151
|
Hasenkamp S, Russell K, Ullah I, Horrocks P. Functional analysis of the 5' untranslated region of the phosphoglutamase 2 transcript in Plasmodium falciparum. Acta Trop 2013; 127:69-74. [PMID: 23567550 DOI: 10.1016/j.actatropica.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum transcripts contain long untranslated regions (UTR), with some of the longest in any eukaryote that uses monocistronic transcription. Owing to the extreme AT nucleotide bias within the intergenic regions that encode these UTR, attempts to characterise how they are apportioned over genes and to describe their contribution to the absolute and temporal control of gene expression have been limited. Here we describe a study using a typical house-keeping gene that encodes phosphoglutamase 2 (PFD0660w), whose expression is subject to developmentally linked control during intraerythrocytic development. We show that deletion of a significant proportion (80%) of the predicted 5' UTR has no apparent effect on the developmentally linked expression of a luciferase reporter cassette. Further, serial deletions reveal that whilst the absolute level of transcription is unaffected when up to 50% of the predicted 5' UTR is removed, the subsequent efficiency of translation is affected. These data provide key insights into the interplay of transcriptional and post-transcriptional mechanisms in the control of gene expression in this important human pathogen.
Collapse
Affiliation(s)
- Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
152
|
Carter LM, Kafsack BF, Llinás M, Mideo N, Pollitt LC, Reece SE. Stress and sex in malaria parasites. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:135-47. [PMID: 24481194 PMCID: PMC3854026 DOI: 10.1093/emph/eot011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Collapse
Affiliation(s)
- Lucy M. Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- *Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. Tel: +44 131 650 7706; Fax: +44 131 650 6564; E-mail:
| | - Björn F.C. Kafsack
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Manuel Llinás
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Laura C. Pollitt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
153
|
Coleman BI, Ribacke U, Manary M, Bei AK, Winzeler EA, Wirth DF, Duraisingh MT. Nuclear repositioning precedes promoter accessibility and is linked to the switching frequency of a Plasmodium falciparum invasion gene. Cell Host Microbe 2013; 12:739-50. [PMID: 23245319 DOI: 10.1016/j.chom.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/14/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023]
Abstract
Variation of surface adhesins, such as the Plasmodium falciparum erythrocyte invasion ligand PfRh4, is critical for virulence and immune evasion in many microbes. While phenotypic switching is linked to transcriptional changes and chromatin function, the determinants of switching frequency remain poorly defined. By expressing a prokaryotic DNA methylase in P. falciparum, we directly assayed accessibility of transcriptionally active and silent chromatin at the PfRh4 locus. Parasites selected for in vivo PfRh4 activation show a reversible increase in promoter accessibility and exhibit perinuclear repositioning of the locus from a silent to a conserved activation domain. Forced activation of a proximal gene results in a similar repositioning of the PfRh4 locus, with a concomitant increase in PfRh4 activation in a subpopulation of parasites and promoter accessibility correlating with actively transcribed loci. Thus, nuclear repositioning is associated with increased P. falciparum switching frequency, while promoter accessibility is tightly linked to clonally active PfRh4 promoters.
Collapse
Affiliation(s)
- Bradley I Coleman
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics 2013; 14:267. [PMID: 23601558 PMCID: PMC3681616 DOI: 10.1186/1471-2164-14-267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ability of the human malarial parasite Plasmodium falciparum to invade, colonise and multiply within diverse host environments, as well as to manifest its virulence within the human host, are activities tightly linked to the temporal and spatial control of gene expression. Yet, despite the wealth of high throughput transcriptomic data available for this organism there is very little information regarding the location of key transcriptional landmarks or their associated cis-acting regulatory elements. Here we provide a systematic exploration of the size and organisation of transcripts within intergenic regions to yield surrogate information regarding transcriptional landmarks, and to also explore the spatial and temporal organisation of transcripts over these poorly characterised genomic regions. Results Utilising the transcript data for a cohort of 105 genes we demonstrate that the untranscribed regions of mRNA are large and apportioned predominantly to the 5′ end of the open reading frame. Given the relatively compact size of the P. falciparum genome, we suggest that whilst transcriptional units are likely to spatially overlap, temporal co-transcription of adjacent transcriptional units is actually limited. Critically, the size of intergenic regions is directly dependent on the orientation of the two transcriptional units arrayed over them, an observation we extend to an analysis of the complete sequences of twelve additional organisms that share moderately compact genomes. Conclusions Our study provides a theoretical framework that extends our current understanding of the transcriptional landscape across the P. falciparum genome. Demonstration of a consensus gene-spacing rule that is shared between P. falciparum and ten other moderately compact genomes of apicomplexan parasites reveals the potential for our findings to have a wider impact across a phylum that contains many organisms important to human and veterinary health.
Collapse
Affiliation(s)
- Karen Russell
- Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
155
|
ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc Natl Acad Sci U S A 2013; 110:6871-6. [PMID: 23572590 DOI: 10.1073/pnas.1300059110] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular differentiation leading to formation of the bradyzoite tissue cyst stage is the underlying cause of chronic toxoplasmosis. Consequently, mechanisms responsible for controlling development in the Toxoplasma intermediate life cycle have long been sought. Here, we identified 15 Toxoplasma mRNAs induced in early bradyzoite development that encode proteins with apicomplexan AP2 (ApiAP2) DNA binding domains. Of these 15 mRNAs, the AP2IX-9 mRNA demonstrated the largest expression increase during alkaline-induced differentiation. At the protein level, we found that AP2IX-9 was restricted to the early bradyzoite nucleus and is repressed in tachyzoites and in mature bradyzoites from 30-d infected animals. Conditional overexpression of AP2IX-9 significantly reduced tissue cyst formation and conferred alkaline pH-resistant growth, whereas disruption of the AP2IX-9 gene increased tissue cyst formation, indicating AP2IX-9 operates as a repressor of bradyzoite development. Consistent with a role as a repressor, AP2IX-9 specifically inhibited the expression of bradyzoite mRNAs, including the canonical bradyzoite marker, bradyzoite antigen 1 (BAG1). Using protein binding microarrays, we established the AP2 domain of AP2IX-9 binds a CAGTGT DNA sequence motif and is capable of binding cis-regulatory elements controlling the BAG1 and bradyzoite-specific nucleoside triphosphatase (B-NTPase) promoters. The effect of AP2IX-9 on BAG1 expression was direct because this factor inhibits expression of a firefly luciferase reporter under the control of the BAG1 promoter in vivo, and epitope-tagged AP2IX-9 can be immunoprecipitated with the BAG1 promoter in parasite chromatin. Altogether, these results indicate AP2IX-9 restricts Toxoplasma commitment to develop the mature bradyzoite tissue cyst.
