151
|
Nikodemova M, Small AL, Kimyon RS, Watters JJ. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics 2016; 48:336-44. [PMID: 26884461 DOI: 10.1152/physiolgenomics.00129.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023] Open
Abstract
Whereas age increases microglial inflammatory activities and impairs their ability to effectively regulate their immune response, it is unclear at what age these exaggerated responses begin. We tested the hypotheses that augmented microglial responses to inflammatory challenge are present as early as middle age and that repeated stimulation of primed microglia in vivo would reveal microglial senescence. Microglial gene expression was investigated in a mouse model of repeated systemic inflammation induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). Following LPS, microglia from middle-aged mice (9-10 mo) displayed larger increases in Tnfα, Il-6, and Il-1β gene expression compared with young adults (2 mo). Similar results were observed in the spleens of middle-aged mice, indicating that exaggeration of both central and peripheral immune responses are already evident at early middle age. Interestingly, despite greater proinflammatory responses to the first LPS challenge in the aged mice, there were no age-dependent differences in either microglia or spleen following a subsequent LPS dose, suggesting that animals at this age retain the ability to effectively control their immune response following repeated challenge. The exacerbated microglial immune response to systemic inflammation at early middle age suggests that the CNS may be vulnerable to age-dependent alterations earlier than previously appreciated.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alissa L Small
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rebecca S Kimyon
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
152
|
Sustained Arginase 1 Expression Modulates Pathological Tau Deposits in a Mouse Model of Tauopathy. J Neurosci 2016; 35:14842-60. [PMID: 26538654 DOI: 10.1523/jneurosci.3959-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes. The regulation of the polyamines system can become dysfunctional during disease states. Arginase 1 (Arg1) and nitric oxide synthases compete for l-arginine to produce either polyamines or nitric oxide, respectively. Herein, we show that overexpression of Arg1 using adeno-associated virus (AAV) in the CNS of rTg4510 tau transgenic mice significantly reduced phospho-tau species and tangle pathology. Sustained Arg1 overexpression decreased several kinases capable of phosphorylating tau, decreased inflammation, and modulated changes in the mammalian target of rapamycin and related proteins, suggesting activation of autophagy. Arg1 overexpression also mitigated hippocampal atrophy in tau transgenic mice. Conversely, conditional deletion of Arg1 in myeloid cells resulted in increased tau accumulation relative to Arg1-sufficient mice after transduction with a recombinant AAV-tau construct. These data suggest that Arg1 and the polyamine pathway may offer novel therapeutic targets for tauopathies.
Collapse
|
153
|
Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells. PLoS One 2016; 11:e0147721. [PMID: 26824354 PMCID: PMC4732694 DOI: 10.1371/journal.pone.0147721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/07/2016] [Indexed: 01/18/2023] Open
Abstract
Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.
Collapse
|
154
|
Abstract
The molecular mechanism of neuronal loss and synaptic damage in Alzheimer's disease (AD), Parkinson's disease dementia (PDD), frontotemporal dementia (FTD) and Lewy body dementia (LBD) is poorly understood and could differ among different types of neurodegenerative processes. However, the presence of neuroinflammation is a common feature of dementia. In this setting, reactive microgliosis, oxidative damage and mitochondrial dysfunction are associated with the pathogenesis of all types of neurodegenerative dementia. Moreover, an increased body of evidence suggests that microglia may play a central role in AD progression. In this paper, we review the scientific literature on neuroinflammation related to the most common neurodegenerative dementias (AD, PDD, FTD and LBD) focussing on the possible molecular mechanisms and the available clinical evidence. Furthermore, we discuss the neuroimaging techniques that are currently used for the study of neuroinflammation in human brain.
Collapse
Affiliation(s)
- Giuseppe Pasqualetti
- Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
155
|
Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain Behav Immun 2015; 50:298-313. [PMID: 26188187 DOI: 10.1016/j.bbi.2015.07.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022] Open
Abstract
Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation.
Collapse
|
156
|
|
157
|
Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015; 9:322. [PMID: 26347610 PMCID: PMC4538301 DOI: 10.3389/fncel.2015.00322] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Enrique Yuste
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Ernesto Tarragon
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain ; Département des Sciences Biomédicales et Précliniques/Biochimie et Physiologie du Système Nerveux, Centre de Recherche du Cyclotron, Université de Liège Liège, Belgium
| | - Carmen María Campuzano
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
158
|
Lim SL, Rodriguez-Ortiz CJ, Kitazawa M. Infection, systemic inflammation, and Alzheimer's disease. Microbes Infect 2015; 17:549-56. [DOI: 10.1016/j.micinf.2015.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
|
159
|
Babcock AA, Ilkjær L, Clausen BH, Villadsen B, Dissing-Olesen L, Bendixen ATM, Lyck L, Lambertsen KL, Finsen B. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain Behav Immun 2015; 48:86-101. [PMID: 25774009 DOI: 10.1016/j.bbi.2015.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/21/2015] [Accepted: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
Beta-amyloid (Aβ) plaques and chronic neuroinflammation are significant neuropathological features of Alzheimer's disease. Microglial cells in aged brains have potential to produce cytokines such as TNF and IL-1 family members (IL-1α, IL-1β, and IL-1Ra) and to phagocytose Aβ in Alzheimer's disease, however the inter-relationship between these processes is poorly understood. Here we show that % Aβ plaque load followed a sigmoidal trajectory with age in the neocortex of APPswe/PS1ΔE9 Tg mice, and correlated positively with soluble Aβ40 and Aβ42. Aβ measures were moderately correlated with mRNA levels of CD11b, TNF, and IL-1Ra. Cytokine production and Aβ load were assessed in neocortical CD11b(+)(CD45(+)) microglia by flow cytometry. Whereas most microglia in aged mice produced IL-1Ra, relatively low proportions of microglia produced TNF, IL-1α, and IL-1β. However, microglial production of these latter cytokines was generally increased in APP/PS1 Tg mice. Microglia that phagocytosed endogenously-produced Aβ were only observed in APP/PS1 Tg mice. Differences in phagocytic index and total Aβ load were observed in microglia with specific cytokine profiles. Both phagocytic index and total Aβ load were higher in IL-1α(+) and IL-1Ra(+) microglia, than microglia that did not produce these cytokines. In contrast, total Aβ load was lower in IL-1β(+) and TNF(+) microglia, compared to IL-1β(-) and TNF(-) microglia, and TNF(+) microglia also had a lower phagocytic index. Using GFP bone marrow chimeric mice, we confirmed that the majority of neocortical CD11b(+)(CD45(+)) microglia were resident cells (GFP(-)) in APP/PS1 Tg mice, even after selectively analysing CD11b(+)CD45(high) cells, which are typically considered to be infiltrating cells. Together, our data demonstrate that cytokine expression is selectively correlated with age and Aβ pathology, and is associated with an altered Aβ load in phagocytic microglia from APP/PS1 Tg mice. These findings have implications for understanding the regulation of microglial cytokine production and phagocytosis of Aβ in Alzheimer's disease.
