151
|
Abstract
This review will focus on the impact of hyperglycemia-induced oxidative stress in the development of diabetes-related neural dysfunction. Oxidative stress occurs when the balance between the production of reactive oxygen species (ROS) and the ability of cells or tissues to detoxify the free radicals produced during metabolic activity is tilted in the favor of the former. Although hyperglycemia plays a key role in inducing oxidative stress in the diabetic nerve, the contribution of other factors, such as endoneurial hypoxia, transition metal imbalances, and hyperlipidemia have been also suggested. The possible sources for the overproduction of ROS in diabetes are widespread and include enzymatic pathways, auto-oxidation of glucose, and mitochondrial superoxide production. Increase in oxidative stress has clearly been shown to contribute to the pathology of neural and vascular dysfunction in diabetes. Potential therapies for preventing increased oxidative stress in diabetic nerve dysfunction will be discussed.
Collapse
Affiliation(s)
- Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
152
|
Ilnytska O, Lyzogubov VV, Stevens MJ, Drel VR, Mashtalir N, Pacher P, Yorek MA, Obrosova IG. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 2006; 55:1686-94. [PMID: 16731831 PMCID: PMC2228258 DOI: 10.2337/db06-0067] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation is emerging as a fundamental mechanism in the pathogenesis of diabetes complications including diabetic neuropathy. This study evaluated the role of PARP in diabetic sensory neuropathy. The experiments were performed in control and streptozotocin-induced diabetic rats treated with or without the PARP inhibitor 1,5-isoquinolinediol (ISO; 3 mg x kg(-1) x day(-1) i.p.) for 2 weeks after 2 weeks without treatment. Diabetic rats developed thermal hyperalgesia (assessed by paw-withdrawal and tail-flick tests), mechanical hyperalgesia (von Frey anesthesiometer/rigid filaments and Randall-Sellito tests), tactile allodynia (flexible von Frey filaments), and increased flinching behavior in phases 1 and 2 of the 2% formalin pain test. They also had clearly manifest increase in nitrotyrosine and poly(ADP-ribose) immunoreactivities in the sciatic nerve and increased superoxide formation (hydroxyethidine method) and nitrotyrosine immunoreactivity in vasa nervorum. ISO treatment alleviated abnormal sensory responses, including thermal and mechanical hyperalgesia and tactile allodynia as well as exaggerated formalin flinching behavior in diabetic rats, without affecting the aforementioned variables in the control group. Poly(ADP-ribose) and, to a lesser extent, nitrotyrosine abundance in sciatic nerve, as well as superoxide and nitrotyrosine formation in vasa nervorum, were markedly reduced by ISO therapy. Apoptosis in dorsal root ganglion neurons (transferase-mediated dUTP nick-end labeling assay) was not detected in any of the groups. In conclusion, PARP activation contributes to early diabetic sensory neuropathy by mechanisms that may include oxidative stress but not neuronal apoptosis.
Collapse
Affiliation(s)
- Olga Ilnytska
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Valeriy V. Lyzogubov
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Martin J. Stevens
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Viktor R. Drel
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nazar Mashtalir
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Pal Pacher
- Laboratory of Physiological Studies, National Insitutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Mark A. Yorek
- Veteran Affairs Medical Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Irina G. Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
153
|
Di Noia MA, Van Driesche S, Palmieri F, Yang LM, Quan S, Goodman AI, Abraham NG. Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes. J Biol Chem 2006; 281:15687-93. [PMID: 16595661 DOI: 10.1074/jbc.m510595200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity.
Collapse
|
154
|
Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV, Srinivasan S. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 2006; 116:344-56. [PMID: 16453021 PMCID: PMC1359053 DOI: 10.1172/jci26295] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/22/2005] [Indexed: 12/15/2022] Open
Abstract
Diabetes can result in loss of enteric neurons and subsequent gastrointestinal complications. The mechanism of enteric neuronal loss in diabetes is not known. We examined the effects of hyperglycemia on enteric neuronal survival and the effects of glial cell line-derived neurotrophic factor (GDNF) on modulating this survival. Exposure of primary enteric neurons to 20 mM glucose (hyperglycemia) for 24 hours resulted in a significant increase in apoptosis compared with 5 mM glucose (normoglycemia). Exposure to 20 mM glucose resulted in decreased Akt phosphorylation and enhanced nuclear translocation of forkhead box O3a (FOXO3a). Treatment of enteric neurons with GDNF ameliorated these changes. In streptozotocin-induced diabetic mice, there was evidence of myenteric neuronal apoptosis and reduced Akt phosphorylation. Diabetic mice had loss of NADPH diaphorase-stained myenteric neurons, delayed gastric emptying, and increased intestinal transit time. The pathophysiological effects of hyperglycemia (apoptosis, reduced Akt phosphorylation, loss of inhibitory neurons, motility changes) were reversed in diabetic glial fibrillary acidic protein-GDNF (GFAP-GDNF) Tg mice. In conclusion, we demonstrate that hyperglycemia induces neuronal loss through a reduction in Akt-mediated survival signaling and that these effects are reversed by GDNF. GDNF may be a potential therapeutic target for the gastrointestinal motility disorders related to diabetes.
