our knowledge, this is the first report on mitochondrial gene expression profile following T-H in relation to aging.
Collapse
Affiliation(s)
- Bixi Jian
- Center for Surgical Research, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Ronkainen PHA, Pöllänen E, Alén M, Pitkänen R, Puolakka J, Kujala UM, Kaprio J, Sipilä S, Kovanen V. Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy. Aging Cell 2010; 9:1098-110. [PMID: 20883525 DOI: 10.1111/j.1474-9726.2010.00636.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aging is accompanied by inexorable loss of muscle tissue. One of the underlying causes for this is the massive change in the hormonal milieu of the body. The role of a female sex steroid - estrogen - in these processes is frequently neglected, although the rapid decline in its production coincides with a steep deterioration in muscle performance. We recruited 54- to 62-year-old monozygotic female twin pairs discordant for postmenopausal hormone replacement therapy (HRT, n=11 pairs; HRT use 7.3 ± 3.7 years) from the Finnish Twin Cohort to investigate the association of long-term, estrogen-based HRT with skeletal muscle transcriptome. Pathway analysis of muscle transcript profiles revealed significant HRT-induced up-regulation of a biological process related to regulation of cell structure and down-regulation of processes concerning, for example, cell-matrix interactions, energy metabolism and utilization of nutrients (false discovery rate < 0.15). Lending clinical relevance to the findings, these processes explained a significant fraction of the differences observed in relative proportion of muscle within thigh and in muscle performance (R(2) =0.180-0.257, P=0.001-0.023). Although energy metabolism was affected through down-regulation of the transcripts related to succinate dehydrogenase complex in mitochondria, no differences were observed in mtDNA copy number or oxidative capacity per muscle cross section. In conclusion, long-term use of HRT was associated with subtle, but significant, differences in muscle transcript profiles. The better muscle composition and performance among the HRT users appeared to be orchestrated by improved regulatory actions on cytoskeleton, preservation of muscle quality via regulation of intramuscular extracellular matrix and a switch from glucose-oriented metabolism to utilization of fatty acids.
Collapse
Affiliation(s)
- Paula H A Ronkainen
- Department of Health Sciences, University of Jyväskylä, PO Box 35, FIN-40014 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Functional analysis: evaluation of response intensities--tailoring ANOVA for lists of expression subsets. BMC Bioinformatics 2010; 11:510. [PMID: 20942918 PMCID: PMC2964684 DOI: 10.1186/1471-2105-11-510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 10/13/2010] [Indexed: 02/06/2023] Open
Abstract
Background Microarray data is frequently used to characterize the expression profile of a whole genome and to compare the characteristics of that genome under several conditions. Geneset analysis methods have been described previously to analyze the expression values of several genes related by known biological criteria (metabolic pathway, pathology signature, co-regulation by a common factor, etc.) at the same time and the cost of these methods allows for the use of more values to help discover the underlying biological mechanisms. Results As several methods assume different null hypotheses, we propose to reformulate the main question that biologists seek to answer. To determine which genesets are associated with expression values that differ between two experiments, we focused on three ad hoc criteria: expression levels, the direction of individual gene expression changes (up or down regulation), and correlations between genes. We introduce the FAERI methodology, tailored from a two-way ANOVA to examine these criteria. The significance of the results was evaluated according to the self-contained null hypothesis, using label sampling or by inferring the null distribution from normally distributed random data. Evaluations performed on simulated data revealed that FAERI outperforms currently available methods for each type of set tested. We then applied the FAERI method to analyze three real-world datasets on hypoxia response. FAERI was able to detect more genesets than other methodologies, and the genesets selected were coherent with current knowledge of cellular response to hypoxia. Moreover, the genesets selected by FAERI were confirmed when the analysis was repeated on two additional related datasets. Conclusions The expression values of genesets are associated with several biological effects. The underlying mathematical structure of the genesets allows for analysis of data from several genes at the same time. Focusing on expression levels, the direction of the expression changes, and correlations, we showed that two-step data reduction allowed us to significantly improve the performance of geneset analysis using a modified two-way ANOVA procedure, and to detect genesets that current methods fail to detect.
Collapse
|
196
|
Silvestri E, Lombardi A, de Lange P, Glinni D, Senese R, Cioffi F, Lanni A, Goglia F, Moreno M. Studies of complex biological systems with applications to molecular medicine: the need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol 2010; 2011:810242. [PMID: 20981256 PMCID: PMC2963870 DOI: 10.1155/2011/810242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/08/2010] [Indexed: 02/07/2023] Open
Abstract
Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in "omics" are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity.
Collapse
Affiliation(s)
- Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli “Federico II”, Via Mezzocannone 8, 80134 Napoli, Italy
| | - Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Daniela Glinni
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| |
Collapse
|
197
|
Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe DR, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipilä S, Kovanen V. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2010; 32:347-363. [PMID: 20640546 PMCID: PMC2926854 DOI: 10.1007/s11357-010-9140-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50-57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in "response to contraction"-category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria.
Collapse
Affiliation(s)
- Eija Pöllänen
- Gerontology Research Centre, University Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Gaetani S, Virgili F. Sideways glance: does dietary restriction promote longevity, though impairing fecundity? Not necessarily, if the diet has a correct nutrient balance. GENES & NUTRITION 2010; 5:183-187. [PMID: 21052525 PMCID: PMC2935527 DOI: 10.1007/s12263-010-0172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
199
|
Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 2010; 20:1207-18. [PMID: 20647238 DOI: 10.1101/gr.106849.110] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Changes in gene expression levels determine differentiation of tissues involved in development and are associated with functional decline in aging. Although development is tightly regulated, the transition between development and aging, as well as regulation of post-developmental changes, are not well understood. Here, we measured messenger RNA (mRNA), microRNA (miRNA), and protein expression in the prefrontal cortex of humans and rhesus macaques over the species' life spans. We find that few gene expression changes are unique to aging. Instead, the vast majority of miRNA and gene expression changes that occur in aging represent reversals or extensions of developmental patterns. Surprisingly, many gene expression changes previously attributed to aging, such as down-regulation of neural genes, initiate in early childhood. Our results indicate that miRNA and transcription factors regulate not only developmental but also post-developmental expression changes, with a number of regulatory processes continuing throughout the entire life span. Differential evolutionary conservation of the corresponding genomic regions implies that these regulatory processes, although beneficial in development, might be detrimental in aging. These results suggest a direct link between developmental regulation and expression changes taking place in aging.
Collapse
Affiliation(s)
- Mehmet Somel
- Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Shi Y, Buffenstein R, Pulliam DA, Van Remmen H. Comparative Studies of Oxidative Stress and Mitochondrial Function in Aging. Integr Comp Biol 2010; 50:869-79. [DOI: 10.1093/icb/icq079] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|