Collapse
|
156
|
Jiang B, Liu JS, Bulyk ML. Bayesian hierarchical model of protein-binding microarray k-mer data reduces noise and identifies transcription factor subclasses and preferred k-mers. ACTA ACUST UNITED AC 2013; 29:1390-8. [PMID: 23559638 DOI: 10.1093/bioinformatics/btt152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MOTIVATION Sequence-specific transcription factors (TFs) regulate the expression of their target genes through interactions with specific DNA-binding sites in the genome. Data on TF-DNA binding specificities are essential for understanding how regulatory specificity is achieved. RESULTS Numerous studies have used universal protein-binding microarray (PBM) technology to determine the in vitro binding specificities of hundreds of TFs for all possible 8 bp sequences (8mers). We have developed a Bayesian analysis of variance (ANOVA) model that decomposes these 8mer data into background noise, TF familywise effects and effects due to the particular TF. Adjusting for background noise improves PBM data quality and concordance with in vivo TF binding data. Moreover, our model provides simultaneous identification of TF subclasses and their shared sequence preferences, and also of 8mers bound preferentially by individual members of TF subclasses. Such results may aid in deciphering cis-regulatory codes and determinants of protein-DNA binding specificity. AVAILABILITY AND IMPLEMENTATION Source code, compiled code and R and Python scripts are available from http://thebrain.bwh.harvard.edu/hierarchicalANOVA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
157
|
Hernández-Rivas R, Herrera-Solorio AM, Sierra-Miranda M, Delgadillo DM, Vargas M. Impact of chromosome ends on the biology and virulence of Plasmodium falciparum. Mol Biochem Parasitol 2013; 187:121-8. [PMID: 23354131 DOI: 10.1016/j.molbiopara.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/15/2022]
Abstract
In recent years, many studies have focused on heterochromatin located at chromosome ends, which plays an important role in regulating gene expression in many organisms ranging from yeast to humans. Similarly, in the protozoan Plasmodium falciparum, which is the most virulent human malaria parasite, the heterochromatin present in telomeres and subtelomeric regions exerts a silencing effect on the virulence gene families located therein. Studies addressing P. falciparum chromosome ends have demonstrated that these regions participate in other functions, such as the formation of the T-loop structure, the replication of telomeric regions, the regulation of telomere length and the formation of telomeric heterochromatin. In addition, telomeres are involved in anchoring chromosome ends to the nuclear periphery, thereby playing an important role in nuclear architecture and gene expression regulation. Here, we review the current understanding of chromosome ends, the proteins that bind to these regions and their impact on the biology and virulence of P. falciparum.
Collapse
Affiliation(s)
- Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional (IPN), Apartado postal 14-740, 07360 México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
158
|
Walker R, Gissot M, Croken MM, Huot L, Hot D, Kim K, Tomavo S. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol Microbiol 2012; 87:641-55. [PMID: 23240624 DOI: 10.1111/mmi.12121] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 01/14/2023]
Abstract
Toxoplasma gondii undergoes many phenotypic changes during its life cycle. The recent identification of AP2 transcription factors in T. gondii has provided a platform for studying the mechanisms controlling gene expression. In the present study, we report that a recombinant protein encompassing the TgAP2XI-4 AP2 domain was able to specifically bind to a DNA motif using gel retardation assays. TgAP2XI-4 protein is localized in the parasite nucleus throughout the tachyzoite life cycle in vitro, with peak expression occurring after cytokinesis. We found that the TgAP2XI-4 transcript level was higher in bradyzoite cysts isolated from brains of chronically infected mice than in the rapidly replicating tachyzoites. A knockout of the TgAP2XI-4 gene in both T. gondii virulent type I and avirulent type II strains reveals its role in modulating expression and promoter activity of genes involved in stage conversion of the rapidly replicating tachyzoites to the dormant cyst forming bradyzoites. Furthermore, mice infected with the type II KO mutants show a drastically reduced brain cyst burden. Thus, our results validate TgAP2XI-4 as a novel nuclear factor that regulates bradyzoite gene expression during parasite differentiation and cyst formation.