Collapse
Affiliation(s)
- Mallappa Anitha
- Division of Digestive Diseases, Emory University, Atlanta, Georgia 30307, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Zhou J, Neale JH, Pomper MG, Kozikowski AP. NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 2005; 4:1015-26. [PMID: 16341066 DOI: 10.1038/nrd1903] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modulation of N-acetyl-L-aspartyl-L-glutamate peptidase activity with small-molecule inhibitors holds promise for a wide variety of diseases that involve glutamatergic transmission, and has implications for the diagnosis and therapy of cancer. This new class of compounds, of which at least one has entered clinical trials and proven to be well tolerated, has demonstrated efficacy in experimental models of pain, schizophrenia, amyotrophic lateral sclerosis, traumatic brain injury and, when appropriately functionalized, can image prostate cancer. Further investigation of these promising drug candidates will be needed to bring them to the marketplace. The recent publication of the X-ray crystal structure for the enzymatic target of these compounds should facilitate the development of other new agents with enhanced activity that could improve both the diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Jia Zhou
- Acenta Discovery, Inc., 9030 South Rita Road, Suite 300, Tucson, Arizona 85747, USA.
| | | | | | | |
Collapse
|
156
|
Vincent AM, Stevens MJ, Backus C, McLean LL, Feldman EL. Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. Antioxid Redox Signal 2005; 7:1494-506. [PMID: 16356113 DOI: 10.1089/ars.2005.7.1494] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The concept that oxidative stress is a key mediator of nerve injury in diabetes has led us to design therapies that target oxidative stress mechanisms. Using an in vitro model of glucose-treated dorsal root ganglion (DRG) neurons in culture, we can examine both free radical generation, using fluorimetric probes for reactive oxygen species, and cell death via the TUNEL assay. The cell culture system is scaled down to a 96-well plate format, and so is well suited to high-throughput screening. In the present study, we test the ability of three drugs, nicotinamide, allopurinol, and alpha-lipoic acid, alone and in combination to prevent DRG neuron oxidative stress and cell death. This combination of drugs is currently in clinical trial in type 1 diabetic patients. We demonstrate independent effects on oxidative stress and neuronal survival for the three drugs, and neuronal protection using the three drugs in combination. The data strengthen the rationale for the current clinical trial. In addition, we describe an effective tool for rapid preclinical testing of novel therapies against diabetic neuropathy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
157
|
Kamiya H, Zhangm W, Sima AAF. Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute type 1 diabetic BB/Wor rats. Diabetes 2005; 54:3288-95. [PMID: 16249457 DOI: 10.2337/diabetes.54.11.3288] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several groups have reported apoptosis of dorsal root ganglion (DRG) cells as a prominent feature of diabetic polyneuropathy (DPN), although this has been controversial. Here, we examined subacute (4-month) type 1 diabetic BB/Wor rats with respect to sensory nerve functions, DRG and sural nerve morphometry, pro- and antiapoptotic proteins, and the expression of neurotrophic factors and their receptors. Sensory nerve conduction velocity was reduced by 13% and was accompanied by significant hyperalgesia. The numbers of DRG neurons including substance P-and calcitonin gene-related peptide-positive neurons were not altered, although they showed significant atrophy. Sural nerve morphometry showed decreased numbers of myelinated and unmyelinated fibers. Active caspase-3 and Bax expressions were increased, whereas antiapoptotic Bcl-xl and heat shock protein (HSP) 27 expressions in DRGs were increased. Nerve growth factor (NGF) contents in sciatic nerves and the expression of NGF receptor TrkA in DRGs were decreased. Immunohistochemistry showed increased numbers of active caspase-3-, HSP70-, and HSP27-positive neurons. Examinations of DRGs revealed no structural evidence of apoptosis but rather progressive hydropic degenerative changes. We conclude that apoptotic stress is induced in DRGs but is counterbalanced by survival elements in subacute type 1 diabetic BB/Wor rats and that distal nerve fiber loss reflects a dying-back phenomenon caused by impaired neurotrophic support.
Collapse
Affiliation(s)
- Hideki Kamiya
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
158
|
Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Ischemia-reperfusion injury causes oxidative stress and apoptosis of Schwann cell in acute and chronic experimental diabetic neuropathy. Antioxid Redox Signal 2005; 7:1513-20. [PMID: 16356115 DOI: 10.1089/ars.2005.7.1513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mild ischemia-reperfusion (IR) injury to diabetic peripheral nerve is known to cause severe ischemic fiber degeneration. Little information is available on its effects on Schwann cell (SC). In this study, we evaluated oxidative stress and apoptosis of SC following mild IR, using immunohistochemistry in streptozotocin (STZ)- induced diabetic rats. Twenty-six rats were divided into four groups according to the duration of diabetes: 1- month STZ-induced diabetic group (n=7) and age-matched control group (n=7); 4-month STZ-induced diabetic group (n=6) and age-matched control group (n=6). Using our established IR model of 3 h of ischemia followed by 7 days of reperfusion, sciatic and tibial nerves were harvested and labeled with 8-hydroxydeoxyguanosine (8-OHdG; oxidative stress marker), caspase-3 (apoptotic executor), and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) activity (apoptotic indicator). Marked positive staining with 8-OHdG, caspase-3, and TUNEL were found in diabetic ischemic nerves (right side) following IR in both 1-month and 4-month groups. Only mild positive staining or no staining was seen in the nonischemic side (left side) of diabetic and age-matched control groups. Co-labeling with S-100 confirmed that the cells labeled with 8-OHdG, caspase3, and TUNEL were SC. SC was susceptible to oxidative injury and apoptosis in experimental diabetic neuropathy when subjected to mild IR injury.
