151
|
Rhodes G, Bosma H, Studholme D, Arnold DL, Jackson RW, Pickup RW. The rulB gene of plasmid pWW0 is a hotspot for the site-specific insertion of integron-like elements found in the chromosomes of environmental Pseudomonas fluorescens group bacteria. Environ Microbiol 2014; 16:2374-88. [PMID: 24286439 PMCID: PMC4542609 DOI: 10.1111/1462-2920.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
Abstract
The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the active site-specific integration of related integron-like elements (ILEs) found in six environmental pseudomonads (strains FH1–FH6). Integration into rulB on pWW0 occurred at position 6488 generating a 3 bp direct repeat. ILEs from FH1 and FH5 were 9403 bp in length and contained eight open reading frames (ORFs), while the ILE from FH4 was 16 233 bp in length and contained 16 ORFs. In all three ILEs, the first 5.1 kb (containing ORFs 1–4) were structurally conserved and contained three predicted site-specific recombinases/integrases and a tetR homologue. Downstream of these resided ORFs of the ‘variable side’ with structural and sequence similarity to those encoding survival traits on the fitness enhancing plasmid pGRT1 (ILEFH1 and ILEFH5) and the NR-II virulence region of genomic island PAGI-5 (ILEFH4). Collectively, these ILEs share features with the previously described type III protein secretion system effector ILEs and are considered important to host survival and transfer of fitness enhancing and (a)virulence genes between bacteria.
Collapse
Affiliation(s)
- Glenn Rhodes
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | | | | | | | | | | |
Collapse
|
152
|
Stewart L, Ford A, Sangal V, Jeukens J, Boyle B, Kukavica-Ibrulj I, Caim S, Crossman L, Hoskisson PA, Levesque R, Tucker NP. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog Dis 2013; 71:20-5. [PMID: 24167005 DOI: 10.1111/2049-632x.12107] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen particularly associated with the inherited disease cystic fibrosis (CF). Pseudomonas aeruginosa is well known to have a large and adaptable genome that enables it to colonise a wide range of ecological niches. Here, we have used a comparative genomics approach to identify changes that occur during infection of the CF lung. We used the mucoid phenotype as an obvious marker of host adaptation and compared these genomes to analyse SNPs, indels and islands within near-isogenic pairs. To commence the correction of the natural bias towards clinical isolates in genomics studies and to widen our understanding of the genomic diversity of P. aeruginosa, we included four environmental isolates in our analysis. Our data suggest that genome plasticity plays an important role in chronic infection and that the strains sequenced in this study are representative of the two major phylogenetic groups as determined by core genome SNP analysis.
Collapse
Affiliation(s)
- Lewis Stewart
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
154
|
Jones C, Allsopp L, Horlick J, Kulasekara H, Filloux A. Subinhibitory concentration of kanamycin induces the Pseudomonas aeruginosa type VI secretion system. PLoS One 2013; 8:e81132. [PMID: 24260549 PMCID: PMC3832665 DOI: 10.1371/journal.pone.0081132] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/09/2013] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium found in natural environments including plants, soils and warm moist surfaces. This organism is also in the top ten of nosocomial pathogens, and prevalent in cystic fibrosis (CF) lung infections. The ability of P. aeruginosa to colonize a wide variety of environments in a lasting manner is associated with the formation of a resistant biofilm and the capacity to efficiently outcompete other microorganisms. Here we demonstrate that sub-inhibitory concentration of kanamycin not only induces biofilm formation but also induces expression of the type VI secretion genes in the H1-T6SS cluster. The H1-T6SS is known for its role in toxin production and bacterial competition. We show that the antibiotic induction of the H1-T6SS only occurs when a functional Gac/Rsm pathway is present. These observations may contribute to understand how P. aeruginosa responds to antibiotic producing competitors. It also suggests that improper antibiotic therapy may enhance P. aeruginosa colonization, including in the airways of CF patients.
Collapse
Affiliation(s)
- Cerith Jones
- MRC-Centre for Molecular Bacteriology and Infection (CBMI), Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Luke Allsopp
- MRC-Centre for Molecular Bacteriology and Infection (CBMI), Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jack Horlick
- MRC-Centre for Molecular Bacteriology and Infection (CBMI), Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hemantha Kulasekara
- Departments of Genome Sciences, Medicine, and Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Alain Filloux
- MRC-Centre for Molecular Bacteriology and Infection (CBMI), Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
155
|
The genome of Pseudomonas fluorescens strain R124 demonstrates phenotypic adaptation to the mineral environment. J Bacteriol 2013; 195:4793-803. [PMID: 23995634 DOI: 10.1128/jb.00825-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbial adaptation to environmental conditions is a complex process, including acquisition of positive traits through horizontal gene transfer or the modification of existing genes through duplication and/or mutation. In this study, we examined the adaptation of a Pseudomonas fluorescens isolate (R124) from the nutrient-limited mineral environment of a silica cave in comparison with P. fluorescens isolates from surface soil and the rhizosphere. Examination of metal homeostasis gene pathways demonstrated a high degree of conservation, suggesting that such systems remain functionally similar across chemical environments. The examination of genomic islands unique to our strain revealed the presence of genes involved in carbohydrate metabolism, aromatic carbon metabolism, and carbon turnover, confirmed through phenotypic assays, suggesting the acquisition of potentially novel mechanisms for energy metabolism in this strain. We also identified a twitching motility phenotype active at low-nutrient concentrations that may allow alternative exploratory mechanisms for this organism in a geochemical environment. Two sets of candidate twitching motility genes are present within the genome, one on the chromosome and one on a plasmid; however, a plasmid knockout identified the functional gene as being present on the chromosome. This work highlights the plasticity of the Pseudomonas genome, allowing the acquisition of novel nutrient-scavenging pathways across diverse geochemical environments while maintaining a core of functional stress response genes.