Collapse
Affiliation(s)
- Alicia A Babcock
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Laura Ilkjær
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Bettina H Clausen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Birgitte Villadsen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Lasse Dissing-Olesen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Anita T M Bendixen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Lise Lyck
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Kate L Lambertsen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsløws Vej 25, 2, 5000 Odense C, Denmark.
| |
Collapse
|
160
|
Christensen A, Pike CJ. Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Front Aging Neurosci 2015. [PMID: 26217222 PMCID: PMC4493396 DOI: 10.3389/fnagi.2015.00130] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, the development of which is regulated by several environmental and genetic risk factors. Two factors theorized to contribute to the initiation and/or progression of AD pathogenesis are age-related increases in inflammation and obesity. These factors may be particularly problematic in women. The onset of menopause in mid-life elevates the vulnerability of women to AD, an increased risk that is likely associated with the depletion of estrogens. Menopause is also linked with an abundance of additional changes, including increased central adiposity and inflammation. Here, we review the current literature to explore the interactions between obesity, inflammation, menopause and AD.
Collapse
Affiliation(s)
- Amy Christensen
- Davis School of Gerontology, University of Southern California Los Angeles, CA, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
161
|
Yu F, Gong P, Hu Z, Qiu Y, Cui Y, Gao X, Chen H, Li J. Cu(II) enhances the effect of Alzheimer's amyloid-β peptide on microglial activation. J Neuroinflammation 2015; 12:122. [PMID: 26104799 PMCID: PMC4490619 DOI: 10.1186/s12974-015-0343-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/12/2015] [Indexed: 12/14/2022] Open
Abstract
Background Aggregated forms of amyloid-β (Aβ) peptides are important triggers for microglial activation, which is an important pathological component in the brains of Alzheimer’s patients. Cu(II) ions are reported to be coordinated to monomeric Aβ, drive Aβ aggregation, and potentiate Aβ neurotoxicity. Here we investigated whether Cu(II) binding modulates the effect of Aβ on microglial activation and the subsequent neurotoxicity. Methods Aβ peptides were incubated with Cu(II) at an equimolar ratio to obtain the Cu(II)-Aβ complex. Primary and BV-2 microglial cells were treated with Cu(II)-Aβ, Aβ, or Cu(II). The tumor necrosis factor-α (TNF-α) and nitric oxide levels in the media were determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was detected by MitoSOX oxidation. Results Incubation of Cu(II) with Aβ confers different chemical properties on the resulting complex. At the subneurotoxic concentrations, Cu(II)-Aβ (but not Aβ or Cu(II) alone) treatment induced an activating morphological phenotype of microglia and induced the microglial release of TNF-α and nitric oxide as well as microglia-mediated neuronal damage. Cu(II)-Aβ-triggered microglial activation was blocked by nuclear factor (NF)-κB inhibitors and was accompanied with NF-κB activation. Moreover, Cu(II)-Aβ induced hydrogen peroxide release, which was not affected by NADPH oxidase inhibitors. Mitochondrial superoxide production was increased after Cu(II)-Aβ stimulation. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), inhibited Cu(II)-Aβ-elicited microglial release of TNF-α and nitric oxide as well as the microglia-mediated neurotoxic effect. Conclusion Our observations suggest that Cu(II) enhances the effect of Aβ on microglial activation and the subsequent neurotoxicity. The Cu(II)-Aβ-triggered microglial activation involves NF-κB activation and mitochondrial ROS production. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0343-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengxiang Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ping Gong
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhuqin Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yu Qiu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yongyao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaoling Gao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Juan Li
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
162
|
Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 2015; 74:319-44. [PMID: 25756590 DOI: 10.1097/nen.0000000000000176] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To understand neuroinflammation-related gene regulation during normal aging and in sporadic Alzheimer disease (sAD), we performed functional genomics analysis and analyzed messenger RNA (mRNA) expression by quantitative reverse transcription-polymerase chain reaction of 22 genes involved in neuroinflammation-like responses in the cerebral cortex of wild-type and APP/PS1 transgenic mice. For direct comparisons, mRNA expression of 18 of the same genes was then analyzed in the entorhinal cortex, orbitofrontal cortex, and frontal cortex area 8 of middle-aged human subjects lacking Alzheimer disease-related pathology and in older subjects with sAD pathology covering Stages I-II/0(A), III-IV/A-B, and V-VI/C of Braak and Braak classification. Modifications of cytokine and immune mediator mRNA expression were found with normal aging in wild-type mice and in middle-aged individuals and patients with early stages of sAD-related pathology; these were accompanied by increased protein expression of certain mediators in ramified microglia. In APP/PS1 mice, inflammatory changes coincided with β-amyloid (Aβ) deposition; increased levels of soluble oligomers paralleled the modified mRNA expression of cytokines and mediators in wild-type mice. In patients with sAD, regulation was stage- and region-dependent and not merely acceleration and exacerbation of mRNA regulation with aging. Gene regulation at first stages of AD was not related to hyperphosphorylated tau deposition in neurofibrillary tangles, Aβ plaque burden, concentration of Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), or fibrillar Aβ linked to membranes but rather to increased levels of soluble oligomers. Thus, species differences and region- and stage-dependent inflammatory responses in sAD, particularly at the initial stages, indicate the need to identify new anti-inflammatory compounds with specific molecular therapeutic targets.