Collapse
Affiliation(s)
- Yanping Wang
- Mayo Clinic, Department of Neurology, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
159
|
Terashima T, Kojima H, Fujimiya M, Matsumura K, Oi J, Hara M, Kashiwagi A, Kimura H, Yasuda H, Chan L. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc Natl Acad Sci U S A 2005; 102:12525-30. [PMID: 16116088 PMCID: PMC1194942 DOI: 10.1073/pnas.0505717102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is the most common microvascular complication of diabetes. Here we show that, in streptozotocin-induced diabetic rodents with neuropathy, a subpopulation of bone-marrow-derived cells marked by proinsulin expression migrates to and fuses with neurons in the sciatic nerve and dorsal root ganglion (DRG), resulting in neuronal dysfunction and accelerated apoptosis. The absence or presence of proinsulin expression, which identifies the fusion cells, and not the disease state (nondiabetic vs. diabetic) of the rats from which the DRG neurons are isolated determines whether the DRG neurons show normal or abnormal calcium homeostasis and apoptosis. These results suggest that bone-marrow-derived cells may play an important role in the pathogenesis of diabetic complications.
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- Calcium/metabolism
- Cell Fusion
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/genetics
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Gene Expression
- Homeostasis
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/metabolism
- Polyploidy
- Proinsulin/biosynthesis
- Proinsulin/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sciatic Nerve/metabolism
- Sciatic Nerve/pathology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Jiang Y, Zhang JS, Jakobsen J. Differential effect of p75 neurotrophin receptor on expression of pro-apoptotic proteins c-jun, p38 and caspase-3 in dorsal root ganglion cells after axotomy in experimental diabetes. Neuroscience 2005; 132:1083-92. [PMID: 15857712 DOI: 10.1016/j.neuroscience.2005.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 01/04/2005] [Accepted: 01/08/2005] [Indexed: 11/19/2022]
Abstract
We have hypothesized that p75 neurotrophin receptor (p75(NTR))-mediated activation of the pro-apoptotic proteins c-jun, p38 and caspase-3 underlies the neuronal cell loss in dorsal root ganglia (DRG) neurons after axotomy in normal mice, and that this activation is exaggerated in experimental diabetes. To test this hypothesized relationship, we compared the expression of pro-apoptotic proteins in fifth lumbar DRG (L5DRG) neurons of wildtype Balb/c (p75+/+) mice and p75(NTR) knockout (p75-/-) mice, assigned to either non-diabetic control groups or to diabetic (1 month) groups, all with a unilateral sciatic nerve crush produced 10 days before tissue preparation. The absolute number of L5DRG neurons expressing immunoreactivities (IR) for phosphorylated c-jun (P-c-jun-IR), phosphorylated p-38 (P-p38-IR) and cleaved caspase-3 (caspase-3-IR) were estimated in semi-thick sections using the optical fractionator. Nerve crush increased the numbers of P-c-jun-IR and caspase-3-IR neurons in all four groups. On the crush side, diabetes did not exaggerate the increase of P-c-jun-IR or caspase-3-IR neurons in p75+/+ mice, whereas in p75-/- mice diabetes reduced the increase of P-c-jun-IR neurons. Also, in p75-/- mice there was fewer caspase-3-IR cells on the intact and crushed side in comparison with p75+/+ mice independent of the presence of diabetes. This study demonstrates that (1) diabetes of 1 month's duration does not potentiate the expression of three pro-apoptotic markers p38, caspase-3 and P-c-jun neither in intact neurons nor after nerve crush, and that (2) p75(NTR) is required for activation of the pro-apoptosis signal caspase-3 after nerve crush in both diabetic and non-diabetic mice.
Collapse
Affiliation(s)
- Y Jiang
- Department of Neurology, Aarhus University Hospital, Denmark.