Collapse
Affiliation(s)
- Robert Walker
- Center for Infection and Immunity of Lille, UMR CNRS 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | | | | | | | | | | | | |
Collapse
|
159
|
Cortés A, Crowley VM, Vaquero A, Voss TS. A view on the role of epigenetics in the biology of malaria parasites. PLoS Pathog 2012; 8:e1002943. [PMID: 23271963 PMCID: PMC3521673 DOI: 10.1371/journal.ppat.1002943] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Alfred Cortés
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
- * E-mail:
| | - Valerie M. Crowley
- Institute for Research in Biomedicine (IRB), Barcelona, Catalonia, Spain
| | - Alejandro Vaquero
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
160
|
Pino P, Sebastian S, Kim E, Bush E, Brochet M, Volkmann K, Kozlowski E, Llinás M, Billker O, Soldati-Favre D. A Tetracycline-Repressible Transactivator System to Study Essential Genes in Malaria Parasites. Cell Host Microbe 2012; 12:824-34. [PMID: 23245327 PMCID: PMC3712325 DOI: 10.1016/j.chom.2012.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 09/10/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022]
Abstract
A major obstacle in analyzing gene function in apicomplexan parasites is the absence of a practical regulatable expression system. Here, we identified functional transcriptional activation domains within Apicomplexan AP2 (ApiAP2) family transcription factors. These ApiAP2 transactivation domains were validated in blood-, liver-, and mosquito-stage parasites and used to create a robust conditional expression system for stage-specific, tetracycline-dependent gene regulation in Toxoplasma gondii, Plasmodium berghei, and Plasmodium falciparum. To demonstrate the utility of this system, we created conditional knockdowns of two essential P. berghei genes: profilin (PRF), a protein implicated in parasite invasion, and N-myristoyltransferase (NMT), which catalyzes protein acylation. Tetracycline-induced repression of PRF and NMT expression resulted in a dramatic reduction in parasite viability. This efficient regulatable system will allow for the functional characterization of essential proteins that are found in these important parasites.
Collapse
|
161
|
Insulator-like pairing elements regulate silencing and mutually exclusive expression in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 2012. [PMID: 23197831 DOI: 10.1073/pnas.1214572109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Plasmodium falciparum causes the deadliest form of human malaria. Its virulence is attributed to its ability to modify the infected RBC and to evade human immune attack through antigenic variation. Antigenic variation is achieved through tight regulation of antigenic switches between variable surface antigens named "P. falciparum erythrocyte membrane protein-1" encoded by the var multicopy gene family. Individual parasites express only a single var gene at a time, maintaining the remaining var genes in a transcriptionally silent state. Strict pairing between var gene promoters and a second promoter within an intron found in each var gene is required for silencing and counting of var genes by the mechanism that controls mutually exclusive expression. We have identified and characterized insulator-like DNA elements that are required for pairing var promoters and introns and thus are essential for regulating silencing and mutually exclusive expression. These elements, found in the regulatory regions of each var gene, are bound by distinct nuclear protein complexes. Any alteration in the specific, paired structure of these elements by either deletion or insertion of additional elements results in an unregulated var gene. We propose a model by which silencing and mutually exclusive expression of var genes is regulated by the precise arrangement of insulator-like DNA pairing elements.
Collapse
|
162
|
Lajoie M, Gascuel O, Lefort V, Bréhélin L. Computational discovery of regulatory elements in a continuous expression space. Genome Biol 2012. [PMID: 23186104 PMCID: PMC4053739 DOI: 10.1186/gb-2012-13-11-r109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Approaches for regulatory element discovery from gene expression data usually rely on clustering algorithms to partition the data into clusters of co-expressed genes. Gene regulatory sequences are then mined to find overrepresented motifs in each cluster. However, this ad hoc partition rarely fits the biological reality. We propose a novel method called RED2 that avoids data clustering by estimating motif densities locally around each gene. We show that RED2 detects numerous motifs not detected by clustering-based approaches, and that most of these correspond to characterized motifs. RED2 can be accessed online through a user-friendly interface.
Collapse
|
163
|
Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O, Pulfer A, Dekiwadia C, Maeser P, Flueck C, Witmer K, Brancucci NMB, Niederwieser I, Jenoe P, Ralph SA, Voss TS. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol 2012. [PMID: 23181666 PMCID: PMC4053738 DOI: 10.1186/gb-2012-13-11-r108] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
Collapse
|
164
|
Cai H, Zhou Z, Gu J, Wang Y. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium.. Curr Bioinform 2012; 7. [PMID: 24298232 DOI: 10.2174/157489312803900965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
165
|
Identification of an AP2-family protein that is critical for malaria liver stage development. PLoS One 2012; 7:e47557. [PMID: 23144823 PMCID: PMC3492389 DOI: 10.1371/journal.pone.0047557] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 09/18/2012] [Indexed: 11/23/2022] Open
Abstract
Liver-stage malaria parasites are a promising target for drugs and vaccines against malaria infection. However, little is currently known about gene regulation in this stage. In this study, we used the rodent malaria parasite Plasmodium berghei and showed that an AP2-family transcription factor, designated AP2-L, plays a critical role in the liver-stage development of the parasite. AP2-L-depleted parasites proliferated normally in blood and in mosquitoes. However, the ability of these parasites to infect the liver was approximately 10,000 times lower than that of wild-type parasites. In vitro assays showed that the sporozoites of these parasites invaded hepatocytes normally but that their development stopped in the middle of the liver schizont stage. Expression profiling using transgenic P. berghei showed that fluorescent protein-tagged AP2-L increased rapidly during the liver schizont stage but suddenly disappeared with the formation of the mature liver schizont. DNA microarray analysis showed that the expression of several genes, including those of parasitophorous vacuole membrane proteins, was significantly decreased in the early liver stage of AP2-L-depleted parasites. Investigation of the targets of this transcription factor should greatly promote the exploration of liver-stage antigens and the elucidation of the mechanisms of hepatocyte infection by malaria parasites.
Collapse
|
166
|
Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 2012; 11:5323-37. [PMID: 23025827 DOI: 10.1021/pr300557m] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The asexual blood stages of Plasmodium falciparum cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of P. falciparum schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion.