Collapse
|
163
|
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14:388-405. [PMID: 25792098 DOI: 10.1016/s1474-4422(15)70016-5] [Citation(s) in RCA: 3825] [Impact Index Per Article: 425.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany.
| | - Monica J Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Joseph El Khoury
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gary E Landreth
- Alzheimer Research Laboratory, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Andreas H Jacobs
- Department of Geriatrics, Johanniter Hospital, Bonn, Germany; European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms University (WWU), Münster, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, Sevilla, Spain
| | - Richard M Ransohoff
- Department of Neuroscience, Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong
| | - Sally A Frautschy
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU (Euskal Herriko Unibertsitatea/Universidad del País Vasco) and CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas), Leioa, Spain
| | - Koji Yamanaka
- Research Institute of Environmental Medicine, Nagoya University/RIKEN Brain Science Institute, Wako-shi, Japan
| | - Jari Koistinaho
- Department of Neurobiology, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eicke Latz
- German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany; Institute of Innate Immunity, University of Bonn, Bonn, Germany; Department of InfectiousDiseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annett Halle
- Max-Planck Research Group Neuroimmunology, Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Gabor C Petzold
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany
| | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dave Morgan
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida College of Medicine, Tampa, FL, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - V Hugh Perry
- School of Biological Sciences, Southampton General Hospital, Southampton, UK
| | - Clive Holmes
- Clinical and Experimental Science, University of Southampton, Southampton, UK; Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Nicolas G Bazan
- Louisiana State University Neuroscience Center of Excellence, Louisiana State University Health Sciences Center School of Medicine in New Orleans, LA, USA
| | - David J Brooks
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Stéphane Hunot
- Centre National de la Recherche Scientifique (CNRS), UMR 7225, Experimental Therapeutics of Neurodegeneration, Paris, France
| | - Bertrand Joseph
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaus Deigendesch
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olga Garaschuk
- Institute of Physiology II, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Erik Boddeke
- Department of Neuroscience, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | | | - John C Breitner
- Centre for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, and the McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Greg M Cole
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Douglas T Golenbock
- Department of InfectiousDiseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Markus P Kummer
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
164
|
T Cells-Protective or Pathogenic in Alzheimer's Disease? J Neuroimmune Pharmacol 2015; 10:547-60. [PMID: 25957956 DOI: 10.1007/s11481-015-9612-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and is characterised by deposits of amyloid β (Aβ), neurofibrillary tangles and neuronal loss. Neuroinflammatory changes have been identified as a feature of the disease, and recent studies have suggested a potential role for the peripheral immune system in driving these changes and, ultimately, the associated neuronal degeneration. A number of reports have detailed changes in the activation state and subtype of T cells in the circulation and CSF of AD patients and there is evidence of T cell infiltration into the brain. In this review, we examine the possible impact of T cell infiltration in the progression of pathology in AD and consider the data obtained from animal models of the disease. We consider how these cells infiltrate the brain, particularly in AD, and discuss whether the presence of T cells in the AD brain is protective or pathogenic. Finally we evaluate the current therapies, particularly those that involve immunization.
Collapse
|
165
|
Gavilán E, Pintado C, Gavilan MP, Daza P, Sánchez-Aguayo I, Castaño A, Ruano D. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiol Aging 2015; 36:1953-63. [DOI: 10.1016/j.neurobiolaging.2015.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022]
|
166
|
Ojo JO, Rezaie P, Gabbott PL, Stewart MG. Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 2015; 7:57. [PMID: 25972808 PMCID: PMC4413780 DOI: 10.3389/fnagi.2015.00057] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022] Open
Abstract
Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS). These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signaling. These changes may occur without any overt concurrent pathology, however, they typically correlate with deteriorations in hippocamapal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function) and underlying neuroglial response(s), and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Department of Life Sciences, The Open UniversityWalton Hall, UK
- Department of Neuropathology, Roskamp InstituteSarasota, FL, USA
| | - Payam Rezaie
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | - Paul L. Gabbott
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | | |
Collapse
|
167
|
Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS. An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Aβ-degrading enzymes in microglia. Eur J Pharmacol 2015; 758:1-10. [PMID: 25848967 DOI: 10.1016/j.ejphar.2015.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/04/2015] [Accepted: 03/24/2015] [Indexed: 01/08/2023]
Abstract
We demonstrated previously that ginsenoside Rg3 enhances the expression of macrophage scavenger receptor class A (SRA) and amyloid β peptide 1-42 (Aβ42) uptake in BV2 cells. In this study, we investigated the biochemical and mechanistic roles of Rg3 in human microglia and animal models to identify the determinants that participate in restoring memory and learning in brains disrupted by the Aβ42 peptide. SRA was expressed highly in Rg3-treated rats, and learning and memory functions were maintained at a normal level after the infusion of Aβ42. SRA-transfected HMO6 human microglial cells (HMO6.hSRA) overexpressed SRA and took up a remarkable amount of Aβ42. Rg3-treated HMO6 cells showed highly enhanced SRA expression and dramatically promoted Aβ42 uptake. Moreover, high levels of clathrin and caveolin1 supported the roles of Rg3 in endocytic biogenesis by activating p38 and extracellular signal-regulated protein kinase signaling. Notably, both neprilysin (NEP) and insulin-degrading enzyme (IDE) were significantly expressed by Rg3, suggesting independent and compensatory hydrolytic activity for the Aβ peptide. In conclusion, Rg3 successfully triggered Aβ42 uptake via SRA and clathrin-/caveolae-mediated endocytic mechanisms and further contributed to accelerate the degradation of Aβ peptide via the increase of intracellular NEP and IDE, which may be a promising Alzheimer׳s disease therapy.