Collapse
|
156
|
Kocíncová D, Lam JS. A deletion in the wapB promoter in many serotypes of Pseudomonas aeruginosa accounts for the lack of a terminal glucose residue in the core oligosaccharide and resistance to killing by R3-pyocin. Mol Microbiol 2013; 89:464-78. [PMID: 23750877 DOI: 10.1111/mmi.12289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 01/16/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen producing a variety of virulence factors. One of them is lipopolysaccharide, consisting of endotoxic lipid A and long-chain O-antigen polysaccharide, which are connected together through a short linker region, called core oligosaccharide. Chemical structures of the core oligosaccharide are well conserved, with one exception, in that certain strains of P. aeruginosa add a terminal glucose residue (Glc(IV) ) to core by a transferase reaction, due to the activity of a glucosyltransferase, WapB. Here, we investigated the regulation of wapB expression. Our results showed that while the majority of analysed genomes of P. aeruginosa contain wapB, many of these have a conserved identical 5-nucleotide deletion in the upstream region that inactivated the promoter. This deletion is within the -10 hexamer that is recognized by a principle sigma factor (RpoD, or σ70) as proven by data from an electromobility shift assay. These results provide the molecular basis of why LPS core of many P. aeruginosa strains is lacking Glc(IV) . In addition, we show that absence of Glc(IV) due to an inactive wapB promoter confers resistance to killing by R3-pyocin, a phage tail-like bacteriocin of P. aeruginosa.
Collapse
Affiliation(s)
- Dana Kocíncová
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
157
|
Gomila M, Del Carmen Gallegos M, Fernández-Baca V, Pareja A, Pascual M, Díaz-Antolín P, García-Valdés E, Lalucat J. Genetic diversity of clinical Pseudomonas aeruginosa isolates in a public hospital in Spain. BMC Microbiol 2013; 13:138. [PMID: 23773707 PMCID: PMC3706262 DOI: 10.1186/1471-2180-13-138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 06/13/2013] [Indexed: 12/29/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important nosocomial pathogen that exhibits multiple resistances to antibiotics with increasing frequency, making patient treatment more difficult. The aim of the study is to ascertain the population structure of this clinical pathogen in the Hospital Son Llàtzer, Spain. Results A significant set (56) of randomly selected clinical P. aeruginosa isolates, including multidrug and non-multidrug resistant isolates, were assigned to sequence types (STs) and compared them with their antibiotic susceptibility profile classified as follows: extensively drug resistant (XDR), multidrug resistant (MDR) and non-multidrug resistant (non-MDR). The genetic diversity was assessed by applying the multilocus sequence typing (MLST) scheme developed by Curran and collaborators, and by the phylogenetic analysis of a concatenated tree. The analysis of seven loci, acsA, aroE, guaA, mutL, nuoD, ppsA and trpE, demonstrated that the prevalent STs were ST-175, ST-235 and ST-253. The majority of the XDR and MDR isolates were included in ST-175 and ST-235. ST-253 is the third in frequency and included non-MDR isolates. The 26 singleton sequence types corresponded mainly to non-MDR isolates. Twenty-two isolates corresponded to new sequence types (not previously defined) of which 12 isolates were non-MDR and 10 isolates were MDR or XDR. Conclusions The population structure of clinical P. aeruginosa present in our hospital indicates the coexistence of nonresistant and resistant isolates with the same sequence type. The multiresistant isolates studied are grouped in the prevalent sequence types found in other Spanish hospitals and at the international level, and the susceptible isolates correspond mainly to singleton sequence types.
Collapse
Affiliation(s)
- Margarita Gomila
- Microbiología, Hospital Son Llàtzer, Palma de Mallorca, Illes Balears 07198, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother 2013; 57:3775-82. [PMID: 23716048 DOI: 10.1128/aac.00423-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa 96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 of Pseudomonas fluorescens SBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. The blaIMP-9-carrying integron contained aacA4 → bla(IMP-9) → aacA4, flanked upstream by Tn21 tnpMRA and downstream by a complete tni operon of Tn402 and a mer module, named Tn6016. The second integron carried aacA4 → catB8a → bla(OXA-10) and was flanked by Tn1403-like tnpRA and a sul1-type 3' conserved sequence (3'-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and two pil operons. The replication and maintenance systems exhibit similarity to a genomic island of Ralstonia solanacearum GM1000. Codon usage analysis suggests the recent acquisition of bla(IMP-9). The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.
Collapse
|
159
|
Draft genome sequence of the chronic, nonclonal cystic fibrosis isolate Pseudomonas aeruginosa strain 18A. GENOME ANNOUNCEMENTS 2013; 1:e0000113. [PMID: 23516177 PMCID: PMC3622990 DOI: 10.1128/genomea.00001-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa strain 18A is a clinical, nonclonal isolate retrieved from the sputum of a chronically infected cystic fibrosis patient. The genome of 18A was sequenced for comparison with environmental and clinical isolates to identify genes that might facilitate its persistence during infection.
Collapse
|
160
|
Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 2013; 8:e58640. [PMID: 23516524 PMCID: PMC3596284 DOI: 10.1371/journal.pone.0058640] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.
Collapse
Affiliation(s)
- Jin Duan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | |
Collapse
|
161
|
Reen FJ, Barret M, Fargier E, O’Muinneacháin M, O’Gara F. Molecular evolution of LysR-type transcriptional regulation in Pseudomonas aeruginosa. Mol Phylogenet Evol 2013; 66:1041-9. [DOI: 10.1016/j.ympev.2012.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
|
162
|
Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O'Gara F, Martín M, Rivilla R. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 2013; 14:54. [PMID: 23350846 PMCID: PMC3570484 DOI: 10.1186/1471-2164-14-54] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/23/2013] [Indexed: 01/04/2023] Open
Abstract
Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.
Collapse
Affiliation(s)
- Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog 2012; 8:e1003052. [PMID: 23209420 PMCID: PMC3510237 DOI: 10.1371/journal.ppat.1003052] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 09/09/2012] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lifestyles through two-component systems (TCS). Here we decipher the regulon of the P. aeruginosa response regulator PprB of the TCS PprAB. We identified genes under the control of this TCS and once this pathway is activated, analyzed and dissected at the molecular level the PprB-dependent phenotypes in various models. The TCS PprAB triggers a hyper-biofilm phenotype with a unique adhesive signature made of BapA adhesin, a Type 1 secretion system (T1SS) substrate, CupE CU fimbriae, Flp Type IVb pili and eDNA without EPS involvement. This unique signature is associated with drug hyper-susceptibility, decreased virulence in acutely infected flies and cytotoxicity toward various cell types linked to decreased Type III secretion (T3SS). Moreover, once the PprB pathway is activated, decreased virulence in orally infected flies associated with enhanced biofilm formation and dissemination defect from the intestinal lumen toward the hemolymph compartment is reported. PprB may thus represent a key bacterial adaptation checkpoint of multicellular and aggregative behavior triggering the production of a unique matrix associated with peculiar antibiotic susceptibility and attenuated virulence, a particular interesting breach for therapeutic intervention to consider in view of possible eradication of P. aeruginosa biofilm-associated infections.
