151
|
Matsuda K, Mikami T, Oki S, Iida H, Andrabi M, Boss JM, Yamaguchi K, Shigenobu S, Kondoh H. ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network. Development 2017; 144:1948-1958. [PMID: 28455373 PMCID: PMC5482983 DOI: 10.1242/dev.143479] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
To obtain insight into the transcription factor (TF)-dependent regulation of epiblast stem cells (EpiSCs), we performed ChIP-seq analysis of the genomic binding regions of five major TFs. Analysis of in vivo biotinylated ZIC2, OTX2, SOX2, POU5F1 and POU3F1 binding in EpiSCs identified several new features. (1) Megabase-scale genomic domains rich in ZIC2 peaks and genes alternate with those rich in POU3F1 but sparse in genes, reflecting the clustering of regulatory regions that act at short and long-range, which involve binding of ZIC2 and POU3F1, respectively. (2) The enhancers bound by ZIC2 and OTX2 prominently regulate TF genes in EpiSCs. (3) The binding sites for SOX2 and POU5F1 in mouse embryonic stem cells (ESCs) and EpiSCs are divergent, reflecting the shift in the major acting TFs from SOX2/POU5F1 in ESCs to OTX2/ZIC2 in EpiSCs. (4) This shift in the major acting TFs appears to be primed by binding of ZIC2 in ESCs at relevant genomic positions that later function as enhancers following the disengagement of SOX2/POU5F1 from major regulatory functions and subsequent binding by OTX2. These new insights into EpiSC gene regulatory networks gained from this study are highly relevant to early stage embryogenesis.
Collapse
Affiliation(s)
- Kazunari Matsuda
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Mikami
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | - Shinya Oki
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Munazah Andrabi
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan .,Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
152
|
Shen H, Xu W, Lan F. Histone lysine demethylases in mammalian embryonic development. Exp Mol Med 2017; 49:e325. [PMID: 28450736 PMCID: PMC6130211 DOI: 10.1038/emm.2017.57] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications, such as methylation, acetylation and phosphorylation, of histone proteins play important roles in regulating dynamic chromatin structure. Histone demethylation has become one of the most active research areas of epigenetics in the past decade. To date, with the exception of histone H3 lysine 79 methylation, the demethylases for all major lysine methylation sites have been discovered. These enzymes have been shown to be involved in various biological processes, with embryonic development being an exciting emerging area. This review will primarily discuss the involvement of these demethylases in the regulation of mammalian embryonic development, including their roles in embryonic stem cell pluripotency, primordial germ cell (PGC) formation and maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Hongjie Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
153
|
Lysine-Specific Histone Demethylases Contribute to Cellular Differentiation and Carcinogenesis. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
154
|
Rose M, Kloten V, Noetzel E, Gola L, Ehling J, Heide T, Meurer SK, Gaiko-Shcherbak A, Sechi AS, Huth S, Weiskirchen R, Klaas O, Antonopoulos W, Lin Q, Wagner W, Veeck J, Gremse F, Steitz J, Knüchel R, Dahl E. ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol Cancer 2017; 16:44. [PMID: 28231808 PMCID: PMC5322623 DOI: 10.1186/s12943-017-0610-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular matrix (ECM) is known to maintain epithelial integrity. In carcinogenesis ECM degradation triggers metastasis by controlling migration and differentiation including cancer stem cell (CSC) characteristics. The ECM-modulator inter- α-trypsin inhibitor heavy chain family member five (ITIH5) was recently identified as tumor suppressor potentially involved in impairing breast cancer progression but molecular mechanisms underlying its function are still elusive. Methods ITIH5 expression was analyzed using the public TCGA portal. ITIH5-overexpressing single-cell clones were established based on T47D and MDA-MB-231 cell lines. Colony formation, growth, apoptosis, migration, matrix adhesion, traction force analyses and polarization of tumor cells were studied in vitro. Tumor-initiating characteristics were analyzed by generating a metastasis mouse model. To identify ITIH5-affected pathways we utilized genome wide