Collapse
Affiliation(s)
- Su Kil Jang
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Jung Min Yu
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Seung Tae Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Gwang Hoon Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Da Woon Park
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Do Ik Lee
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
168
|
Wang ZX, Tan L, Liu J, Yu JT. The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease. Mol Neurobiol 2015; 53:1905-1924. [PMID: 25833098 DOI: 10.1007/s12035-015-9143-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaque and neurofibrillary tangles (NFT). With the finding that soluble nonfibrillar Aβ levels actually correlate strongly with the severity of the disease, the initial focus on amyloid plaques shifted to the contemporary concept that AD memory failure is caused by soluble Aβ oligomers. The soluble Aβ are known to be more neurotoxicthan fibrillar Aβ species. In this paper, we summarize the essential role of soluble Aβ oligomers in AD and discuss therapeutic strategies that target soluble Aβ oligomers.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jinyuan Liu
- Columbia College, Columbia University, New York, NY, USA
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
169
|
Horiuchi H, Parajuli B, Wang Y, Azuma YT, Mizuno T, Takeuchi H, Suzumura A. Interleukin-19 acts as a negative autocrine regulator of activated microglia. PLoS One 2015; 10:e0118640. [PMID: 25794104 PMCID: PMC4368203 DOI: 10.1371/journal.pone.0118640] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
Activated microglia can exert either neurotoxic or neuroprotective effects, and they play pivotal roles in the pathogenesis and progression of various neurological diseases. In this study, we used cDNA microarrays to show that interleukin-19 (IL-19), an IL-10 family cytokine, is markedly upregulated in activated microglia. Furthermore, we found that microglia are the only cells in the nervous system that express the IL-19 receptor, a heterodimer of the IL-20Rα and IL-20Rβ subunits. IL-19 deficiency increased the production of such pro-inflammatory cytokines as IL-6 and tumor necrosis factor-α in activated microglia, and IL-19 treatment suppressed this effect. Moreover, in a mouse model of Alzheimer's disease, we observed upregulation of IL-19 in affected areas in association with disease progression. Our findings demonstrate that IL-19 is an anti-inflammatory cytokine, produced by activated microglia, that acts negatively on microglia in an autocrine manner. Thus, microglia may self-limit their inflammatory response by producing the negative regulator IL-19.
Collapse
Affiliation(s)
- Hiroshi Horiuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Yue Wang
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka, 598–8531, Japan
| | - Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
- * E-mail:
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| |
Collapse
|
170
|
Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ, Chen Y, Qian L, Li XX, Xu Y. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J Neuroinflammation 2015; 12:51. [PMID: 25889216 PMCID: PMC4378556 DOI: 10.1186/s12974-015-0270-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/19/2015] [Indexed: 12/26/2022] Open
Abstract
Background Activation of microglia plays a crucial role in immune and inflammatory processes after ischemic stroke. Microglia is reported with two opposing activated phenotypes, namely, classic phenotype (M1) and the alternative phenotype (M2). Inhibiting M1 while stimulating M2 has been suggested as a potential therapeutic approach in the treatment of stroke. Findings In this study, we indicated that a novel natural anti-oxidant extracted from the Chinese plant Hopea hainanensis, malibatol A (MA), decreased the infarct size and alleviated the brain injury after mice middle cerebral artery occlusion (MCAO). MA inhibited expression inflammatory cytokines in not only MCAO mice but also lipopolysaccharide (LPS)-stimulated microglia. Moreover, treatment of MA decreased M1 markers (CD16, CD32, and CD86) and increased M2 markers (CD206, YM-1) while promoting the activation of nuclear receptor PPARγ. Conclusions MA has anti-inflammatory effects in MCAO mice in a PPARγ-dependent manner, making it a potential candidate for stroke treatment.
Collapse
Affiliation(s)
- Jie Pan
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Jia-li Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China. .,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, 22 Hankou Road, Nanjing, Jiangsu, 210093, China.
| | - Hui-ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China.
| | - Kai-lin Yin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Xiang Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Li-juan Han
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Yan Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Lai Qian
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China. .,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, 22 Hankou Road, Nanjing, Jiangsu, 210093, China.
| | - Xiao-xi Li
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China. .,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, 22 Hankou Road, Nanjing, Jiangsu, 210093, China. .,Diagnosis and Therapy Center of Stroke in Jiangsu Province, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
171
|
Carriba P, Jimenez S, Navarro V, Moreno-Gonzalez I, Barneda-Zahonero B, Moubarak RS, Lopez-Soriano J, Gutierrez A, Vitorica J, Comella JX. Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell Death Dis 2015; 6:e1639. [PMID: 25675299 PMCID: PMC4669818 DOI: 10.1038/cddis.2015.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cells.
Collapse
Affiliation(s)
- P Carriba
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - S Jimenez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - V Navarro
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - I Moreno-Gonzalez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - B Barneda-Zahonero
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - R S Moubarak
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J Lopez-Soriano
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - A Gutierrez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - J Vitorica
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - J X Comella
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
172
|
Kou J, Yang J, Lim JE, Pattanayak A, Song M, Planque S, Paul S, Fukuchi KI. Catalytic immunoglobulin gene delivery in a mouse model of Alzheimer's disease: prophylactic and therapeutic applications. Mol Neurobiol 2015; 51:43-56. [PMID: 24733587 PMCID: PMC4198531 DOI: 10.1007/s12035-014-8691-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/24/2014] [Indexed: 12/12/2022]
Abstract
Accumulation of amyloid beta-peptide (Aβ) in the brain is hypothesized to be a causal event leading to dementia in Alzheimer's disease (AD). Aβ vaccination removes Aβ deposits from the brain. Aβ immunotherapy, however, may cause T cell- and/or Fc-receptor-mediated brain inflammation and relocate parenchymal Aβ deposits to blood vessels leading to cerebral hemorrhages. Because catalytic antibodies do not form stable immune complexes and Aβ fragments produced by catalytic antibodies are less likely to form aggregates, Aβ-specific catalytic antibodies may have safer therapeutic profiles than reversibly-binding anti-Aβ antibodies. Additionally, catalytic antibodies may remove Aβ more efficiently than binding antibodies because a single catalytic antibody can hydrolyze thousands of Aβ molecules. We previously isolated Aβ-specific catalytic antibody, IgVL5D3, with strong Aβ-hydrolyzing activity. Here, we evaluated the prophylactic and therapeutic efficacy of brain-targeted IgVL5D3 gene delivery via recombinant adeno-associated virus serotype 9 (rAAV9) in an AD mouse model. One single injection of rAAV9-IgVL5D3 into the right ventricle of AD model mice yielded widespread, high expression of IgVL5D3 in the unilateral hemisphere. IgVL5D3 expression was readily detectable in the contralateral hemisphere but to a much lesser extent. IgVL5D3 expression was also confirmed in the cerebrospinal fluid. Prophylactic and therapeutic injection of rAAV9-IgVL5D3 reduced Aβ load in the ipsilateral hippocampus of AD model mice. No evidence of hemorrhages, increased vascular amyloid deposits, increased proinflammatory cytokines, or infiltrating T-cells in the brains was found in the experimental animals. AAV9-mediated anti-Aβ catalytic antibody brain delivery can be prophylactic and therapeutic options for AD.