Collapse
|
164
|
Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 2012; 3:408. [PMID: 23233851 PMCID: PMC3516279 DOI: 10.3389/fmicb.2012.00408] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | | | | |
Collapse
|
165
|
Saussereau E, Debarbieux L. Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. Adv Virus Res 2012; 83:123-41. [PMID: 22748810 DOI: 10.1016/b978-0-12-394438-2.00004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regular increase of drug-resistant pathogens has been a major force in the renewed interest in the use of bacteriophages as therapeutics. In addition to experience acquired in eastern Europe where bacteriophages have been used to treat bacterial infections in humans, in Western countries only experimental models have been developed until recently. The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen causing particularly severe infections in cystic fibrosis patients. Several experimental models in mice have yielded encouraging results for the use of bacteriophages to treat or prevent septicemia, skin and lungs infections caused by P. aeruginosa. Now, a phase II clinical trial conducted in the United Kingdom provides evidence for the efficacy of bacteriophage treatments in chronic otitis due to antibiotic-resistant P. aeruginosa strains. Together with experimental models, these results provide an incentive to develop more research and clinical studies to fully appreciate the benefits of the use of bacteriophages in medicine.
Collapse
Affiliation(s)
- Emilie Saussereau
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
| | | |
Collapse
|
166
|
|
167
|
LaBauve AE, Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2012; Chapter 6:Unit 6E.1.. [PMID: 22549165 DOI: 10.1002/9780471729259.mc06e01s25] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pseudomonas aeruginosa is a common, free-living, Gram-negative bacterium that can cause significant disease as an opportunistic pathogen. Rapid growth, facile genetics, and a large suite of virulence-related phenotypes make P. aeruginosa a common model organism to study Gram-negative opportunistic pathogens and basic microbiology. This unit describes the basic laboratory growth and maintenance of P. aeruginosa.
Collapse
Affiliation(s)
- Annette E LaBauve
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | |
Collapse
|
168
|
Klockgether J, Miethke N, Kubesch P, Bohn YS, Brockhausen I, Cramer N, Eberl L, Greipel J, Herrmann C, Herrmann S, Horatzek S, Lingner M, Luciano L, Salunkhe P, Schomburg D, Wehsling M, Wiehlmann L, Davenport CF, Tümmler B. Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environ Microbiol 2012; 15:191-210. [PMID: 22882573 DOI: 10.1111/j.1462-2920.2012.02842.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microevolution of closely related Pseudomonas aeruginosa was compared in the clone TB strains TBCF10839 and TBCF121838 which had been isolated from two unrelated individuals with cystic fibrosis who had acquired clone TB during a local outbreak. Compared with the strain PAO1 reference sequence the two clone TB genomes shared 23 155 nucleotide exchanges, 32 out-of-frame indels in the coding region and another repertoire of replacement and genomic islands such as PAGI-1, PAGI-2, PAGI-5, LESGI-1 and LES-prophage 4. Only TBCF121838 carried a genomic island known from Ralstonia pickettii. Six of the seven strain-specific sequence variations in the core genome were detected in genes affecting motility, biofilm formation or virulence, i.e. non-synonymous nucleotide substitutions in mexS, PA3729, PA5017, mifR, a frameshift mutation in pilF (TBCF121838) and an intragenic deletion in pilQ (TBCF10839). Despite their almost identical genome sequence the two strains differed strongly from each other in transcriptome and metabolome profiles, mucin adherence and phagocytosis assays. TBCF121838 was susceptible to killing by neutrophils, but TBCF10839 could grow in leucocytes. Microevolution in P. aeruginosa apparently can generate novel complex traits by few or even single mutations provided that predisposing mutational events had occurred before in the clonal lineage.
Collapse
Affiliation(s)
- Jens Klockgether
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinder- und Jugendmedizin, OE 6710, D-30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Concomitant antibiotic and mercury resistance among gastrointestinal microflora of feral brook trout, Salvelinus fontinalis. Curr Microbiol 2012; 65:575-82. [PMID: 22850694 DOI: 10.1007/s00284-012-0194-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
Twenty-nine bacterial isolates representing eight genera from the gastrointestinal tracts of feral brook trout Salvelinus fontinalis (Mitchell) demonstrated multiple maximal antibiotic resistances and concomitant broad-spectrum mercury (Hg) resistance. Equivalent viable plate counts on tryptic soy agar supplemented with either 0 or 25 μM HgCl(2) verified the ubiquity of mercury resistance in this microbial environment. Mercury levels in lake water samples measured 1.5 ng L(-1); mercury concentrations in fish filets ranged from 81.8 to 1,080 ng g(-1) and correlated with fish length. The presence of similar antibiotic and Hg resistance patterns in multiple genera of gastrointestinal microflora supports a growing body of research that multiple selective genes can be transferred horizontally in the presence of an unrelated individual selective pressure. We present data that bioaccumulation of non-point source Hg pollution could be a selective pressure to accumulate both antibiotic and Hg resistant bacteria.