gene expression and DNA methylation profiles. RNA-interference targeting the ITIH5-downstream regulated gene DAPK1 was used to confirm functional involvement. Results ITIH5 loss was pronounced in breast cancer subtypes with unfavorable prognosis like basal-type tumors. Functionally, cell and colony formation was impaired after ITIH5 re-expression in both cell lines. In a metastasis mouse model, ITIH5 expressing MDA-MB-231 cells almost completely failed to initiate lung metastases. In these metastatic cells ITIH5 modulated cell-matrix adhesion dynamics and altered biomechanical cues. The profile of integrin receptors was shifted towards β1-integrin accompanied by decreased Rac1 and increased RhoA activity in ITIH5-expressing clones while cell polarization and single-cell migration was impaired. Instead ITIH5 expression triggered the formation of epithelial-like cell clusters that underwent an epigenetic reprogramming. 214 promoter regions potentially marked with either H3K4 and /or H3K27 methylation showed a hyper- or hypomethylated DNA configuration due to ITIH5 expression finally leading to re-expression of the tumor suppressor DAPK1. In turn, RNAi-mediated knockdown of DAPK1 in ITIH5-expressing MDA-MB-231 single-cell clones clearly restored cell motility. Conclusions Our results provide evidence that ITIH5 triggers a reprogramming of breast cancer cells with known stem CSC properties towards an epithelial-like phenotype through global epigenetic changes effecting known tumor suppressor genes like DAPK1. Therewith, ITIH5 may represent an ECM modulator in epithelial breast tissue mediating suppression of tumor initiating cancer cell characteristics which are thought being responsible for the metastasis of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0610-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Erik Noetzel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lukas Gola
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Timon Heide
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Aljona Gaiko-Shcherbak
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antonio S Sechi
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Sebastian Huth
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Oliver Klaas
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Division of Medical Oncology, Department of Internal Medicine, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Felix Gremse
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
155
|
Wu H, Gordon JAR, Whitfield TW, Tai PWL, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:438-449. [PMID: 28077316 DOI: 10.1016/j.bbagrm.2017.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/10/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are critical for regeneration of multiple tissues. Epigenetic mechanisms are fundamental regulators of lineage specification and cell fate, and as such, we addressed the question of which epigenetic modifications characterize the transition of nascent MSCs to a tissue specific MSC-derived phenotype. By profiling the temporal changes of seven histone marks correlated to gene expression during proliferation, early commitment, matrix deposition, and mineralization stages, we identified distinct epigenetic mechanisms that regulate transcriptional programs necessary for tissue-specific phenotype development. Patterns of stage-specific enrichment of histone modifications revealed distinct modes of repression and activation of gene expression that would not be detected using single endpoint analysis. We discovered that at commitment, H3K27me3 is removed from genes that are upregulated and is not acquired on downregulated genes. Additionally, we found that the absence of H3K4me3 modification at promoters defined a subset of osteoblast-specific upregulated genes, indicating that acquisition of acetyl modifications drive activation of these genes. Significantly, loss or gain of H3K36me3 was the primary predictor of dynamic changes in temporal gene expression. Using unsupervised pattern discovery analysis the signature of osteogenic-related histone modifications identified novel functional cis regulatory modules associated with enhancer regions that control tissue-specific genes. Our work provides a cornerstone to understand the epigenetic regulation of transcriptional programs that are important for MSC lineage commitment and lineage, as well as insights to facilitate MSC-based therapeutic interventions.