Collapse
Affiliation(s)
- Jinghong Kou
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| | - Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| | - Jeong-Eun Lim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| | - Abhinandan Pattanayak
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| | - Min Song
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| | - Stephanie Planque
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | - Sudhir Paul
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | - Ken-ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| |
Collapse
|
173
|
Aliaghaei A, Digaleh H, Khodagholi F, Ahmadiani A. Encapsulated Choroid Plexus Epithelial Cells Actively Protect Against Intrahippocampal Aβ-induced Long-Term Memory Dysfunction; Upregulation of Effective Neurogenesis with the Abrogated Apoptosis and Neuroinflammation. J Mol Neurosci 2015; 56:708-21. [PMID: 25634726 DOI: 10.1007/s12031-015-0492-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/06/2015] [Indexed: 01/02/2023]
Abstract
Choroid plexus epithelial cells (CPECs) as a secretory epithelium are responsible for the secretion of cerebrospinal fluid (CSF). Beyond this classical tenet, CPECs also synthesize and release many neurotrophic factors such as antioxidants into the CSF, participating in brain homeostasis. In this study, CPECs were isolated from rat's brain and encapsulated in alginate microcapsules. Firstly, functional properties of alginate microcapsules and encapsulated CPECs were examined in vitro. Following, micro-encapsulated CPECs were grafted into rats' brains that were pretreated with Aβ. The in vivo studies include western blotting against Caspase-3 and Terminal-Transferase dUTP Nick End Labeling test that were performed to detect apoptosis in brain tissues. The in vivo part also included immunohistochemistry against Iba-1, glial fibrillary acidic protein, and Brdu to detect microglial migration, gliosis, and neurogenesis, respectively. Moreover, the activity of superoxide dismutase enzyme in hippocampi also was measured, and the memory was assessed by shuttle box apparatus. Our data suggest that transplantation of encapsulated CPECs resulted in a significant decrease in apoptosis, reduced migration microglia, diminished gliosis, increased neurogenesis, and improved long-term memory as well as upregulated antioxidant activity. Since microencapsulated CPECs do not need immunosuppression following implantation, and also we showed their neuroprotective effects against Aβ toxicity and oxidative stress, this may be a suitable candidate for cell therapy in neurological disorders.
Collapse
Affiliation(s)
- Abbas Aliaghaei
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
174
|
Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol 2015; 5:683. [PMID: 25657646 PMCID: PMC4303141 DOI: 10.3389/fimmu.2014.00683] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022] Open
Abstract
The explosion of new information in recent years on the origin of macrophages in the steady-state and in the context of inflammation has opened up numerous new avenues of investigation and possibilities for therapeutic intervention. In contrast to the classical model of macrophage development, it is clear that tissue-resident macrophages can develop from yolk sac-derived erythro-myeloid progenitors, fetal liver progenitors, and bone marrow-derived monocytes. Under both homeostatic conditions and in response to pathophysiological insult, the contribution of these distinct sources of macrophages varies significantly between tissues. Furthermore, while all of these populations of macrophages appear to be capable of adopting the polarized M1/M2 phenotypes, their respective contribution to inflammation, resolution of inflammation, and tissue repair remains poorly understood and is likely to be tissue- and disease-dependent. A better understanding of the ontology and polarization capacity of macrophages in homeostasis and disease will be essential for the development of novel therapies that target the inherent plasticity of macrophages in the treatment of acute and chronic inflammatory disease.
Collapse
Affiliation(s)
- Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Physiology, The Pennsylvania State University , University Park, PA , USA
| | - Joselyn Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University , University Park, PA , USA
| | - Pamela A Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Physiology, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University , University Park, PA , USA
| |
Collapse
|
175
|
Carriba P, Comella JX. Amyloid Beta, TNFα and FAIM-L; Approaching New Therapeutic Strategies for AD. Front Neurol 2014; 5:276. [PMID: 25566181 PMCID: PMC4270217 DOI: 10.3389/fneur.2014.00276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/04/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paulina Carriba
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR) , Barcelona , Spain ; Facultat de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Spain ; Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Joan X Comella
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR) , Barcelona , Spain ; Facultat de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Spain ; Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| |
Collapse
|
176
|
Jimenez S, Navarro V, Moyano J, Sanchez-Mico M, Torres M, Davila JC, Vizuete M, Gutierrez A, Vitorica J. Disruption of amyloid plaques integrity affects the soluble oligomers content from Alzheimer disease brains. PLoS One 2014; 9:e114041. [PMID: 25485545 PMCID: PMC4259387 DOI: 10.1371/journal.pone.0114041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
The implication of soluble Abeta in the Alzheimer’s disease (AD) pathology is currently accepted. In fact, the content of soluble extracellular Abeta species, such as monomeric and/or oligomeric Abeta, seems to correlate with the clinico-pathological dysfunction observed in AD patients. However, the nature (monomeric, dimeric or other oligomers), the relative abundance, and the origin (extra-/intraneuronal or plaque-associated), of these soluble species are actually under debate. In this work we have characterized the soluble (defined as soluble in Tris-buffered saline after ultracentrifugation) Abeta, obtained from hippocampal samples of Braak II, Braak III–IV and Braak V–VI patients. Although the content of both Abeta40 and Abeta42 peptides displayed significant increase with pathology progression, our results demonstrated the presence of low, pg/µg protein, amount of both peptides. This low content could explain the absence (or below detection limits) of soluble Abeta peptides detected by western blots or by immunoprecipitation-western blot analysis. These data were in clear contrast to those published recently by different groups. Aiming to explain the reasons that determine these substantial differences, we also investigated whether the initial homogenization could mobilize Abeta from plaques, using 12-month-old PS1xAPP cortical samples. Our data demonstrated that manual homogenization (using Dounce) preserved the integrity of Abeta plaques whereas strong homogenization procedures (such as sonication) produced a vast redistribution of the Abeta species in all soluble and insoluble fractions. This artifact could explain the dissimilar and somehow controversial data between different groups analyzing human AD samples.
