Ittig S, Lindner B, Stenta M, Manfredi P, Zdorovenko E, Knirel YA, dal Peraro M, Cornelis GR, Zähringer U. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding.
PLoS Pathog 2012;
8:e1002667. [PMID:
22570611 PMCID:
PMC3342949 DOI:
10.1371/journal.ppat.1002667]
[Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/12/2012] [Indexed: 01/24/2023] Open
Abstract
Capnocytophaga canimorsus is a usual member of dog's mouths flora that causes rare but dramatic human infections after dog bites. We determined the structure of C. canimorsus lipid A. The main features are that it is penta-acylated and composed of a “hybrid backbone” lacking the 4′ phosphate and having a 1 phosphoethanolamine (P-Etn) at 2-amino-2-deoxy-d-glucose (GlcN). C. canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. This represents the first example in which the core-oligosaccharide dramatically increases endotoxicity of a low endotoxic lipid A. The binding to human myeloid differentiation factor 2 (MD-2) was dramatically increased upon presence of the LPS core on the lipid A, explaining the difference in endotoxicity. Interaction of MD-2, cluster of differentiation antigen 14 (CD14) or LPS-binding protein (LBP) with the negative charge in the 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) of the core might be needed to form the MD-2 – lipid A complex in case the 4′ phosphate is not present.
Capnocytophaga canimorsus, a commensal bacterium in dog's mouths, causes rare but dramatic infections in humans that have been bitten by dogs. The disease often begins with mild symptoms but progresses to severe septicemia. The lipopolysaccharide (LPS), composed of lipid A, core and O-antigen, is one of the most pro-inflammatory bacterial compounds. The activity of the LPS has so far been attributed to the lipid A moiety. We present here the structure of C. canimorsus lipid A, which shows several features typical for low-inflammatory lipid A. Surprisingly, this lipid A, when attached to the core-oligosaccharide was far more pro-inflammatory than lipid A alone, indicating that in this case the core-oligosaccharide is able to contribute significantly to endotoxicity. Our further work suggests that a negative charge in the LPS-core can compensate the lack of such a charge in the lipid A and that this charge is needed not for stabilization of the final complex with its receptor but in the process of forming it. Overall the properties of the lipid A-core may explain how this bacterium first escapes the innate immune system, but nevertheless can cause a shock at the septic stage.
Collapse