Collapse
Affiliation(s)
- Edwin Lasonder
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
167
|
Brancucci NMB, Witmer K, Schmid CD, Flueck C, Voss TS. Identification of a cis-acting DNA-protein interaction implicated in singular var gene choice in Plasmodium falciparum. Cell Microbiol 2012; 14:1836-48. [PMID: 22891919 PMCID: PMC3549481 DOI: 10.1111/cmi.12004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 01/23/2023]
Abstract
Plasmodium falciparum is responsible for the most severe form of malaria in humans. Antigenic variation of P. falciparum erythrocyte membrane protein 1 leads to immune evasion and occurs through switches in mutually exclusive var gene transcription. The recent progress in Plasmodium epigenetics notwithstanding, the mechanisms by which singularity of var activation is achieved are unknown. Here, we employed a functional approach to dissect the role of var gene upstream regions in mutually exclusive activation. Besides identifying sequence elements involved in activation and initiation of transcription, we mapped a region downstream of the transcriptional start site that is required to maintain singular var gene choice. Activation of promoters lacking this sequence occurs no longer in competition with endogenous var genes. Within this region we pinpointed a sequence-specific DNA–protein interaction involving a cis-acting sequence motif that is conserved in the majority of var loci. These results suggest an important role for this interaction in mutually exclusive locus recognition. Our findings are furthermore consistent with a novel mechanism for the control of singular gene choice in eukaryotes. In addition to their importance in P. falciparum antigenic variation, our results may also help to explain similar processes in other systems.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | | | | | | | | |
Collapse
|
168
|
Tachibana SI, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, Arisue N, Palacpac NMQ, Honma H, Yagi M, Tougan T, Katakai Y, Kaneko O, Mita T, Kita K, Yasutomi Y, Sutton PL, Shakhbatyan R, Horii T, Yasunaga T, Barnwell JW, Escalante AA, Carlton JM, Tanabe K. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet 2012; 44:1051-5. [PMID: 22863735 PMCID: PMC3759362 DOI: 10.1038/ng.2375] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023]
Abstract
Plasmodium cynomolgi, a malaria parasite of Asian Old World monkeys, is the sister taxon of Plasmodium vivax, the most prevalent human malaria species outside Africa. Since P. cynomolgi shares many phenotypic, biologic and genetic characteristics of P. vivax, we generated draft genome sequences of three P. cynomolgi strains and performed comparative genomic analysis between them and P. vivax, as well as a third previously sequenced simian parasite, Plasmodium knowlesi. Here we show that genomes of the monkey malaria clade can be characterized by CNVs in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites, and CNVs in the P. cynomolgi genome, providing a map of genetic variation for mapping parasite traits and studying parasite populations. The P. cynomolgi genome is a critical step in developing a model system for P. vivax research, and to counteract the neglect of P. vivax.
Collapse
Affiliation(s)
- Shin-Ichiro Tachibana
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Le Roch KG, Chung DWD, Ponts N. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication. Parasite Immunol 2012; 34:50-60. [PMID: 21995286 DOI: 10.1111/j.1365-3024.2011.01340.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first draft of the human malaria parasite's genome was released in 2002. Since then, the malaria scientific community has witnessed a steady embrace of new and powerful functional genomic studies. Over the years, these approaches have slowly revolutionized malaria research and enabled the comprehensive, unbiased investigation of various aspects of the parasite's biology. These genome-wide analyses delivered a refined annotation of the parasite's genome, delivered a better knowledge of its RNA, proteins and metabolite derivatives, and fostered the discovery of new vaccine and drug targets. Despite the positive impacts of these genomic studies, most research and investment still focus on protein targets, drugs and vaccine candidates that were known before the publication of the parasite genome sequence. However, recent access to next-generation sequencing technologies, along with an increased number of genome-wide applications, is expanding the impact of the parasite genome on biomedical research, contributing to a paradigm shift in research activities that may possibly lead to new optimized diagnosis and treatments. This review provides an update of Plasmodium falciparum genome sequences and an overview of the rapid development of genomics and system biology applications that have an immense potential of creating powerful tools for a successful malaria eradication campaign.
Collapse
Affiliation(s)
- K G Le Roch
- Department of Cell Biology and Neuroscience, University of California Riverside, Institute for Integrative Genome Biology, and Center for Disease Vector Research, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
170
|
Abstract
Plasmodium falciparum PfEMP1 is a malaria virulence protein whose expression is epigenetically regulated. The parasite's ability to express exclusively only one of the sixty var genes that encode PfEMP1 is essential for disease pathogenesis. Two recent papers identify key molecular players in determining whether a var gene is active or silenced (Volz et al., 2012; Zhang et al., 2011).
Collapse
Affiliation(s)
- Kami Kim
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
171
|
Tarr SJ, Nisbet RER, Howe CJ. Transcript level responses of Plasmodium falciparum to antimycin A. Protist 2012; 163:755-66. [PMID: 22503086 PMCID: PMC3657180 DOI: 10.1016/j.protis.2012.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/23/2011] [Accepted: 01/28/2012] [Indexed: 01/06/2023]
Abstract
The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the transcript profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. The differentially expressed genes were enriched for transcripts encoding proteins involved in invasion, stress response, nucleotide biosynthesis and respiration. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis, implying the existence of a signalling pathway from the mitochondrion to the nucleus.
Collapse
Affiliation(s)
- Sarah J Tarr
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire, CB2 1QW, United Kingdom
| | | | | |
Collapse
|
172
|
Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 2012; 28:202-13. [PMID: 22480826 DOI: 10.1016/j.pt.2012.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 12/19/2022]
Abstract
Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.