| | | | | |
Collapse
|
161
|
Abstract
Cardiovascular disease is the most common cause of death in the diabetic population and is currently one of the leading causes of death in the United States and other industrialized countries. The health care expenses associated with cardiovascular disease are staggering, reaching more than 350 billion dollars in 2003. The risk factors for cardiovascular disease include high fat/cholesterol levels, alcoholism, smoking, genetics, environmental factors and hypertension, which are commonly used to gauge an individual's risk of cardiovascular disease and to track their progress during therapy. Most recently, these factors have become important in the early prevention of cardiovascular diseases. Oxidative stress, the imbalance between reactive oxygen species production and breakdown by endogenous antioxidants, has been implicated in the onset and progression of cardiovascular diseases such as congestive heart failure and diabetes-associated heart dysfunction (diabetic cardiomyopathy). Antioxidant therapy has shown promise in preventing the development of diabetic heart complications. This review focuses on recent advances in oxidative stress theory and antioxidant therapy in diabetic cardiomyopathy, with an emphasis on the stress signaling pathways hypothesized to be involved. Many of these stress signaling pathways lead to activation of reactive oxygen species, major players in the development and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Loren E Wold
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
162
|
Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, Rodrigues B. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 2005; 289:H768-76. [PMID: 15805231 DOI: 10.1152/ajpheart.00038.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, l-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Huang TJ, Sayers NM, Verkhratsky A, Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol 2005; 194:279-83. [PMID: 15899264 DOI: 10.1016/j.expneurol.2005.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/03/2005] [Accepted: 03/07/2005] [Indexed: 11/29/2022]
Abstract
Sensory neurons from streptozotocin (STZ)-diabetic rats exhibit depolarization of mitochondria and the related induction of reactive oxygen species has been proposed to contribute to the etiology of sensory polyneuropathy in diabetes. There is deficient neurotrophin-3 (NT-3)-dependent neurotrophic support of sensory neurons in diabetes and treatment of STZ-diabetic rats with NT-3 prevents neuropathological alterations in peripheral nerve. Therefore, we hypothesized that loss of NT-3 may contribute to mitochondrial dysfunction in sensory neurons in diabetic sensory neuropathy. The specific aim of this study was to determine whether treatment of STZ-diabetic rats with systemic NT-3 could prevent depolarization of the mitochondrial inner membrane potential (Deltapsi(m)). In vitro studies with cultured DRG neurons from control rats revealed that treatment with 50 ng/ml NT-3 for 6 h enhanced the Deltapsi(m), e.g., a higher polarized membrane potential, compared to untreated neurons (P < 0.05). Studies on DRG sensory neurons from control vs. STZ-diabetic rats demonstrated that NT-3 therapy prevented the diabetes-induced depolarization of Deltapsi(m) (P < 0.05) in parallel with normalization of diabetes-dependent deficits in sensory nerve conduction velocity. Furthermore, alterations in mitochondrial function in vitro and in vivo correlated with the level of activation/expression of Akt in DRG neurons.
Collapse
Affiliation(s)
- T-J Huang
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
164
|
|
165
|
Huang TJ, Verkhratsky A, Fernyhough P. Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol Cell Neurosci 2005; 28:42-54. [PMID: 15607940 DOI: 10.1016/j.mcn.2004.08.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/08/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022] Open
Abstract
We tested the hypothesis that neurotrophic factors control neuronal metabolism by directly regulating mitochondrial function in the absence of effects on survival. Real-time whole cell fluorescence video microscopy was utilized to analyze mitochondrial inner membrane potential (Delta Psi(m)), which drives ATP synthesis, in cultured adult sensory neurons. These adult neurons do not require neurotrophic factors for survival. Insulin and other neurotrophic factors increased Delta Psi(m) 2-fold compared with control over a 6- to 24-h period (P < 0.05). Insulin modulated Delta Psi(m) by activation of the phosphoinositide 3-kinase (PI 3-K) pathway. Insulin also induced rapid and long-term (30 h) PI 3-K-dependent phosphorylation of Akt and cAMP response element binding protein (CREB). Additionally, insulin elevated the redox state of the mitochondrial NAD(P)H pool, increased hexokinase activity (first committed step of glycolysis), and raised ATP levels. This study demonstrates that insulin utilizes the PI 3-K/Akt pathway to augment ATP synthesis that we propose contributes to the energy requirement for neurotrophic factor-driven axon regeneration.
Collapse
Affiliation(s)
- Tze-Jen Huang
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
166
|
Abstract
Primary diabetic encephalopathy is a recently recognized late complication of diabetes resulting in a progressive decline in cognitive faculties. In the spontaneously type 1 diabetic BB/Wor rat, we recently demonstrated that cognitive impairment was associated with hippocampal apoptotic neuronal loss. Here, we demonstrate that replacement of proinsulin C-peptide in this insulinopenic model significantly prevented spatial learning and memory deficits and hippocampal neuronal loss. C-peptide replacement prevented oxidative stress-, endoplasmic reticulum-, nerve growth factor receptor p75-, and poly(ADP-ribose) polymerase-related apoptotic activities. It partially ameliorated apoptotic stresses mediated via impaired insulin and IGF activities. These findings were associated with the prevention of increased expression of Bax and active caspase 3 and the frequency of caspase 3-positive neurons. The results show that several partially interrelated apoptotic mechanisms are involved in primary encephalopathy and suggest that impaired insulinomimetic action by C-peptide plays a prominent role in cognitive dysfunction and hippocampal apoptosis in type 1 diabetes. Although these abnormalities were not fully prevented by C-peptide replacement, the findings suggest that this regime will substantially prevent cognitive decline in the type 1 diabetic population.