Collapse
|
170
|
Lu C, Holland MJ, Gong S, Peng B, Bailey RL, Mabey DW, Wu Y, Zhong G. Genome-wide identification of Chlamydia trachomatis antigens associated with trachomatous trichiasis. Invest Ophthalmol Vis Sci 2012; 53:2551-9. [PMID: 22427578 DOI: 10.1167/iovs.11-9212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Chlamydia trachomatis is the leading infectious cause of blindness. The goal of the current study was to search for biomarkers associated with C. trachomatis-induced ocular pathologies. METHODS We used a whole genome scale proteome array to systematically profile antigen specificities of antibody responses to C. trachomatis infection in individuals from trachoma-endemic communities with or without end-stage trachoma (trichiasis) in The Gambia. RESULTS When 61 trichiasis patients were compared with their control counterparts for overall antibody reactivity with organisms of different chlamydial species, no statistically significant difference was found. Both groups developed significantly higher titers of antibodies against C. trachomatis ocular serovars A and B than ocular serovar C, genital serovar D, or Chlamydia psittaci, whereas the titers of anti-Chlamydia pneumoniae antibodies were the highest. When antisera from 33 trichiasis and 26 control patients (with relatively high titers of antibodies to C. trachomatis ocular serovars) were reacted with 908 C. trachomatis proteins, 447 antigens were recognized by at least 1 of the 59 antisera, and 10 antigens by 50% or more antisera, the latter being designated as immunodominant antigens. More importantly, four antigens were preferentially recognized by the trichiasis group, with antigens CT414, CT667, and CT706 collectively reacting with 30% of trichiasis antisera but none from the normal group, and antigen CT695 reacting with 61% of trichiasis but only 31% of normal antisera. On the other hand, eight antigens were preferentially recognized by the control group, with antigens CT019, CT117, CT301, CT553, CT556, CT571, and CT709 together reacting with 46% of normal antisera and none from the trichiasis group, whereas antigen CT442 reacted with 35% of normal and 19% of trichiasis antisera respectively. CONCLUSIONS The current study, by mapping immunodominant C. trachomatis antigens and identifying antigens associated with both ocular pathology and protection, has provided important information for further understanding chlamydial pathogenesis and the development of subunit vaccines.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Castillo-Vera J, Ribas-Aparicio RM, Nicolau CJ, Oliver A, Osorio-Carranza L, Aparicio-Ozores G. Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa isolates in a Mexican hospital. Microb Drug Resist 2012; 18:471-8. [PMID: 22554004 DOI: 10.1089/mdr.2011.0183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS To investigate the presence of extended spectrum and metallo β-lactamases (MBLs) in Pseudomonas aeruginosa isolates which are resistant to imipenem and ceftazidime that were isolated in a hospital in Mexico. RESULTS Pulsed-field gel electrophoresis (PFGE) revealed the presence of four clonal types among the 14 isolates. All these genes were found either alone or simultaneously in the P. aeruginosa strains in the following five different arrangements: <bla(GES-5)>; <bla(GES-5), bla(VIM-11)>; <bla(GES-5), bla(VIM-2), bla(VIM-11)>; <bla(GES-5), bla(OXA-2)>; and <bla(GES-5), bla(VIM-2), bla(VIM-11), and bla(OXA-2)>. Class 1 integrons were detected and contained the cassettes bla(GES-5) and bla(OXA-2), but not that of bla(VIM). bla(VIM) genes occurred only in the chromosome, while bla(GES-5) was located in the chromosome and in the plasmids. CONCLUSIONS To our knowledge, this is the first description of P. aeruginosa strains simultaneously producing the VIM-2 and VIM-11 variants, and the combination of GES-5 and MBL carbapenemases, which determines a major challenge for the clinical microbiology laboratory and a remarkable epidemiological risk for the nosocomial spread of multidrug-resistant determinants.
Collapse
Affiliation(s)
- Jane Castillo-Vera
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
172
|
High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 2012; 78:4510-5. [PMID: 22504803 DOI: 10.1128/aem.00065-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The diversity of Pseudomonas aeruginosa bacteriophages was investigated using a collection of 68 phages isolated from Central Mexico. Most of the phages carried double-stranded DNA (dsDNA) genomes and were classified into 12 species. Comparison of the genomes of selected archetypal phages with extant sequences in GenBank resulted in the identification of six novel species. This finding increased the group diversity by ~30%. The great diversity of phage species could be related to the ubiquitous nature of P. aeruginosa.
Collapse
|
173
|
Ghorbel-Bellaaj O, Hayet BK, Bayoudh A, Younes I, Hmidet N, Jellouli K, Nasri M. Pseudomonas aeruginosa A2 elastase: Purification, characterization and biotechnological applications. Int J Biol Macromol 2012; 50:679-86. [DOI: 10.1016/j.ijbiomac.2012.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 12/25/2022]
|
174
|
Aujoulat F, Roger F, Bourdier A, Lotthé A, Lamy B, Marchandin H, Jumas-Bilak E. From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes (Basel) 2012; 3:191-232. [PMID: 24704914 PMCID: PMC3899952 DOI: 10.3390/genes3020191] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 02/07/2023] Open
Abstract
Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors.
Collapse
Affiliation(s)
- Fabien Aujoulat
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Frédéric Roger
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Alice Bourdier
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Anne Lotthé
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Brigitte Lamy
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Hélène Marchandin
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Estelle Jumas-Bilak
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| |
Collapse
|
175
|
Gelencsér Z, Galbáts B, Gonzalez JF, Choudhary KS, Hudaiberdiev S, Venturi V, Pongor S. Chromosomal Arrangement of AHL-Driven Quorum Sensing Circuits in Pseudomonas. ISRN MICROBIOLOGY 2012; 2012:484176. [PMID: 23724324 PMCID: PMC3658600 DOI: 10.5402/2012/484176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/16/2011] [Indexed: 12/31/2022]
Abstract
Pseudomonas spp. are able to colonize a large variety of environments due to their wide adaptability which is also associated with an N-acyl homoserine lactone (AHL) gene regulation mechanism called quorum sensing (QS). In this article we present a systematic overview of the genomic arrangement patterns of quorum sensing genes found in Pseudomonas and compare the topologies with those found in other bacterial genomes. We find that the topological arrangement of QS genes is more variable than previously thought but there are a few unifying features that occur in many of the topological arrangements. We hypothesize that the negative regulators of QS that are often found between the canonical luxR/ and luxI-family genes may be crucial for stabilizing the output of QS circuits.