Collapse
|
173
|
Iwanaga S, Kato T, Kaneko I, Yuda M. Centromere plasmid: a new genetic tool for the study of Plasmodium falciparum. PLoS One 2012; 7:e33326. [PMID: 22479383 PMCID: PMC3316556 DOI: 10.1371/journal.pone.0033326] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
The introduction of transgenes into Plasmodium falciparum, a highly virulent human malaria parasite, has been conducted either by single crossover recombination or by using episomal plasmids. However, these techniques remain insufficient because of the low transfection efficiency and the low frequency of recombination. To improve the genetic manipulation of P. falciparum, we developed the centromere plasmid as a new genetic tool. First, we attempted to clone all of the predicted centromeres from P. falciparum into E. coli cells but failed because of the high A/T contents of these sequences. To overcome this difficulty, we identified the common sequence features of the centromere of Plasmodium spp. and designed a small centromere that retained those features. The centromere plasmid constructed with the small centromere sequence, pFCEN, segregated into daughter parasites with approximately 99% efficiency, resulting in the stable maintenance of this plasmid in P. falciparum even in the absence of drug selection. This result demonstrated that the small centromere sequence harboured in pFCEN could function as an actual centromere in P. falciparum. In addition, transgenic parasites were more rapidly generated when using pFCEN than when using the control plasmid, which did not contain the centromere sequence. Furthermore, in contrast to the control plasmid, pFCEN did not form concatemers and, thus, was maintained as a single copy over multiple cell divisions. These unique properties of the pFCEN plasmid will solve the current technical limitations of the genetic manipulation of P. falciparum, and thus, this plasmid will become a standard genetic tool for the study of this parasite.
Collapse
Affiliation(s)
- Shiroh Iwanaga
- Mie University, School of Medicine, Tsu, Japan
- * E-mail: (SI); (MY)
| | | | | | - Masao Yuda
- Mie University, School of Medicine, Tsu, Japan
- * E-mail: (SI); (MY)
| |
Collapse
|
174
|
Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 2012; 191:435-49. [PMID: 22466042 DOI: 10.1534/genetics.112.138958] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.
Collapse
|
175
|
Zhang Q, Huang Y, Zhang Y, Fang X, Claes A, Duchateau M, Namane A, Lopez-Rubio JJ, Pan W, Scherf A. A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. Cell Host Microbe 2012; 10:451-63. [PMID: 22100161 DOI: 10.1016/j.chom.2011.09.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/01/2011] [Accepted: 09/06/2011] [Indexed: 11/29/2022]
Abstract
Many microbial pathogens, including the malaria parasite Plasmodium falciparum, vary surface protein expression to evade host immune responses. P. falciparium antigenic variation is linked to var gene family-encoded clonally variant surface protein expression. Mututally exclusive var gene expression is partially controlled by spatial positioning; silent genes are retained at distinct perinuclear sites and relocated to transcriptionally active locations for monoallelic expression. We show that var introns can control this process and that var intron addition relocalizes episomes from a random to a perinuclear position. This var intron-regulated nuclear tethering and repositioning is linked to an 18 bp nuclear protein-binding element that recruits an actin protein complex. Pharmacologically induced F-actin formation, which is restricted to the nuclear periphery, repositions intron-carrying episomes and var genes and disrupts mutually exclusive var gene expression. Thus, actin polymerization relocates var genes from a repressive to an active perinuclear compartment, which is crucial for P. falciparium phenotypic variation and pathogenesis.
Collapse
Affiliation(s)
- Qingfeng Zhang
- Institute of Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Huang Y, Siwo G, Wuchty S, Ferdig MT, Przytycka TM. Symmetric Epistasis Estimation (SEE) and its application to dissecting interaction map of Plasmodium falciparum. MOLECULAR BIOSYSTEMS 2012; 8:1544-52. [PMID: 22419061 DOI: 10.1039/c2mb05333k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is being increasingly recognized that many important phenotypic traits, including various diseases, are governed by a combination of weak genetic effects and their interactions. While the detection of epistatic interactions that involve a non-additive effect of two loci on a quantitative trait is particularly challenging, this interaction type is fundamental for the understanding of genome organization and gene regulation. However, current methods that detect epistatic interactions typically rely on the existence of a strong primary effect, considerably limiting the sensitivity of the search. To fill this gap, we developed a new method, SEE (Symmetric Epistasis Estimation), allowing the genome-wide detection of epistatic interactions without the need for a strong primary effect. We applied our approach to progeny crosses of the human malaria parasite P. falciparum and S. cerevisiae. We found an abundance of epistatic interactions in the parasite and a much smaller number of such interactions in yeast. The genome of P. falciparum also harboured several epistatic interaction hotspots that putatively play a role in drug resistance mechanisms. The abundance of observed epistatic interactions might suggest a mechanism of compensation for the extremely limited repertoire of transcription factors. Interestingly, epistatic interaction hotspots were associated with elevated levels of linkage disequilibrium, an observation that suggests selection pressure acting on P. falciparum, potentially reflecting host-pathogen interactions or drug-induced selection.
Collapse
Affiliation(s)
- Yang Huang
- National Center for Biotechnology Information, NLM, NIH, 8600 Rockville Pike, Building 38A, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
177
|
Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortés A. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 2012; 22:925-38. [PMID: 22415456 PMCID: PMC3337437 DOI: 10.1101/gr.129692.111] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malaria genetic variation has been extensively characterized, but the level of epigenetic plasticity remains largely unexplored. Here we provide a comprehensive characterization of transcriptional variation in the most lethal malaria parasite, Plasmodium falciparum, based on highly accurate transcriptional analysis of isogenic parasite lines grown under homogeneous conditions. This analysis revealed extensive transcriptional heterogeneity within genetically homogeneous clonal parasite populations. We show that clonally variant expression controlled at the epigenetic level is an intrinsic property of specific genes and gene families, the majority of which participate in host–parasite interactions. Intrinsic transcriptional variability is not restricted to genes involved in immune evasion, but also affects genes linked to lipid metabolism, protein folding, erythrocyte remodeling, or transcriptional regulation, among others, indicating that epigenetic variation results in both antigenic and functional variation. We observed a general association between heterochromatin marks and clonally variant expression, extending previous observations for specific genes to essentially all variantly expressed gene families. These results suggest that phenotypic variation of functionally unrelated P. falciparum gene families is mediated by a common mechanism based on reversible formation of H3K9me3-based heterochromatin. In changing environments, diversity confers fitness to a population. Our results support the idea that P. falciparum uses a bet-hedging strategy, as an alternative to directed transcriptional responses, to adapt to common fluctuations in its environment. Consistent with this idea, we found that transcriptionally different isogenic parasite lines markedly differed in their survival to heat-shock mimicking febrile episodes and adapted to periodic heat-shock with a pattern consistent with natural selection of pre-existing parasites.