Collapse
Affiliation(s)
- Anders A F Sima
- Wayne State University School of Medicine, Department of Pathology, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| | | |
Collapse
|
167
|
Li ZG, Zhang W, Sima AAF. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 2005; 1037:12-24. [PMID: 15777748 DOI: 10.1016/j.brainres.2004.11.063] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 11/08/2004] [Accepted: 11/16/2004] [Indexed: 11/16/2022]
Abstract
We have previously shown that hippocampal neuronal apoptosis accompanied by impaired cognitive functions occurs in type 1 diabetic BB/Wor rats. To differentiate the contribution by insulin deficiency vs. that by hyperglycemia on neuronal apoptosis, we examined the activities of various apoptotic pathways in hippocampi from type 1 diabetic BB/Wor rats (hyperglycemic and insulinopenic) and type 2 diabetic BBZDR/Wor rats (hyperglycemic and hyperinsulinemic). DNA fragmentation was demonstrated by LM-PCR in type 1 diabetic BB/Wor rats, but was not detectable in duration- and hyperglycemia-matched type 2 BBZDR/Wor rats. Of various apoptotic pathways, Fas activations, 8-OHdG expression, and caspase-12 were demonstrated in type 1 diabetic BB/Wor rats only. In contrast, perturbations of the IGF and NGF systems and PARP activation were demonstrated in type 1 and to a lesser extent in type 2 diabetes. Expressions of Bax and active caspase-3 were significantly increased in type 1, but not in type 2, diabetic rats. These data suggest a lesser apoptogenic stress in type 2 vs. type 1 diabetes. These differences translated into a more profound neuronal loss in the hippocampus of type 1 rats. The results demonstrate that caspase-dependent apoptotic activities dominate in type 1 diabetes, whereas PARP-mediated caspase-independent apoptotic stress is present in both type 1 and type 2 diabetes. The findings suggest that insulin deficiency plays a compounding role to that of hyperglycemia in neuronal apoptosis underpinning primary diabetic encephalopathy.
Collapse
Affiliation(s)
- Zhen-Guo Li
- Department of Pathology, Wayne State University, School of Medicine, H.G. Scott Hall, Room 9275, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
168
|
Vincent AM, McLean LL, Backus C, Feldman EL. Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 2005; 19:638-40. [PMID: 15677696 DOI: 10.1096/fj.04-2513fje] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dorsal root ganglia neurons in culture die through programmed cell death when exposed to elevated glucose, providing an in vitro model system for the investigation of the mechanisms leading to diabetic neuropathy. This study examines the time course of programmed cell death induction, regulation of cellular antioxidant capacity, and the protective effects of antioxidants in neurons exposed to hyperglycemia. We demonstrate that the first 2 h of hyperglycemia are sufficient to induce oxidative stress and programmed cell death. Using fluorimetric analysis of reactive oxygen species (ROS) production, in vitro assays of antioxidant enzymes, and immunocytochemical assays of cell death, we demonstrate superoxide formation, inhibition of aconitase, and lipid peroxidation within 1 h of hyperglycemia. These are followed by caspase-3 activation and DNA fragmentation. Antioxidant potential increases by 3-6 h but is insufficient to protect these neurons. Application of the antioxidant alpha-lipoic acid potently prevents glucose-induced oxidative stress and cell death. This study identifies cellular therapeutic targets to prevent diabetic neuropathy. Since oxidative stress is a common feature of the micro- and macrovascular complications of diabetes, the present findings have broad application to the treatment of diabetic patients.
Collapse
Affiliation(s)
- Andrea M Vincent
- University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
169
|
Wright DE, Ryals JM, McCarson KE, Christianson JA. Diabetes-induced expression of activating transcription factor 3 in mouse primary sensory neurons. J Peripher Nerv Syst 2004; 9:242-54. [PMID: 15574137 DOI: 10.1111/j.1085-9489.2004.09404.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Diabetic neuropathy (DN) is a complication of diabetes that affects the distal terminals of lengthy-projecting sensory axons. To determine whether diabetes-induced axonal degeneration induces gene expression similar to nerve injury, the expression of activating transcription factor 3 (ATF3) by primary sensory neurons was examined in an experimental mouse model of DN. Diabetes was induced using streptozotocin in C57BL/6 mice, and ATF3 expression in lumbar dorsal root ganglia was assessed at different time points and correlated with the markers of unmyelinated and myelinated neuronal populations. ATF expression was first evident 3 weeks after diabetes induction in both small unmyelinated and large myelinated neurons, but it was more prevalent in larger neurons. At 6 weeks, ATF3 was expressed by neurons among smaller size ranges, but this shift occurred principally within myelinated populations. The retrograde labeling of neurons innervating the flank and paw skin using Fluoro-Gold labeled appropriate percentages of ATF3-positive neurons at 3 weeks, suggesting ATF3 is expressed by neurons capable of transporting substances. However, the percentage of double-labeled neurons was substantially reduced at 6 weeks, suggesting this capacity decreases during disease progression. Finally, behavioral responses to noxious cutaneous stimuli were assessed. Although no differences to radiant heat were observed, diabetic mice developed severe mechanical hypoalgesia 4-5 weeks after diabetes induction. These results demonstrate that the diabetes-induced damage of sensory axons can induce the expression of genes linked to peripheral nerve injury and may identify neurons undergoing nerve damage. Finally, the ability to detect sensory deficits in diabetic mice occurs after the expression of injury-related gene ATF3, suggesting that nerve damage may be underway prior to the appearance of behavioral deficits.