Collapse
Affiliation(s)
- Zsolt Gelencsér
- Faculty of Information Technology, Pázmány Péter Catholic University, Práter u. 50/a, 1083 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
176
|
Reimmann C. Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. MICROBIOLOGY-SGM 2012; 158:1317-1324. [PMID: 22343350 DOI: 10.1099/mic.0.057430-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iron uptake and transcriptional regulation by the enantiomeric siderophores pyochelin (Pch) and enantio-pyochelin (EPch) of Pseudomonas aeruginosa and Pseudomonas fluorescens, respectively, are stereospecific processes. The iron-loaded forms of Pch (ferriPch) and of EPch (ferriEPch) are recognized stereospecifically (i) at the outer membrane by the siderophore receptors FptA in P. aeruginosa and FetA in P. fluorescens and (ii) in the cytoplasm by the two AraC-type regulators PchR, which are activated by their cognate siderophore. Here, stereospecific siderophore recognition is shown to occur at the inner membrane also. In P. aeruginosa, translocation of ferriPch across the inner membrane is carried out by the single-subunit siderophore transporter FptX. In contrast, the uptake of ferriEPch into the cytoplasm of P. fluorescens was found to involve a classical periplasmic binding protein-dependent ABC transporter (FetCDE), which is encoded by the fetABCDEF operon. Expression of a translational fetA-gfp fusion was repressed by ferric ions, and activated by the cognate siderophore bound to PchR, thus resembling the analogous regulation of the P. aeruginosa ferriPch transport operon fptABCX. The inner-membrane transporters FetCDE and FptX were expressed in combination with either of the two siderophore receptors FetA and FptA in a siderophore-negative P. aeruginosa mutant deleted for the fptABCX operon. Growth tests conducted under iron limitation with ferriPch or ferriEPch as the iron source revealed that FptX was able to transport ferriPch as well as ferriEPch, whereas FetCDE specifically transported ferriEPch. Thus, stereospecific siderophore recognition occurs at the inner membrane by the FetCDE transporter.
Collapse
Affiliation(s)
- Cornelia Reimmann
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
177
|
Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter? MICROBIAL ECOLOGY 2012; 63:239-48. [PMID: 21811795 PMCID: PMC3275731 DOI: 10.1007/s00248-011-9914-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 07/13/2011] [Indexed: 05/07/2023]
Abstract
The genus Pseudomonas has gone through many taxonomic revisions over the past 100 years, going from a very large and diverse group of bacteria to a smaller, more refined and ordered list having specific properties. The relationship of the Pseudomonas genus to Azotobacter vinelandii is examined using three genomic sequence-based methods. First, using 16S rRNA trees, it is shown that A. vinelandii groups within the Pseudomonas close to Pseudomonas aeruginosa. Genomes from other related organisms (Acinetobacter, Psychrobacter, and Cellvibrio) are outside the Pseudomonas cluster. Second, pan genome family trees based on conserved gene families also show A. vinelandii to be more closely related to Pseudomonas than other related organisms. Third, exhaustive BLAST comparisons demonstrate that the fraction of shared genes between A. vinelandii and Pseudomonas genomes is similar to that of Pseudomonas species with each other. The results of these different methods point to a high similarity between A. vinelandii and the Pseudomonas genus, suggesting that Azotobacter might actually be a Pseudomonas.
Collapse
Affiliation(s)
- Asli I. Özen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Lyngby, Denmark
| | - David W. Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
178
|
Morita Y, Tomida J, Kawamura Y. Primary mechanisms mediating aminoglycoside resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7. MICROBIOLOGY-SGM 2012; 158:1071-1083. [PMID: 22282519 DOI: 10.1099/mic.0.054320-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The multiresistant taxonomic outlier Pseudomonas aeruginosa PA7 possesses the conserved efflux genes, mexXY; however these are linked to a unique gene encoding an outer membrane channel, dubbed oprA, that is absent in most P. aeruginosa strains. Using genetic knockouts and single copy chromosomal complementation, we showed that aminoglycoside resistance in PA7 is mediated in part by the MexXY-OprA pump, and intriguingly that MexXY in this strain can utilize either the OprA or OprM outer membrane channel, linked to the mexAB efflux genes. We also identified a small portion of the oprA gene immediately downstream of the mexY gene in PAO1, suggesting that non-PA7 P. aeruginosa strains might have possessed, but lost, the intact mexXY-oprA efflux pump locus. Consistent with this, most of a panel of serotype strains possessed the truncated oprA but the serotype O12 isolate had an intact mexXY-oprA locus, similar to PA7 and the related strain DSM 1128. We also showed that the mexZ repressor gene upstream of mexXY-oprA in PA7 is mutated, leading to overexpression of mexXY-oprA, using sequencing, homologous replacement and real-time quantitative reverse transcriptase PCR. Finally we assessed the contribution of MexXY and aminoglycoside modifying enzymes AAC together to resistance in PA7 and the AAC(6')-Iae-mediated amikacin-resistant clinical isolate IMCJ2.S1, concluding that the effect of the modifying enzymes is enhanced by functional efflux, especially in the presence of divalent cations, to develop high-level aminoglycoside resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
179
|
Mochizuki T, Sako Y, Prangishvili D. Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. J Bacteriol 2011; 193:5412-9. [PMID: 21784945 PMCID: PMC3187419 DOI: 10.1128/jb.05101-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/28/2011] [Indexed: 01/29/2023] Open
Abstract
By in silico analysis, we have identified two putative proviruses in the genome of the hyperthermophilic archaeon Aeropyrum pernix, and under special conditions of A. pernix growth, we were able to induce their replication. Both viruses were isolated and characterized. Negatively stained virions of one virus appeared as pleomorphic spindle-shaped particles, 180 to 210 nm by 40 to 55 nm, with tails of heterogeneous lengths in the range of 0 to 300 nm. This virus was named Aeropyrum pernix spindle-shaped virus 1 (APSV1). Negatively stained virions of the other virus appeared as slightly irregular oval particles with one pointed end, while in cryo-electron micrographs, the virions had a regular oval shape and uniform size (70 by 55 nm). The virus was named Aeropyrum pernix ovoid virus 1 (APOV1). Both viruses have circular, double-stranded DNA genomes of 38,049 bp for APSV1 and 13,769 bp for APOV1. Similarities to proteins of other archaeal viruses were limited to the integrase and Dna1-like protein. We propose to classify APOV1 into the family Guttaviridae.
Collapse
Affiliation(s)
- Tomohiro Mochizuki
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - David Prangishvili
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
180
|
|
181
|
Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 2011; 12:438. [PMID: 21884571 PMCID: PMC3189399 DOI: 10.1186/1471-2164-12-438] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/31/2011] [Indexed: 12/31/2022] Open
Abstract
Background Our previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures. Results The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C. Conclusions The P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.
Collapse
Affiliation(s)
- Da-Qiang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | | | | | | | | | | | | |
Collapse
|
182
|
Filloux A. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol 2011; 2:155. [PMID: 21811488 PMCID: PMC3140646 DOI: 10.3389/fmicb.2011.00155] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/01/2011] [Indexed: 12/25/2022] Open
Abstract
Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail, or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations call for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements.