Collapse
|
178
|
Liu Z, Miao J, Cui L. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol 2012; 6:1351-69. [PMID: 22082293 DOI: 10.2217/fmb.11.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malaria parasites have evolved a complicated life cycle alternating between two hosts. Gametocytes are produced in the vertebrate hosts and are obligatory for natural transmission of the parasites through mosquito vectors. The mechanism of sexual development in Plasmodium has been the focus of extensive studies. In the postgenomic era, the advent of genome-wide analytical tools and genetic manipulation technology has enabled rapid advancement of our knowledge in this area. Patterns of gene expression during sexual development, molecular distinction of the two sexes, and mechanisms underlying subsequent formation of gametes and their fertilization have been progressively elucidated. However, the triggers and mechanism of sexual development remain largely unknown. This article provides an update of our understanding of the molecular and cellular events associated with the decision for commitment to sexual development and regulation of gene expression during gametocytogenesis. Insights into the molecular mechanisms of gametocyte development are essential for designing proper control strategies for interruption of malaria transmission and ultimate elimination.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Entomology, The Pennsylvania State University, 537 ASI Building University Park, PA 16802, USA
| | | | | |
Collapse
|
179
|
Comment on “Emerging Functions of Transcription Factors in Malaria Parasite”. J Biomed Biotechnol 2012; 2012:754054. [PMID: 22675258 PMCID: PMC3364009 DOI: 10.1155/2012/754054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/18/2012] [Indexed: 11/29/2022] Open
|
180
|
Harris EY, Ponts N, Le Roch KG, Lonardi S. Chromatin-driven de novo discovery of DNA binding motifs in the human malaria parasite. BMC Genomics 2011; 12:601. [PMID: 22165844 PMCID: PMC3282892 DOI: 10.1186/1471-2164-12-601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background Despite extensive efforts to discover transcription factors and their binding sites in the human malaria parasite Plasmodium falciparum, only a few transcription factor binding motifs have been experimentally validated to date. As a consequence, gene regulation in P. falciparum is still poorly understood. There is now evidence that the chromatin architecture plays an important role in transcriptional control in malaria. Results We propose a methodology for discovering cis-regulatory elements that uses for the first time exclusively dynamic chromatin remodeling data. Our method employs nucleosome positioning data collected at seven time points during the erythrocytic cycle of P. falciparum to discover putative DNA binding motifs and their transcription factor binding sites along with their associated clusters of target genes. Our approach results in 129 putative binding motifs within the promoter region of known genes. About 75% of those are novel, the remaining being highly similar to experimentally validated binding motifs. About half of the binding motifs reported show statistically significant enrichment in functional gene sets and strong positional bias in the promoter region. Conclusion Experimental results establish the principle that dynamic chromatin remodeling data can be used in lieu of gene expression data to discover binding motifs and their transcription factor binding sites. Our approach can be applied using only dynamic nucleosome positioning data, independent from any knowledge of gene function or expression.
Collapse
Affiliation(s)
- Elena Y Harris
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
181
|
Surgucheva I, Surguchov A. Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma. Mol Vis 2011; 17:2878-88. [PMID: 22128235 PMCID: PMC3225292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/31/2011] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Primary open-angle glaucoma (POAG), which is the most common form of glaucoma, has been associated with a heterogeneous genetic component. A genome-wide association study has identified a common sequence variant at 7q31 (rs4236601 [A]) near the caveolin genes in patients with POAG. Caveolins are a family of integral membrane proteins which participate in many cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, cell adhesion and migration. The goal of this study was to investigate the expression and regulation of caveolin 1 (CAV-1) and caveolin 2 (CAV-2) in normal and glaucoma trabecular meshwork (TM) cells. METHODS CAV-1 and CAV-2 protein expression was quantified by immunoblot analysis using lysates isolated from primary and immortalized TM cells or TM tissue dissected from normal and POAG eyes. The localization of caveolins in TM cells was assessed by immunofluorescent microscopy. CAV-1 and CAV-2 protein expression was also investigated in TM cells at various time points after subjecting the cells to known glaucomatous insults like dexamethasone (DEX) and tumor growth factor beta2 (TGF-β2) treatment. Phosphorylation of CAV-1 at tyrosine 14 in normal and glaucoma TM cell lines was evaluated using a specific monoclonal antibody (Ab). The 5' upstream region of the CAV-1 gene was amplified and the sequence variant rs4236601 (A/G polymorphic site) and several putative transcription factor-binding sites were modified by in vitro mutagenesis. The effect of nucleotide sequence modifications in the CAV-1 upstream region on gene expression was assayed in a luciferase-based system in TM and non-TM cells. RESULTS CAV-1 and CAV-2 are expressed in TM cells, with localization to the cytoplasm and perinuclear region. DEX increased CAV-1 expression in immortalized glaucoma TM cells by 2.8±0.1 (n=3) fold at 24 h and 2.5±0.1 (n=3) fold at 48 h, compared to 1.3±0.06 (n=3) fold at 24 and 48 h in immortalized normal TM cells. Phosphorylation of CAV-1 at Tyr14 was reduced by 3.2±0.15 (n=3) fold in glaucomatous TM cells when compared to normal TM cells. In POAG and normal TM tissue, CAV-1 expression was found to be uniform. CAV-2, on the other hand, was variable in independent normal and glaucoma TM tissue. Substitution of a G for an A at base pair -2,388 upstream of the start codon of CAV-1, corresponding to the minor allele rs4236601 [A], increased transcriptional activity in TM and non-TM cells when compared to the native sequence. Deletion analysis of putative transcription factor binding sites in the CAV-1 promoter region caused cell-specific effects on gene expression. CONCLUSIONS CAV-1 and CAV-2 are expressed in normal and glaucoma tissue and TM cell lines. Phosphorylation of Tyr14 in CAV-1 and transcriptional regulation of CAV-1 expression may have a role in glaucomatous alterations in TM cells.