Collapse
Affiliation(s)
- Douglas E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
170
|
Li ZG, Britton M, Sima AAF, Dunbar JC. Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 2004; 76:249-62. [PMID: 15531378 DOI: 10.1016/j.lfs.2004.03.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 03/02/2004] [Indexed: 01/04/2023]
Abstract
The aim of this study is to explore the mechanism by which diabetes exaggerates cerebral stroke and its outcome. Since ischemia can be related to not only necrosis but apoptosis as well, we compared the development of apoptosis in STZ-diabetic rats and STZ-diabetic rats subjected to occlusion of the middle cerebral artery (MCA). 24-48 hr following MCA occlusion the animals were killed, the brain removed and prepared for evaluation by several indexes of apoptosis: nucleosomal DNA fragmentation, TUNEL staining, activation of caspase-3 and alteration in the expression of Bax and Bcl2. DNA fragmentation was not detected in the cortex of normal and diabetic animals, but was evident following MCA occlusion in diabetic rats. Bax expression was increased in the cortex of normal rats following MCA occlusion and this expression was further increased in the cortex of MCA occluded diabetic rats. Bcl2 expression was not changed in any of the groups. In the hippocampus, DNA fragmentation was not evident in control rats but was observed in diabetic rats. Ischemic injury did not enhance DNA laddering in diabetic animals. The expression of Bax was increased in diabetic rats but was not increased following MCA occlusion. Bcl2 expression was not changed by ischemia in any of the animal models. These data suggest that diabetes may enhance the development of stroke via increased cortical apoptotic activity but this was not additive in the hippocampus following ischemic injury.
Collapse
Affiliation(s)
- Zhen-guo Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
171
|
Namaka M, Gramlich CR, Ruhlen D, Melanson M, Sutton I, Major J. A treatment algorithm for neuropathic pain. Clin Ther 2004; 26:951-79. [PMID: 15336464 DOI: 10.1016/s0149-2918(04)90171-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neuropathic pain is a chronic pain syndrome caused by drug-, disease-, or injury-induced damage or destruction of sensory neurons within the dorsal root ganglia of the peripheral nervous system. Characteristic clinical symptoms include the feeling of pins and needles; burning, shooting, and/or stabbing pain with or without throbbing; and numbness. Neuronal hyperexcitability represents the hallmark cellular mechanism involved in the underlying pathophysiology of neuropathic pain. Although the primary goal is to alleviate pain, clinicians recognize that even the most appropriate treatment strategy may be, at best, only able to reduce pain to a more tolerable level. OBJECTIVE The purpose of this review is to propose a treatment algorithm for neuropathic pain that health care professionals can logically follow and adapt to the specific needs of each patient. The algorithm is intended to serve as a general guide to assist clinicians in optimizing available therapeutic options. METHODS A comprehensive review of the literature using the PubMed, MEDLINE, Cochrane, and Toxnet databases was conducted to design and develop a novel treatment algorithm for neuropathic pain that encompasses agents from several drug classes, including antidepressants, antiepileptic drugs, topical antineuralgic agents, narcotics, and analgesics, as well as various treatment options for refractory cases. RESULTS Any of the agents in the first-line drug classes (tricyclic antidepressants, antiepileptic drugs, topical antineuralgics, analgesics) may be used as a starting point in the treatment of neuropathic pain. If a patient does not respond to treatment with at least 3 different agents within a drug class, agents from a second drug class may be tried. When all first-line options have been exhausted, narcotic analgesics or refractory treatment options may provide some benefit. Patients who do not respond to monotherapy with any of the first- or second-line agents may respond to combination therapy or may be candidates for referral to a pain clinic. Because the techniques used at pain clinics tend to be invasive, referrals to these clinics should be reserved for patients who are truly refractory to all forms of pharmacotherapy. CONCLUSIONS Neuropathic pain continues to be one of the most difficult pain conditions to treat. With the proposed algorithm, clinicians will have a framework from which to design a pain treatment protocol appropriate for each patient. The algorithm will also help streamline referrals to specialized pain clinics, thereby reducing waiting list times for patients who are truly refractory to traditional pharmacotherapy.
Collapse
Affiliation(s)
- Mike Namaka
- University of Manitoba, Health Sciences Centre, Winnipeg, Manitoba R3T 2N2, Canada.
| | | | | | | | | | | |
Collapse
|
172
|
Hong S, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 2004; 280:618-27. [PMID: 15513920 DOI: 10.1074/jbc.m408500200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain. Here we investigated the function and expression of VR1 in dorsal root ganglion (DRG) neurons isolated from streptozotocin-induced diabetic rats between 4 and 8 weeks after onset of diabetes. DRG neurons from diabetic rats showed significant increases in capsaicin- and proton-activated inward currents. These evoked currents were completely blocked by the capsaicin antagonist capsazepine. Capsaicin-induced desensitization of VR1 was down-regulated, whereas VR1 re-sensitization was up-regulated in DRG neurons from diabetic rats. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate blunted VR1 desensitization, and this effect was reversible in the presence of the PKC inhibitor bisindolylmaleimide I. Compared with the controls, VR1 protein was decreased in DRG whole-cell homogenates from diabetic rats, but increased levels of VR1 protein were observed on plasma membranes. Of interest, the tetrameric form of VR1 increased significantly in DRGs from diabetic rats. Increased phosphorylation levels of VR1 were also observed in DRG neurons from diabetic rats. Colocalization studies demonstrated that VR1 expression was increased in large myelinated A-fiber DRG neurons, whereas it was decreased in small unmyelinated C-fiber neurons as a result of diabetes. These results suggest that painful diabetic neuropathy is associated with altered cell-specific expression of the VR1 receptor that is coupled to increased function through PKC-mediated phosphorylation, oligomerization, and targeted expression on the cell surface membrane.