Collapse
Affiliation(s)
- Alain Filloux
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London London, UK
| |
Collapse
|
183
|
Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front Microbiol 2011; 2:150. [PMID: 21808635 PMCID: PMC3139241 DOI: 10.3389/fmicb.2011.00150] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/27/2011] [Indexed: 12/23/2022] Open
Abstract
The Pseudomonas aeruginosa genome (G + C content 65–67%, size 5.5–7 Mbp) is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators, and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among P. aeruginosa strains and exhibits an interclonal sequence diversity of 0.5–0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNALys or tRNAGly genes represent hotspots of inter- and intraclonal genomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of P. aeruginosa, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. One hundred ninety-eight of the 231 single nucleotide substitutions (SNPs) were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport, and secretion. In summary, P. aeruginosa is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer.
Collapse
Affiliation(s)
- Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Klinische Forschergruppe Hannover, Germany
| | | | | | | | | |
Collapse
|
184
|
A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 2011; 193:4456-68. [PMID: 21725014 DOI: 10.1128/jb.00345-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The compatible solutes ectoine and hydroxyectoine are widely produced by bacteria as protectants against osmotic and temperature stress. l-Aspartate-beta-semialdehyde is used as the precursor molecule for ectoine/hydroxyectoine biosynthesis that is catalyzed by the EctABCD enzymes. l-Aspartate-beta-semialdehyde is a central intermediate in different biosynthetic pathways and is produced from l-aspartate by aspartokinase (Ask) and aspartate-semialdehyde-dehydrogenase (Asd). Ask activity is typically stringently regulated by allosteric control to avoid gratuitous synthesis of aspartylphosphate. Many organisms have evolved multiple forms of aspartokinase, and feedback regulation of these specialized Ask enzymes is often adapted to the cognate biochemical pathways. The ectoine/hydroxyectoine biosynthetic genes (ectABCD) are followed in a considerable number of microorganisms by an askgene (ask_ect), suggesting that Ask_Ect is a specialized enzyme for this osmoadaptive biosynthetic pathway. However, none of these Ask_Ect enzymes have been functionally characterized. Pseudomonas stutzeri A1501 synthesizes both ectoine and hydroxyectoine in response to increased salinity, and it possesses two Ask enzymes: Ask_Lys and Ask_Ect. We purified both Ask enzymes and found significant differences with regard to their allosteric control: Ask_LysC was inhibited by threonine and in a concerted fashion by threonine and lysine, whereas Ask_Ect showed inhibition only by threonine. The ectABCD_askgenes from P. stutzeri A1501 were cloned and functionally expressed in Escherichia coli, and this led to osmostress protection. An E. colistrain carrying the plasmid-based ectABCD_askgene cluster produced significantly more ectoine/hydroxyectoine than a strain expressing the ectABCDgene cluster alone. This finding suggests a specialized role for Ask_Ect in ectoine/hydroxyectoine biosynthesis.
Collapse
|
185
|
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonasgenomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652-80. [DOI: 10.1111/j.1574-6976.2011.00269.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
186
|
Bertels F, Rainey PB. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria. PLoS Genet 2011; 7:e1002132. [PMID: 21698139 PMCID: PMC3116915 DOI: 10.1371/journal.pgen.1002132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/02/2011] [Indexed: 12/31/2022] Open
Abstract
Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII) of repetitive extragenic palindromic (REP) sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins) and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs), combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT–containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA. DNA sequences that copy themselves throughout genomes, and make no specific contribution to reproductive success, are by definition “selfish.” Such DNA is a feature of the genomes of all organisms and evident by virtue of its repetitive nature. In bacteria the predominant repetitive sequences are short (∼20 bp), extragenic, and palindromic. These so-called REP sequences may occur many hundreds of times per genome, but their origins and means of dissemination have been a longstanding mystery. We show that REPs are components of higher-order replicative entities termed REPINs, which are themselves thought to be derived from REP sequences that flanked an ancestral autonomous selfish element. In this ancestral state the REP sequences were likely to have been critical for the movement of the selfish element, but were devoid of any capacity to replicate independently. REPINs, on the other hand, have evolved to have a life of their own, albeit one that exploits—even enslaves—a genetic element upon which their existence depends. REPINs are the ultimate non-autonomous, super-streamlined, selfish element and are widespread among bacteria.
Collapse
Affiliation(s)
- Frederic Bertels
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand.
| | | |
Collapse
|
187
|
Harvey H, Kus JV, Tessier L, Kelly J, Burrows LL. Pseudomonas aeruginosa D-arabinofuranose biosynthetic pathway and its role in type IV pilus assembly. J Biol Chem 2011; 286:28128-37. [PMID: 21676874 DOI: 10.1074/jbc.m111.255794] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa strains PA7 and Pa5196 glycosylate their type IVa pilins with α1,5-linked D-arabinofuranose (d-Araf), a rare sugar configuration identical to that found in cell wall polymers of the Corynebacterineae. Despite this chemical identity, the pathway for biosynthesis of α1,5-D-Araf in Gram-negative bacteria is unknown. Bioinformatics analyses pointed to a cluster of seven P. aeruginosa genes, including homologues of the Mycobacterium tuberculosis genes Rv3806c, Rv3790, and Rv3791, required for synthesis of a polyprenyl-linked d-ribose precursor and its epimerization to D-Araf. Pa5196 mutants lacking the orthologues of those genes had non-arabinosylated pilins, poor twitching motility, and significantly fewer surface pili than the wild type even in a retraction-deficient (pilT) background. The Pa5196 pilus system assembled heterologous non-glycosylated pilins efficiently, demonstrating that it does not require post-translationally modified subunits. Together the data suggest that pilins of group IV strains need to be glycosylated for productive subunit-subunit interactions. A recombinant P. aeruginosa PAO1 strain co-expressing the genes for d-Araf biosynthesis, the pilin modification enzyme TfpW, and the acceptor PilA(IV) produced arabinosylated pili, confirming that the Pa5196 genes identified are both necessary and sufficient. A P. aeruginosa epimerase knock-out could be complemented with the corresponding Mycobacterium smegmatis gene, demonstrating conservation between the systems of the Corynebacterineae and Pseudomonas. This work describes a novel Gram-negative pathway for biosynthesis of d-Araf, a key therapeutic target in Corynebacterineae.