Collapse
Affiliation(s)
- Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Jonathan A R Gordon
- Department of Biochemistry and Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Troy W Whitfield
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| | - Phillip W L Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - Janet L Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Jane B Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
156
|
Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639249 DOI: 10.1007/5584_2017_58] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organisation of chromatin is first discussed to conclude that nucleosomes play both structural and transcription-regulatory roles. The presence of nucleosomes makes difficult the access of transcriptional factors to their target sequences and the action of RNA polymerases. The histone post-translational modifications and nucleosome remodelling are first discussed, from a historical point of view, as mechanisms to remove the obstacles imposed by chromatin structure to transcription. Instead of reviewing the state of the art of the whole field, this review is centred on some open questions. First, some "non-classical" histone modifications, such as short-chain acylations other than acetylation, are considered to conclude that their relationship with the concentration of metabolic intermediaries might make of them a sensor of the physiological state of the cells. Then attention is paid to the interest of studying chromatin organisation and epigenetic marks at a single nucleosome level as a complement to genome-wide approaches. Finally, as a consequence of the above questions, the review focuses on the presence of multiple histone post-translational modifications on a single nucleosome. The methods to detect them and their meaning, with special emphasis on bivalent marks, are discussed.
Collapse
|
157
|
Epigenetics of Renal Development and Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:565-573. [PMID: 28018145 PMCID: PMC5168832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An understanding of epigenetics is indispensable to our understanding of gene regulation under normal and pathological states. This knowledge will help with designing better therapeutic approaches in regenerative tissue medicine. Epigenetics allows us to parse out the mechanisms by which transcriptional regulators gain access to specific gene loci thereby imprinting epigenetic information affecting chromatin function. This epigenetic memory forms the basis of cell lineage specification in multicellular organisms. Post-translational modifications to DNA and histones in the nucleosome core form characteristic epigenetic codes which are distinct for self-renewing and primed progenitor cell populations. Studies of chromatin modifiers and modifications in renal development and disease have been gaining momentum. Both congenital and adult renal diseases have a gene-environment component, which involves alterations to the epigenetic information imprinted during development. This epigenetic memory must be characterized to establish optimal treatment of both acute and chronic renal diseases.
Collapse
|
158
|
Bayarsaihan D. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:539-563. [PMID: 28018144 PMCID: PMC5168831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Institute for System Genomics and Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
159
|
Akiyama T, Wakabayashi S, Soma A, Sato S, Nakatake Y, Oda M, Murakami M, Sakota M, Chikazawa-Nohtomi N, Ko SBH, Ko MSH. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development 2016; 143:3674-3685. [PMID: 27802135 PMCID: PMC5087640 DOI: 10.1242/dev.139360] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings.
Collapse
Affiliation(s)
- Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Shunichi Wakabayashi
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Atsumi Soma
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Saeko Sato
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Miyako Murakami
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Miki Sakota
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | | | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| |
Collapse
|
160
|
Abstract
Reversible covalent histone modifications are known to influence spatiotemporal patterns of gene transcription during development. Here I review recent advances in the development and use of methods to analyze the distribution and functions of histone modifications in zebrafish chromatin. I discuss the roles of dynamic histone modification patterns at the promoters and enhancers of genes during the process of zygotic gene activation at blastula stages and the interplay between the molecular machinery responsible for histone modifications, chromatin remodeling and DNA methylation. Interactions are also described between developmentally regulated enhancer sequences and modified histones. A detailed method for chromatin immunoprecipitation using antibodies is provided, and I describe the use of high-throughput whole genome sequencing technology to generate DNA sequence data from chromatin immunoprecipitates. I also discuss computational approaches to integrating DNA sequence data obtained from chromatin immunoprecipitates with annotated reference genome sequences, transcriptome and methylome sequence data, transcription factor binding motif databases, and gene ontologies and describe the types of software tools currently available for visualizing the results.