Collapse
Affiliation(s)
- Shuangsong Hong
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
173
|
Tam J, Rosenberg L, Maysinger D. INGAP peptide improves nerve function and enhances regeneration in streptozotocin-induced diabetic C57BL/6 mice. FASEB J 2004; 18:1767-9. [PMID: 15345684 DOI: 10.1096/fj.04-1894fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INGAP peptide comprises the core active sequence of Islet Neogenesis Associated Protein (INGAP), a pancreatic cytokine that can induce new islet formation and restore euglycemia in diabetic rodents. The ability of INGAP peptide in vitro to enhance nerve growth from sensory ganglia suggests its potential utility in peripheral nerve disorders. In this study, INGAP peptide was administered alone or in combination with insulin to streptozotocin-induced diabetic mice exhibiting signs of peripheral neuropathy. Following a 2-wk treatment period, thermal hypoalgesia in diabetic mice was significantly improved in groups that received INGAP peptide, without development of hyperalgesia. Explanted dorsal root ganglia (DRG) from these groups showed enhanced nerve outgrowth and evidence of increased mitochondrial activity. Western blotting experiments revealed attenuation of neurofilament hyperphosphorylation, up-regulation of beta-tubulin and actin, and increased phosphorylation of the transcription factor STAT3 in DRG. These findings suggest that INGAP peptide can activate some of the signaling pathways implicated in nerve regeneration in sensory ganglia, thereby providing a means of improvement of nociceptive dysfunction in the peripheral nervous system.
Collapse
Affiliation(s)
- Joseph Tam
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
174
|
Stevens MJ, Zhang W, Li F, Sima AAF. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 2004; 287:E497-505. [PMID: 15126237 DOI: 10.1152/ajpendo.00048.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidative stress and neurovascular dysfunction have emerged as contributing factors to the development of experimental diabetic neuropathy (EDN) in streptozotocin-diabetic rodents. Additionally, depletion of C-peptide has been implicated in the pathogenesis of EDN, but the mechanisms of these effects have not been fully characterized. The aims of this study were therefore to explore the effects of diabetes on neurovascular dysfunction and indexes of nerve oxidative stress in type 1 bio-breeding Worcester (BB/Wor) rats and type 2 BB Zucker-derived (ZDR)/Wor rats and to determine the effects of C-peptide replacement in the former. Motor and sensory nerve conduction velocities (NCVs), hindlimb thermal thresholds, endoneurial blood flow, and indicators of oxidative stress were evaluated in nondiabetic control rats, BB/Wor rats, BB/Wor rats with rat II C-peptide replacement (75 nmol C-peptide.kg body wt(-1).day(-1)) for 2 mo, and diabetes duration-matched BBZDR/Wor rats. Endoneurial perfusion was decreased and oxidative stress increased in type 1 BB/Wor rats. C-peptide prevented NCV and neurovascular deficits and attenuated thermal hyperalgesia. Inhibition of nitric oxide (NO) synthase, but not cyclooxygenase, reversed the C-peptide-mediated effects on NCV and nerve blood flow. Indexes of oxidative stress were unaffected by C-peptide. In type 2 BBZDR/Wor rats, neurovascular deficits and increased oxidative stress were unaccompanied by sensory NCV slowing or hyperalgesia. Therefore, nerve oxidative stress is increased and endoneurial perfusion decreased in type 1 BB/Wor and type 2 BBZDR/Wor rats. NO and neurovascular mechanisms, but not oxidative stress, appear to contribute to the effects of C-peptide in type 1 EDN. Sensory nerve deficits are not an inevitable consequence of increased oxidative stress and decreased nerve perfusion in a type 2 diabetic rodent model.