Collapse
Affiliation(s)
- Hanjeong Harvey
- Michael G DeGroote Institute for Infectious Diseases Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
188
|
Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 2011; 91:251-64. [PMID: 21667084 DOI: 10.1007/s00253-011-3368-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/02/2011] [Accepted: 05/02/2011] [Indexed: 12/29/2022]
Abstract
During the last decade, the demand for economical and sustainable bioprocesses replacing petrochemical-derived products has significantly increased. Rhamnolipids are interesting biosurfactants that might possess a broad industrial application range. However, despite of 60 years of research in the area of rhamnolipid production, the economic feasibility of these glycolipids is pending. Although the biosynthesis and regulatory network are in a big part known, the actual incidents on the cellular and process level during bioreactor cultivation are not mastered. Traditional engineering by random and targeted genetic alteration, process design, and recombinant strategies did not succeed by now. For enhanced process development, there is an urgent need of in-depth information about the rhamnolipid production regulation during bioreactor cultivation to design knowledge-based genetic and process engineering strategies. Rhamnolipids are structurally comparable, simple secondary metabolites and thus have the potential to become instrumental in future secondary metabolite engineering by systems biotechnology. This review summarizes current knowledge about the regulatory and metabolic network of rhamnolipid synthesis and discusses traditional and advanced engineering strategies performed for rhamnolipid production improvement focusing on Pseudomonas aeruginosa. Finally, the opportunities of applying the systems biotechnology toolbox on the whole-cell biocatalyst and bioprocess level for further rhamnolipid production optimization are discussed.
Collapse
|
189
|
Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide. Front Microbiol 2011; 2:118. [PMID: 21687428 PMCID: PMC3108286 DOI: 10.3389/fmicb.2011.00118] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022] Open
Abstract
Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium-host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host-pathogen interactions and the control/prevention of infection.
Collapse
Affiliation(s)
- Joseph S. Lam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Véronique L. Taylor
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Salim T. Islam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Youai Hao
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Dana Kocíncová
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| |
Collapse
|
190
|
Oberhardt MA, Puchałka J, Martins dos Santos VAP, Papin JA. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 2011; 7:e1001116. [PMID: 21483480 PMCID: PMC3068926 DOI: 10.1371/journal.pcbi.1001116] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/28/2011] [Indexed: 11/18/2022] Open
Abstract
In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities and differences between these important Pseudomonads, and pave the way towards full comparative analysis of genome-scale metabolic reconstructions of multiple species.
Collapse
Affiliation(s)
- Matthew A. Oberhardt
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Jacek Puchałka
- Helmholtz Center for Infection Research (HZI), Braunschweig,
Germany
| | - Vítor A. P. Martins dos Santos
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
- Helmholtz Center for Infection Research (HZI), Braunschweig,
Germany
- * E-mail: (VAPMdS); (JAP)
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
- * E-mail: (VAPMdS); (JAP)
| |
Collapse
|
191
|
Ramírez-Díaz MI, Díaz-Magaña A, Meza-Carmen V, Johnstone L, Cervantes C, Rensing C. Nucleotide sequence of Pseudomonas aeruginosa conjugative plasmid pUM505 containing virulence and heavy-metal resistance genes. Plasmid 2011; 66:7-18. [PMID: 21421005 DOI: 10.1016/j.plasmid.2011.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 12/24/2022]
Abstract
We determined the complete nucleotide sequence of conjugative plasmid pUM505 isolated from a clinical strain of Pseudomonas aeruginosa. The plasmid had a length of 123,322bp and contained 138 complete coding regions, including 46% open reading frames encoding hypothetical proteins. pUM505 can be considered a hybrid plasmid because it presents two well-defined regions. The first region corresponded to a larger DNA segment with homology to a pathogenicity island from virulent Pseudomonas strains; this island in pUM505 was comprised of genes probably involved in virulence and genes encoding proteins implicated in replication, maintenance and plasmid transfer. Sequence analysis identified pil genes encoding a type IV secretion system, establishing pUM505 as a member of the family of IncI1 plasmids. Plasmid pUM505 also contained virB4/virD4 homologues, which are linked to virulence in other plasmids. The second region, smaller in length, contains inorganic mercury and chromate resistance gene clusters both flanked by putative mobile elements. Although no genes for antibiotic resistance were identified, when pUM505 was transferred to a recipient strain of P. aeruginosa it conferred resistance to the fluoroquinolone ciprofloxacin. pUM505 also conferred resistance to the superoxide radical generator paraquat. pUM505 could provide Pseudomonas strains with a wide variety of adaptive traits such as virulence, heavy-metal and antibiotic resistance and oxidative stress tolerance which can be selective factors for the distribution and prevalence of this plasmid in diverse environments, including hospitals and heavy metal contaminated soils.
Collapse
Affiliation(s)
- M I Ramírez-Díaz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Morelia, Michoacán, Mexico.
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
193
|
Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RSG, Lalitha P, Zegans ME, O'Toole GA. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. MICROBIOLOGY (READING, ENGLAND) 2011; 157:430-7. [PMID: 21081758 PMCID: PMC3090132 DOI: 10.1099/mic.0.045732-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of 122 Pseudomonas aeruginosa clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that Yersinia subtype CRISPR regions (33 %) were more prevalent than the Escherichia CRISPR region subtype (6 %) in these P. aeruginosa clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic P. aeruginosa bacteriophage. We next assessed the ability of the more prevalent Yersinia subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and cas genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and cas gene studies.