Collapse
Affiliation(s)
- V T Cunliffe
- University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
161
|
Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry JW. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol 2016; 14:18. [PMID: 26975355 PMCID: PMC4790052 DOI: 10.1186/s12915-016-0238-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Background Understanding how embryos specify asymmetric axes is a major focus of biology. While much has been done to discover signaling pathways and transcription factors important for axis specification, comparatively little is known about how epigenetic regulators are involved. Epigenetic regulators operate downstream of signaling pathways and transcription factors to promote nuclear processes, most prominently transcription. To discover novel functions for these complexes in axis establishment during early embryonic development, we characterized phenotypes of a mouse knockout (KO) allele of the chromatin remodeling Ino80 ATPase. Results Ino80 KO embryos implant, but fail to develop beyond the egg cylinder stage. Ino80 KO embryonic stem cells (ESCs) are viable and maintain alkaline phosphatase activity, which is suggestive of pluripotency, but they fail to fully differentiate as either embryoid bodies or teratomas. Gene expression analysis of Ino80 KO early embryos by in situ hybridization and embryoid bodies by RT-PCR shows elevated Bmp4 expression and reduced expression of distal visceral endoderm (DVE) markers Cer1, Hex, and Lefty1. In culture, Bmp4 maintains stem cell pluripotency and when overexpressed is a known negative regulator of DVE differentiation in the early embryo. Consistent with the early embryo, we observed upregulated Bmp4 expression and down-regulated Cer1, Hex, and Lefty1 expression when Ino80 KO ESCs are differentiated in a monolayer. Molecular studies in these same cells demonstrate that Ino80 bound to the Bmp4 promoter regulates its chromatin structure, which correlates with enhanced SP1 binding. These results in combination suggest that Ino80 directly regulates the chromatin structure of the Bmp4 promoter with consequences to gene expression. Conclusions In contrast to Ino80 KO differentiated cells, our experiments show that undifferentiated Ino80 KO ESCs are viable, but fail to differentiate in culture and in the early embryo. Ino80 KO ESCs and the early embryo up-regulate Bmp4 expression and down-regulate the expression of DVE markers Cer1, Hex and Lefty1. Based on this data, we propose a model where the Ino80 chromatin remodeling complex represses Bmp4 expression in the early embryo, thus promoting DVE differentiation and successful proximal-distal axis establishment. These results are significant because they show that epigenetic regulators have specific roles in establishing embryonic axes. By further characterizing these complexes, we will deepen our understanding of how the mammalian embryo is patterned by epigenetic regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0238-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhijun Qiu
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Zeinab Elsayed
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Veronica Peterkin
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Suehyb Alkatib
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Dorothy Bennett
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
162
|
Harr JC, Gonzalez-Sandoval A, Gasser SM. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 2016; 17:139-55. [PMID: 26792937 PMCID: PMC4783997 DOI: 10.15252/embr.201541809] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation.
Collapse
Affiliation(s)
- Jennifer C Harr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
163
|
Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 2015; 16:1609-19. [PMID: 26553936 DOI: 10.15252/embr.201541011] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 11/09/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are characterized by distinct epigenetic features including a relative enrichment of histone modifications related to active chromatin. Among these is tri-methylation of lysine 4 on histone H3 (H3K4me3). Several thousands of the H3K4me3-enriched promoters in pluripotent cells also contain a repressive histone mark, namely H3K27me3, a situation referred to as "bivalency". While bivalent promoters are not unique to pluripotent cells, they are relatively enriched in these cell types, largely marking developmental and lineage-specific genes which are silent but poised for immediate action. The H3K4me3 and H3K27me3 modifications are catalyzed by lysine methyltransferases which are usually found within, although not entirely limited to, the Trithorax group (TrxG) and Polycomb group (PcG) protein complexes, respectively, but these do not provide selective bivalent specificity. Recent studies highlight the family of ATP-dependent chromatin remodeling proteins as regulators of bivalent domains. Here, we discuss bivalency in general, describe the machineries that catalyze bivalent chromatin domains, and portray the emerging connection between bivalency and the action of different families of chromatin remodelers, namely INO80, esBAF, and NuRD, in pluripotent cells. We posit that chromatin remodeling proteins may enable "bivalent specificity", often selectively acting on, or selectively depleted from, bivalent domains.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|