Collapse
Affiliation(s)
- Sebastian Jimenez
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victoria Navarro
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Moyano
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Sanchez-Mico
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Torres
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jose Carlos Davila
- Departamento Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Departamento Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (JV); (AG)
| | - Javier Vitorica
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (JV); (AG)
| |
Collapse
|
177
|
Licastro F, Carbone I, Raschi E, Porcellini E. The 21st century epidemic: infections as inductors of neuro-degeneration associated with Alzheimer's Disease. Immun Ageing 2014; 11:22. [PMID: 25516763 PMCID: PMC4266955 DOI: 10.1186/s12979-014-0022-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/22/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a complex disease resulting in neurodegeneration and cognitive impairment. Investigations on environmental factors implicated in AD are scarce and the etiology of the disease remains up to now obscure. The disease's pathogenesis may be multi-factorial and different etiological factors may converge during aging and induce an activation of brain microglia and macrophages. This microglia priming will result in chronic neuro-inflammation under chronic antigen activation. Infective agents may prime and drive iper-activation of microglia and be partially responsible of the induction of brain inflammation and decline of cognitive performances. Age-associated immune dis-functions induced by chronic sub-clinical infections appear to substantially contribute to the appearance of neuro-inflammation in the elderly. Individual predisposition to less efficient immune responses is another relevant factor contributing to impaired regulation of inflammatory responses and accelerated cognitive decline. Life-long virus infection may play a pivotal role in activating peripheral and central inflammatory responses and in turn contributing to increased cognitive impairment in preclinical and clinical AD.
Collapse
Affiliation(s)
- Federico Licastro
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
- />Laboratory of Immunopathology and Immunogenetics, Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Ilaria Carbone
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
| | - Elena Raschi
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
| | - Elisa Porcellini
- />Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, 40100 Italy
| |
Collapse
|
178
|
Ferrera D, Mazzaro N, Canale C, Gasparini L. Resting microglia react to Aβ42 fibrils but do not detect oligomers or oligomer-induced neuronal damage. Neurobiol Aging 2014; 35:2444-2457. [DOI: 10.1016/j.neurobiolaging.2014.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
179
|
Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis 2014; 71:280-91. [DOI: 10.1016/j.nbd.2014.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
|
180
|
Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun 2014; 42:147-56. [PMID: 24994592 DOI: 10.1016/j.bbi.2014.06.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/26/2022] Open
Abstract
There is a paucity of data on the role of microglia and neuroinflammatory processes in the association between chronic pain and depression. The current study examined the effect of the microglial inhibitor minocycline on depressive-like behaviour, spinal nerve ligation (SNL)-induced mechanical and cold allodynia and associated changes in the expression of genes encoding microglial markers (M1 vs. M2 polarisation) and inflammatory mediators in the prefrontal cortex in the olfactory bulbectomised (OB) rat model of depression. Acute minocycline administration did not alter OB-induced depressive-like behaviour but prevented SNL-induced mechanical allodynia in both OB and sham rats. In comparison, chronic minocycline attenuated OB-induced depressive-like behaviour and prevented the development of SNL-induced mechanical allodynia in OB, but not sham, rats. Further analysis revealed that SNL-induced mechanical allodynia in OB rats was attenuated by chronic minocycline at almost all time-points over a 2week testing period, an effect observed only from day 10 post-SNL in sham rats. Chronic administration of minocycline reduced the expression of CD11b, a marker of microglial activation, and the M1 pro-inflammatory cytokine IL-1β, in the prefrontal cortex of sham-SNL animals. In comparison, the expression of the M2 microglia marker (MRC2) and anti-inflammatory cytokine IL-10 was increased, as were IL-1β, IL-6 and SOCS3, in the prefrontal cortex of OB-SNL animals following chronic minocycline. Thus, chronic minocycline attenuates neuropathic pain behaviour and modulates microglial activation and the central expression of inflammatory mediators in a manner dependent on the presence or absence of a depressive-like phenotype.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
181
|
Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights. Pharm Res 2014; 32:819-39. [DOI: 10.1007/s11095-014-1522-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
|
182
|
Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci 2014; 8:189. [PMID: 25228858 PMCID: PMC4151093 DOI: 10.3389/fncel.2014.00189] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022] Open
Abstract
Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS). Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g., minocycline) have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
183
|
Abstract
The ECs (endocannabinoids) AEA (anandamide) and 2-AG (2-arachidonoylglycerol) and their lipid congeners OEA (N-oleoylethanolamide) and PEA (N-palmitoylethanolamide) are multifunctional lipophilic signalling molecules. The ECs, OEA and PEA have multiple physiological roles including involvement in learning and memory, neuroinflammation, oxidative stress, neuroprotection and neurogenesis. They have also been implicated in the pathology of, or perhaps protective responses to, neurodegenerative diseases. This is particularly the case with Alzheimer's disease, the most common age-related dementia associated with impairments in learning and memory accompanied by neuroinflammation, oxidative stress and neurodegeneration. The present mini-review examines the evidence supporting the roles that ECs appear to play in Alzheimer's disease and the potential for beneficial therapeutic manipulation of the EC signalling system.
Collapse
|
184
|
Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research. Trends Neurosci 2014; 37:629-41. [PMID: 25151336 DOI: 10.1016/j.tins.2014.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 01/23/2023]
Abstract
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maxime J Parent
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada.
| |
Collapse
|
185
|
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11:98. [PMID: 24889886 PMCID: PMC4060849 DOI: 10.1186/1742-2094-11-98] [Citation(s) in RCA: 1213] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
The concept of multiple macrophage activation states is not new. However, extending this idea to resident tissue macrophages, like microglia, has gained increased interest in recent years. Unfortunately, the research on peripheral macrophage polarization does not necessarily translate accurately to their central nervous system (CNS) counterparts. Even though pro- and anti-inflammatory cytokines can polarize microglia to distinct activation states, the specific functions of these states is still an area of intense debate. This review examines the multiple possible activation states microglia can be polarized to. This is followed by a detailed description of microglial polarization and the functional relevance of this process in both acute and chronic CNS disease models described in the literature. Particular attention is given to utilizing M2 microglial polarization as a potential therapeutic option in treating diseases.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John A Olschowka
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - M Kerry O’Banion
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
186
|
Larouche E, Hudon C, Goulet S. Potential benefits of mindfulness-based interventions in mild cognitive impairment and Alzheimer's disease: an interdisciplinary perspective. Behav Brain Res 2014; 276:199-212. [PMID: 24893317 DOI: 10.1016/j.bbr.2014.05.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/20/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
The present article is based on the premise that the risk of developing Alzheimer's disease (AD) from its prodromal phase (mild cognitive impairment; MCI) is higher when adverse factors (e.g., stress, depression, and metabolic syndrome) are present and accumulate. Such factors augment the likelihood of hippocampal damage central in MCI/AD aetiology, as well as compensatory mechanisms failure triggering a switch toward neurodegeneration. Because of the devastating consequences of AD, there is a need for early interventions that can delay, perhaps prevent, the transition from MCI to AD. We hypothesize that mindfulness-based interventions (MBI) show promise with regard to this goal. The present review discusses the associations between modifiable adverse factors and MCI/AD decline, MBI's impacts on adverse factors, and the mechanisms that could underlie the benefits of MBI. A schematic model is proposed to illustrate the course of neurodegeneration specific to MCI/AD, as well as the possible preventive mechanisms of MBI. Whereas regulation of glucocorticosteroids, inflammation, and serotonin could mediate MBI's effects on stress and depression, resolution of the metabolic syndrome might happen through a reduction of inflammation and white matter hyperintensities, and normalization of insulin and oxidation. The literature reviewed in this paper suggests that the main reach of MBI over MCI/AD development involves the management of stress, depressive symptoms, and inflammation. Future research must focus on achieving deeper understanding of MBI's mechanisms of action in the context of MCI and AD. This necessitates bridging the gap between neuroscientific subfields and a cross-domain integration between basic and clinical knowledge.