Collapse
Affiliation(s)
- K. C. Cady
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - A. S. White
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - J. H. Hammond
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - M. D. Abendroth
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | - P. Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - M. E. Zegans
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Surgery, Dartmouth Medical School, Lebanon, NH 03766, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
194
|
Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol 2011; 49:993-1003. [PMID: 21227987 DOI: 10.1128/jcm.02036-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic bacterial pathogen that causes a variety of infections in humans. Populations of P. aeruginosa are dominated by common clones that can be isolated from diverse clinical and environmental sources. To determine whether specific clones are associated with corneal infection, we used a portable genotyping microarray system to analyze a set of 63 P. aeruginosa isolates from patients with corneal ulcers (keratitis). We then used population analysis to compare the keratitis isolates to a wider collection of P. aeruginosa from various nonocular sources. We identified various markers in a subpopulation of P. aeruginosa associated with keratitis that were in strong disequilibrium with the wider P. aeruginosa population, including oriC, exoU, katN, unmodified flagellin, and the carriage of common genomic islands. The genome sequencing of a keratitis isolate (39016; representing the dominant serotype O11), which was associated with a prolonged clinical healing time, revealed several genomic islands and prophages within the accessory genome. The PCR amplification screening of all 63 keratitis isolates, however, provided little evidence for the shared carriage of specific prophages or genomic islands between serotypes. P. aeruginosa twitching motility, due to type IV pili, is implicated in corneal virulence. We demonstrated that 46% of the O11 keratitis isolates, including 39016, carry a distinctive pilA, encoding the pilin of type IV pili. Thus, the keratitis isolates were associated with specific characteristics, indicating that a subpopulation of P. aeruginosa is adapted to cause corneal infection.
Collapse
|
195
|
Browne P, Barret M, O'Gara F, Morrissey JP. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol 2010; 10:300. [PMID: 21108798 PMCID: PMC3003667 DOI: 10.1186/1471-2180-10-300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. RESULTS In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. CONCLUSIONS Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.
Collapse
Affiliation(s)
- Patrick Browne
- BIOMERIT Research Centre, Microbiology Department University College Cork, Ireland
| | | | | | | |
Collapse
|
196
|
Abstract
Pseudomonas species and their bacteriophages have been studied intensely since the beginning of the 20th century, due to their ubiquitous nature, and medical and ecological importance. Here, we summarize recent molecular research performed on Pseudomonas phages by reviewing findings on individual phage genera. While large phage collections are stored and characterized worldwide, the limits of their genomic diversity are becoming more and more apparent. Although this article emphasizes the biological background and molecular characteristics of these phages, special attention is given to emerging studies in coevolutionary and in therapeutic settings.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, bus 2462, B-3001 Leuven, Belgium
| | | |
Collapse
|
197
|
Bayer S, Birkemeyer C, Ballschmiter M. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 2010; 89:91-8. [PMID: 20725724 DOI: 10.1007/s00253-010-2831-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/26/2022]
Abstract
Several novel nitrilases were selected from metagenomic libraries using cinnamonitrile and a mixture of six different nitriles as substrates. The nitrilase gene nit1 was expressed in Escherichia coli and the resulting protein was further examined concerning its biochemical properties. Nit1 turned out to be an aliphatic nitrilase favoring dinitriles over mononitriles. Stereochemical analysis revealed that Nit1 converted the dinitrile 2-methylglutaronitrile regioselectively. Hydrolysis at the ω-nitrile group of a dinitrile, such as catalyzed by Nit1, leads to ω-cyanocarboxylic acids, which are important precursors for chemical and pharmaceutical products. Nit1 metabolized 2-methylglutaronitrile to the corresponding ω-cyanocarboxylic acid 4-cyanopentanoic acid can be used for the production of the fine chemical 1,5-dimethyl-2-piperidone.
Collapse
Affiliation(s)
- Sally Bayer
- Junior Research Group White Biotechnology, Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Deutscher Platz 5b, 04103 Leipzig, Germany
| | | | | |
Collapse
|
198
|
Toribio J, Escalante AE, Soberón-Chávez G. Rhamnolipids: Production in bacteria other than Pseudomonas aeruginosa. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900256] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
199
|
Remans K, Vercammen K, Bodilis J, Cornelis P. Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2010; 156:2597-2607. [PMID: 20616104 DOI: 10.1099/mic.0.040659-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen able to cause acute or chronic infections. Like all other Pseudomonas species, P. aeruginosa has a large genome, >6 Mb, encoding more than 5000 proteins. Many proteins are localized in membranes, among them lipoproteins, which can be found tethered to the inner or the outer membrane. Lipoproteins are translocated from the cytoplasm and their N-terminal signal peptide is cleaved by the signal peptidase II, which recognizes a specific sequence called the lipobox just before the first cysteine of the mature lipoprotein. A majority of lipoproteins are transported to the outer membrane via the LolCDEAB system, while those having an avoidance signal remain in the inner membrane. In Escherichia coli, the presence of an aspartate residue after the cysteine is sufficient to cause the lipoprotein to remain in the inner membrane, while in P. aeruginosa the situation is more complex and involves amino acids at position +3 and +4 after the cysteine. Previous studies indicated that there are 185 lipoproteins in P. aeruginosa, with a minority in the inner membrane. A reanalysis led to a reduction of this number to 175, while new retention signals could be predicted, increasing the percentage of inner-membrane lipoproteins to 20 %. About one-third (62 out of 175) of the lipoprotein genes are present in the 17 Pseudomonas genomes sequenced, meaning that these genes are part of the core genome of the genus. Lipoproteins can be classified into families, including those outer-membrane proteins having a structural role or involved in efflux of antibiotics. Comparison of various microarray data indicates that exposure to epithelial cells or some antibiotics, or conversion to mucoidy, has a major influence on the expression of lipoprotein genes in P. aeruginosa.
Collapse
Affiliation(s)
- Kim Remans
- Department of Molecular and Cellular Interactions, Structural Biology Brussels, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ken Vercammen
- Department of Molecular and Cellular Interactions, Microbial Interactions, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Josselin Bodilis
- Groupe Microbiologie, Laboratoire M2C, UMR CNRS 6143, UFR des Sciences - Université de Rouen, 76821 Mont Saint Aignan, France
| | - Pierre Cornelis
- Department of Molecular and Cellular Interactions, Microbial Interactions, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
200
|
Identification of the biosynthetic gene cluster for the Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid. J Bacteriol 2010; 192:4251-5. [PMID: 20543073 DOI: 10.1128/jb.00492-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a potent antibiotic and toxin produced by Pseudomonas aeruginosa. Using a novel biochemical assay combined with site-directed mutagenesis in strain PAO1, we have identified a five-gene cluster specifying AMB biosynthesis, probably involving a thiotemplate mechanism. Overexpression of this cluster in strain PA7, a natural AMB-negative isolate, led to AMB overproduction.
Collapse
|