Collapse
Affiliation(s)
- Irina Surgucheva
- Laboratory of Retinal Biology, Veterans Administration Medical Center, Kansas City, MO,Department of Neurology, Kansas University Medical Center, Kansas City, KS
| | - Andrei Surguchov
- Laboratory of Retinal Biology, Veterans Administration Medical Center, Kansas City, MO,Department of Neurology, Kansas University Medical Center, Kansas City, KS
| |
Collapse
|
182
|
Emerging functions of transcription factors in malaria parasite. J Biomed Biotechnol 2011; 2011:461979. [PMID: 22131806 PMCID: PMC3216465 DOI: 10.1155/2011/461979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022] Open
Abstract
Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.
Collapse
|
183
|
Tarr SJ, Nisbet RER, Howe CJ. Transcript-level responses of Plasmodium falciparum to thiostrepton. Mol Biochem Parasitol 2011; 179:37-41. [DOI: 10.1016/j.molbiopara.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/11/2011] [Indexed: 11/25/2022]
|
184
|
Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, Yi P, Mayxay M, Chotivanich K, Liong KY, Russell B, Socheat D, Newton PN, Day NPJ, White NJ, Preiser PR, Nosten F, Dondorp AM, Bozdech Z. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 2011; 12:391. [PMID: 21810278 PMCID: PMC3163569 DOI: 10.1186/1471-2164-12-391] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates. RESULTS In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype. CONCLUSIONS The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes in vivo.
Collapse
Affiliation(s)
- Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Thailand
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Joan Sim
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ramya Ramadoss
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Poravuth Yi
- The National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Mayfong Mayxay
- Wellcome Trust-Mahosot Hospital-Oxford University Tropical Medicine Research Collaboration, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Faculty of Postgraduate Studies and Research, University of Health Sciences, Vientiane, Lao People's Democratic Republic
| | - Kesinee Chotivanich
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Kek-Yee Liong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bruce Russell
- Singapore Immunology Network, Biopolis, Agency for Science Technology and Research (ASTAR), Singapore
| | - Duong Socheat
- The National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Paul N Newton
- Wellcome Trust-Mahosot Hospital-Oxford University Tropical Medicine Research Collaboration, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Nicholas PJ Day
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - François Nosten
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
185
|
Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, Volkman S, Duraisingh M, Wirth D, Sabeti PC, Rinn JL. A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 2011; 12:R56. [PMID: 21689454 PMCID: PMC3218844 DOI: 10.1186/gb-2011-12-6-r56] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/27/2011] [Accepted: 06/20/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mounting evidence suggests a major role for epigenetic feedback in Plasmodium falciparum transcriptional regulation. Long non-coding RNAs (lncRNAs) have recently emerged as a new paradigm in epigenetic remodeling. We therefore set out to investigate putative roles for lncRNAs in P. falciparum transcriptional regulation. RESULTS We used a high-resolution DNA tiling microarray to survey transcriptional activity across 22.6% of the P. falciparum strain 3D7 genome. We identified 872 protein-coding genes and 60 putative P. falciparum lncRNAs under developmental regulation during the parasite's pathogenic human blood stage. Further characterization of lncRNA candidates led to the discovery of an intriguing family of lncRNA telomere-associated repetitive element transcripts, termed lncRNA-TARE. We have quantified lncRNA-TARE expression at 15 distinct chromosome ends and mapped putative transcriptional start and termination sites of lncRNA-TARE loci. Remarkably, we observed coordinated and stage-specific expression of lncRNA-TARE on all chromosome ends tested, and two dominant transcripts of approximately 1.5 kb and 3.1 kb transcribed towards the telomere. CONCLUSIONS We have characterized a family of 22 telomere-associated lncRNAs in P. falciparum. Homologous lncRNA-TARE loci are coordinately expressed after parasite DNA replication, and are poised to play an important role in P. falciparum telomere maintenance, virulence gene regulation, and potentially other processes of parasite chromosome end biology. Further study of lncRNA-TARE and other promising lncRNA candidates may provide mechanistic insight into P. falciparum transcriptional regulation.