Collapse
Affiliation(s)
- Eddy Larouche
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière (F-2400), Québec, QC, Canada G1J 2G3
| | - Carol Hudon
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière (F-2400), Québec, QC, Canada G1J 2G3
| | - Sonia Goulet
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière (F-2400), Québec, QC, Canada G1J 2G3.
| |
Collapse
|
187
|
Age-associated dysregulation of microglial activation is coupled with enhanced blood-brain barrier permeability and pathology in APP/PS1 mice. Neurobiol Aging 2014; 35:1442-52. [DOI: 10.1016/j.neurobiolaging.2013.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/17/2022]
|
188
|
Lynch MA. The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease. Immunology 2014; 141:292-301. [PMID: 23876085 DOI: 10.1111/imm.12156] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammatory changes are a characteristic of several, if not all, neurodegenerative diseases including Alzheimer's disease and are typified by increased microglial activation. Microglia express several receptors making them highly reactive and plastic cells, and, at least in vitro, they adopt different phenotypes in a manner analogous to their peripheral counterparts, macrophages. Microglia also express numerous cell surface proteins enabling them to interact with cells and the evidence indicates that maintenance of microglia in a quiescent state relies, at least to some extent, on an interaction with neurons by means of specific ligand-receptor pairs, for example CD200-CD200R. It is clear that microglia also interact with T cells and recent evidence indicates that co-incubation of microglia with T helper type 1 cells markedly increases their activation. Under normal conditions, small numbers of activated T cells gain entry to the brain and are involved in immune surveillance but infiltration of significant numbers of T cells occurs in disease and following injury. The consequences of T cell infiltration appear to depend on the conditions, with descriptions of both neurodestructive and neuroprotective effects in animal models of different diseases. This review will discuss the modulatory effect of T cells on microglia and the impact of infiltration of T cells into the brain with a focus on Alzheimer's disease, and will propose that infiltration of interferon-γ-producing cells may be an important factor in triggering inflammation that is pathogenic and destructive.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
189
|
Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014; 88:594-604. [PMID: 24445162 PMCID: PMC3972294 DOI: 10.1016/j.bcp.2014.01.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/23/2022]
Abstract
Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer's disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial "activation" and "neuroinflammation" are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms.
Collapse
Affiliation(s)
- Kira Irving Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Neuroscience IDP Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA.
| |
Collapse
|
190
|
Protective effect of pranlukast on Aβ₁₋₄₂-induced cognitive deficits associated with downregulation of cysteinyl leukotriene receptor 1. Int J Neuropsychopharmacol 2014; 17:581-92. [PMID: 24229499 DOI: 10.1017/s1461145713001314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Deposition of extracellular amyloid-β (Aβ) peptide is one of the pathological hallmarks of Alzheimer's disease (AD). Accumulation of Aβ is thought to associate with cognition deficits, neuroinflammation and apoptosis observed in AD. However, effective neuroprotective approaches against Aβ neurotoxicity are unavailable. In the present study, we analysed the effects of pranlukast, a selective cysteinyl leukotriene receptor 1 (CysLT₁R) antagonist, on the impairment of learning and memory formation induced by Aβ and the probable underlying electrophysiological and molecular mechanisms. We found that bilateral intrahippocampal injection of Aβ₁₋₄₂ resulted in a significant decline of spatial learning and memory of mice in the Morris water maze (MWM) and Y-maze tests, together with a serious depression of in vivo hippocampal long-term potentiation (LTP) in the CA1 region of the mice. Importantly, this treatment caused significant increases in CysLT₁R expression and subsequent NF-κB signaling, caspase-3 activation and Bcl-2 downregulation in the hippocampus or prefrontal cortex. Oral administration of pranlukast at 0.4 or 0.8 mg/kg for 4 wk significantly reversed Aβ₁₋₄₂-induced impairments of cognitive function and hippocampal LTP in mice. Furthermore, pranlukast reversed Aβ₁₋₄₂-induced CysLT₁R upregulation, and markedly suppressed the Aβ₁₋₄₂-triggered NF-κB pathway, caspase-3 activation and Bcl-2 downregulation in the hippocampus and prefrontal cortex in mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay confirmed its presence in the brain after oral administration of pranlukast in mice. These data disclose novel findings about the therapeutic potential of pranlukast, revealing a previously unknown therapeutic possibility to treat memory deficits associated with AD.
Collapse
|
191
|
Kolobov VV, Davydova TV, Fomina VG. Protective action of glutamate antibodies on increased expression of genes of programmed death of rat brain cells induced by injection of a β-amyloid fragment (25–35). BIOL BULL+ 2014. [DOI: 10.1134/s1062359014020034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
192
|
Guillot-Sestier MV, Town T. Innate immunity in Alzheimer's disease: a complex affair. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:593-607. [PMID: 23574177 DOI: 10.2174/1871527311312050008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by three major histopathological hallmarks: β-amyloid deposits, neurofibrillary tangles and gliosis. While neglected for decades, the neuroinflammatory processes coordinated by microglia are now accepted as etiologic events in AD evolution. Microglial cells are found in close vicinity to amyloid plaques and display various activation phenotypes determined by the expression of a wide range of cytokines, chemokines, and innate immune surface receptors. During the development of AD pathology, microglia fail to restrict amyloid plaques and may contribute to neurotoxicity and cognitive deficit. Nevertheless, under specific activation states, microglia can participate in cerebral amyloid clearance. This review focuses on the complex relationship between microglia and Aβ pathology, and highlights both deleterious and beneficial roles of microglial activation states in the context of AD. A deeper understanding of microglial biology will hopefully pave the way for next-generation AD therapeutic approaches aimed at harnessing these enigmatic innate immune cells of the central nervous system.
Collapse
Affiliation(s)
- Marie-Victoire Guillot-Sestier
- Regenerative Medicine Institute Neural Program, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Steven Spielberg Building Room 345, Los Angeles, CA 90048, USA
| | | |
Collapse
|
193
|
Biber K, Owens T, Boddeke E. What is microglia neurotoxicity (Not)? Glia 2014; 62:841-54. [PMID: 24590682 DOI: 10.1002/glia.22654] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 01/19/2023]
Abstract
Microglia most likely appeared early in evolution as they are not only present in vertebrates, but are also found in nervous systems of various nonvertebrate organisms. Mammalian microglia are derived from a specific embryonic, self-renewable myeloid cell population that is throughout lifetime not replaced by peripheral myeloid cells. These phylogenic and ontogenic features suggest that microglia serve vital functions. Yet, microglia often are described as neurotoxic cells, that actively kill (healthy) neurons. Since it is from an evolutionary point of view difficult to understand why an important and vulnerable organ like the brain should host numerous potential killers, we here review the concept of microglia neurotoxicity. On one hand it is discussed that most of our understanding about how microglia kill neurons is based on in vitro experiments or correlative staining studies that suffer from the difficulty to discriminate microglia and peripheral myeloid cells in the diseased brain. On the other hand it is described that a more functional approach by mutating, inactivating or deleting microglia is seldom associated with a beneficial outcome in an acute injury situation, suggesting that microglia are normally important protective elements in the brain. This might change in chronic disease or the aged brain, where; however, it remains to be established whether microglia simply lose their protective capacities or whether microglia become truly neurotoxic cells.
Collapse
Affiliation(s)
- Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department of Neuroscience, University Medical Center Groningen, Ant. Deusinglaan 1, 9713, AV Groningen, The Netherlands
| | | | | |
Collapse
|
194
|
Involvement of cysteinyl leukotriene receptor 1 in Aβ1–42-induced neurotoxicity in vitro and in vivo. Neurobiol Aging 2014; 35:590-9. [DOI: 10.1016/j.neurobiolaging.2013.09.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/15/2013] [Accepted: 09/22/2013] [Indexed: 12/22/2022]
|
195
|
Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:808-18. [PMID: 24418258 DOI: 10.1016/j.ajpath.2013.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
Abstract
Tau-tubulin kinase-1 (TTBK1) is a central nervous system (CNS)-specific protein kinase implicated in the pathological phosphorylation of tau. TTBK1-transgenic mice show enhanced neuroinflammation in the CNS. Double-transgenic mice expressing TTBK1 and frontotemporal dementia with parkinsonism-17-linked P301L (JNPL3) tau mutant (TTBK1/JNPL3) show increased accumulation of oligomeric tau protein in the CNS and enhanced loss of motor neurons in the ventral horn of the lumbar spinal cord. To determine the role of TTBK1-induced neuroinflammation in tauopathy-related neuropathogenesis, age-matched TTBK1/JNPL3, JNPL3, TTBK1, and non-transgenic littermates were systematically characterized. There was a striking switch in the activation phenotype and population of mononuclear phagocytes (resident microglia and infiltrating macrophages) in the affected spinal cord region: JNPL3 mice showed accumulation of alternatively activated microglia, whereas TTBK1 and TTBK1/JNPL3 mice showed accumulation of classically activated infiltrating peripheral monocytes. In addition, expression of chemokine ligand 2, a chemokine important for the recruitment of peripheral monocytes, was enhanced in TTBK1 and TTBK1/JNPL3 but not in other groups in the spinal cord. Furthermore, primary cultured mouse motor neurons showed axonal degeneration after transient expression of the TTBK1 gene or treatment with conditioned media derived from lipopolysaccharide-stimulated microglia; this was partially blocked by silencing of the endogenous TTBK1 gene in neurons. These data suggest that TTBK1 accelerates motor neuron neurodegeneration by recruiting proinflammatory monocytes and enhancing sensitivity to neurotoxicity in inflammatory conditions.
Collapse
|
196
|
Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2014; 2:144. [PMID: 25642419 PMCID: PMC4294124 DOI: 10.3389/fped.2014.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
Collapse
Affiliation(s)
- Utpal S Bhalala
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Raymond C Koehler
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sujatha Kannan
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
197
|
Liu Y, Holdbrooks AT, De Sarno P, Rowse AL, Yanagisawa LL, McFarland BC, Harrington LE, Raman C, Sabbaj S, Benveniste EN, Qin H. Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014. [PMID: 24323580 DOI: 10.4049/jimmunol.1301513)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Pathogenic Th cells and myeloid cells are involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is used by numerous cytokines for signaling and is critical for development, regulation, and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ, and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have used AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in myelin oligodendrocyte glycoprotein-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of proinflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T cells and attenuates Ag presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple preclinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
McManus RM, Higgins SC, Mills KH, Lynch MA. Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiol Aging 2014; 35:109-21. [DOI: 10.1016/j.neurobiolaging.2013.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022]
|
199
|
Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments. Brain Struct Funct 2013; 220:941-53. [PMID: 24374506 DOI: 10.1007/s00429-013-0693-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.
Collapse
|
200
|
Liu Y, Holdbrooks AT, De Sarno P, Rowse AL, Yanagisawa LL, McFarland BC, Harrington LE, Raman C, Sabbaj S, Benveniste EN, Qin H. Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 192:59-72. [PMID: 24323580 DOI: 10.4049/jimmunol.1301513] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathogenic Th cells and myeloid cells are involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is used by numerous cytokines for signaling and is critical for development, regulation, and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ, and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have used AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in myelin oligodendrocyte glycoprotein-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of proinflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T cells and attenuates Ag presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple preclinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|