Collapse
Affiliation(s)
- Kate M Broadbent
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Daniel Park
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Ashley R Wolf
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Daria Van Tyne
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Jennifer S Sims
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Ulf Ribacke
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Sarah Volkman
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
- School of Nursing and Health Sciences, Simmons College, 300 The Fenway, Boston, MA 02115, USA
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Dyann Wirth
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Pardis C Sabeti
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - John L Rinn
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
186
|
Involvement of a Toxoplasma gondii chromatin remodeling complex ortholog in developmental regulation. PLoS One 2011; 6:e19570. [PMID: 21655329 PMCID: PMC3104990 DOI: 10.1371/journal.pone.0019570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/12/2011] [Indexed: 01/18/2023] Open
Abstract
The asexual cycle of the parasite Toxoplasma gondii has two developmental stages: a rapidly replicating form called a tachyzoite and a slow growing cyst form called a bradyzoite. While the importance of ATP-independent histone modifications for gene regulation in T. gondii have been demonstrated, ATP-dependent chromatin remodeling pathways have not been examined. In this study we characterized C9, an insertional mutant showing reduced expression of bradyzoite differentiation marker BAG1, in cultured human fibroblasts. This mutant contains an insertion in the gene encoding TgRSC8, which is homologous to the Saccharomyces cerevisiae proteins Rsc8p (remodel the structure of chromatin complex subunit 8) and Swi3p (switch/sucrose non-fermentable [SWI/SNF]) of ATP-dependent chromatin-remodeling complexes. In the C9 mutant, TgRSC8 is the downstream open reading frame on a dicistronic transcript. Though protein was expressed from the downstream gene of the dicistron, TgRSC8 levels were decreased in C9 from those of wild-type parasites, as determined by western immunoblot and flow cytometry. As TgRSC8 localized to the parasite nucleus, we postulated a role in gene regulation. Transcript levels of several markers were assessed by quantitative PCR to test this hypothesis. The C9 mutant displayed reduced steady state transcript levels of bradyzoite-induced genes BAG1, LDH2, SUSA1, and ENO1, all of which were significantly increased with addition of TgRSC8 to the mutant. Transcript levels of some bradyzoite markers were unaltered in C9, or unable to be increased by complementation with TgRSC8, indicating multiple pathways control bradyzoite-upregulated genes. Together, these data suggest a role for TgRSC8 in control of bradyzoite-upregulated gene expression. Thus chromatin remodeling, by both ATP-independent and dependent mechanisms, is an important mode of gene regulation during stage differentiation in parasites.
Collapse
|
187
|
Trieu A, Kayala MA, Burk C, Molina DM, Freilich DA, Richie TL, Baldi P, Felgner PL, Doolan DL. Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics 2011; 10:M111.007948. [PMID: 21628511 DOI: 10.1074/mcp.m111.007948] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of an effective malaria vaccine remains a global public health priority. Less than 0.5% of the Plasmodium falciparum genome has been assessed as potential vaccine targets and candidate vaccines have been based almost exclusively on single antigens. It is possible that the failure to develop a malaria vaccine despite decades of effort might be attributed to this historic focus. To advance malaria vaccine development, we have fabricated protein microarrays representing 23% of the entire P. falciparum proteome and have probed these arrays with plasma from subjects with sterile protection or no protection after experimental immunization with radiation attenuated P. falciparum sporozoites. A panel of 19 pre-erythrocytic stage antigens was identified as strongly associated with sporozoite-induced protective immunity; 16 of these antigens were novel and 85% have been independently identified in sporozoite and/or liver stage proteomic or transcriptomic data sets. Reactivity to any individual antigen did not correlate with protection but there was a highly significant difference in the cumulative signal intensity between protected and not protected individuals. Functional annotation indicates that most of these signature proteins are involved in cell cycle/DNA processing and protein synthesis. In addition, 21 novel blood-stage specific antigens were identified. Our data provide the first evidence that sterile protective immunity against malaria is directed against a panel of novel P. falciparum antigens rather than one antigen in isolation. These results have important implications for vaccine development, suggesting that an efficacious malaria vaccine should be multivalent and targeted at a select panel of key antigens, many of which have not been previously characterized.
Collapse
Affiliation(s)
- Angela Trieu
- Division of Immunology, Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Crowley VM, Rovira-Graells N, Ribas de Pouplana L, Cortés A. Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol 2011; 80:391-406. [PMID: 21306446 DOI: 10.1111/j.1365-2958.2011.07574.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clonally variant gene expression is a common survival strategy used by many pathogens, including the malaria parasite Plasmodium falciparum. Among the genes that show variant expression in this parasite are several members of small gene families linked to erythrocyte invasion, including the clag and eba families. The active or repressed state of these genes is clonally transmitted by epigenetic mechanisms. Here we characterized the promoters of clag3.1, clag3.2 and eba-140, and compared nuclease accessibility and post-translational histone modifications between their active and repressed states. Activity of these promoters in an episomal context is similar between parasite subclones characterized by different patterns of expression of the endogenous genes. Variant expression is controlled by the euchromatic or heterochromatic state of bistable chromatin domains. Repression is mediated by H3K9me3-based heterochromatin, whereas the active state is characterized by H3K9ac. These marks are maintained throughout the asexual blood cycle to transmit the epigenetic memory. Furthermore, eba-140 is organized in two distinct chromatin domains, probably separated by a barrier insulator located within its ORF. The 5' chromatin domain controls expression of the gene, whereas the 3' domain shares the chromatin conformation with the upstream region of the neighbouring phista family gene, which also shows variant expression.
Collapse
Affiliation(s)
- Valerie M Crowley
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
189
|
Painter HJ, Campbell TL, Llinás M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol 2010; 176:1-7. [PMID: 21126543 DOI: 10.1016/j.molbiopara.2010.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/20/2010] [Accepted: 11/23/2010] [Indexed: 12/01/2022]
Abstract
Malaria is caused by protozoan parasites of the genus Plasmodium and involves infection of multiple hosts and cell types during the course of an infection. To complete its complex life cycle the parasite requires strict control of gene regulation for survival and successful propagation. Thus far, the Apicomplexan AP2 (ApiAP2) family of DNA-binding proteins is the sole family of proteins to have surfaced as candidate transcription factors in all apicomplexan species. Work from several laboratories is beginning to shed light on how the ApiAP2 proteins from Plasmodium spp. contribute to the regulation of gene expression at various stages of parasite development. Here we highlight recent progress toward understanding the role of Plasmodium ApiAP2 proteins in DNA related regulatory processes including transcriptional regulation and gene silencing.
Collapse
Affiliation(s)
- Heather J Painter
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544,, USA
| | | | | |
Collapse
|