Collapse
Affiliation(s)
- Martin J Stevens
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | |
Collapse
|
175
|
Affiliation(s)
- Andrea M Vincent
- Department of Neurology at University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
176
|
Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem 2004; 279:29341-50. [PMID: 15123645 PMCID: PMC1828032 DOI: 10.1074/jbc.m404167200] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4-8 weeks after onset of diabetes. Diabetic rats demonstrated a significant reduction in the threshold for escape from innocuous mechanical pressure (allodynia) and a reduction in the latency to withdrawal from a noxious thermal stimulus (hyperalgesia). Both TTX-S and TTX-R sodium currents increased significantly in small DRG neurons isolated from diabetic rats. The voltage-dependent activation and steady-state inactivation curves for these currents were shifted negatively. TTX-S currents induced by fast or slow voltage ramps increased markedly in neurons from diabetic rats. Immunoblots and immunofluorescence staining demonstrated significant increases in the expression of Na(v)1.3 (TTX-S) and Na(v) 1.7 (TTX-S) and decreases in the expression of Na(v) 1.6 (TTX-S) and Na(v)1.8 (TTX-R) in diabetic rats. The level of serine/threonine phosphorylation of Na(v) 1.6 and In Na(v)1.8 increased in response to diabetes. addition, increased tyrosine phosphorylation of Na(v)1.6 and Na(v)1.7 was observed in DRGs from diabetic rats. These results suggest that both TTX-S and TTX-R sodium channels play important roles and that differential phosphorylation of sodium channels involving both serine/threonine and tyrosine sites contributes to painful diabetic neuropathy.
Collapse
Affiliation(s)
- Shuangsong Hong
- Department of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
177
|
da-Silva WS, Gómez-Puyou A, de Gómez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L, Oliveira MF, Galina A. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 2004; 279:39846-55. [PMID: 15247300 DOI: 10.1074/jbc.m403835200] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain hexokinase is associated with the outer membrane of mitochondria, and its activity has been implicated in the regulation of ATP synthesis and apoptosis. Reactive oxygen species (ROS) are by-products of the electron transport chain in mitochondria. Here we show that the ADP produced by hexokinase activity in rat brain mitochondria (mt-hexokinase) controls both membrane potential (Deltapsi(m)) and ROS generation. Exposing control mitochondria to glucose increased the rate of oxygen consumption and reduced the rate of hydrogen peroxide generation. Mitochondrial associated hexokinase activity also regulated Deltapsi(m), because glucose stabilized low Deltapsi(m) values in state 3. Interestingly, the addition of glucose 6-phosphate significantly reduced the time of state 3 persistence, leading to an increase in the Deltapsi(m) and in H(2)O(2) generation. The glucose analogue 2-deoxyglucose completely impaired H(2)O(2) formation in state 3-state 4 transition. In sharp contrast, the mt-hexokinase-depleted mitochondria were, in all the above mentioned experiments, insensitive to glucose addition, indicating that the mt-hexokinase activity is pivotal in the homeostasis of the physiological functions of mitochondria. When mt-hexokinase-depleted mitochondria were incubated with exogenous yeast hexokinase, which is not able to bind to mitochondria, the rate of H(2)O(2) generation reached levels similar to those exhibited by control mitochondria only when an excess of 10-fold more enzyme activity was supplemented. Hyperglycemia induced in embryonic rat brain cortical neurons increased ROS production due to a rise in the intracellular glucose 6-phosphate levels, which were decreased by the inclusion of 2-deoxyglucose, N-acetyl cysteine, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Taken together, the results presented here indicate for the first time that mt-hexokinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.
Collapse
Affiliation(s)
- Wagner Seixas da-Silva
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Fukunaga M, Miyata S, Liu BF, Miyazaki H, Hirota Y, Higo S, Hamada Y, Ueyama S, Kasuga M. Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochem Biophys Res Commun 2004; 320:689-95. [PMID: 15240103 DOI: 10.1016/j.bbrc.2004.06.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Indexed: 10/26/2022]
Abstract
The formation of glucose-derived methylglyoxal (MG), a highly reactive dicarbonyl compound, is accelerated under diabetic conditions. We examined whether MG was capable of inducing apoptosis in Schwann cells (SCs), since recent studies have suggested a potential involvement of apoptotic cell death in the development of diabetic neuropathy. MG induced apoptosis in SCs in a dose-dependent manner, accompanied by a reduction of intracellular glutathione content and activation of the p38 MAPK. Inhibiting the p38 MAPK activation by SB203580 successfully suppressed the MG-induced apoptosis in SCs. Aminoguanidine and N-acetyl-L-cysteine also inhibited the MG-induced p38 MAPK activation and apoptosis along with restoration of the intracellular glutathione content. These results suggest a potential role for MG in SC injury through oxidative stress-mediated p38 MAPK activation under diabetic conditions, and it may serve as a novel insight into therapeutic strategies for diabetic neuropathy.
Collapse
Affiliation(s)
- Michiru Fukunaga
- Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Diabetic neuropathy typically present as a mixture of sensory, motor and autonomic involvement. The development and severity of the neuropathy varies. This article briefly reviews the types of diabetic neuropathy and their relationship to pain and discusses the proposed etiologies.
Collapse
Affiliation(s)
- Christopher F Hyer
- Orthopedic Foot and Ankle Center, 6200 Cleveland Avenue, Suite 100, Columbus, OH 43231, USA
| | | | | | | |
Collapse
|
180
|
Guo C, Quobatari A, Shangguan Y, Hong S, Wiley JW. Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat. Neurogastroenterol Motil 2004; 16:335-45. [PMID: 15198656 DOI: 10.1111/j.1365-2982.2004.00524.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We examined the hypothesis that activation of the apoptosis cascade occurs relatively early in diabetes mellitus affecting three distinct neuronal populations that are involved in regulating gut function: (i) dorsal root ganglion (DRG), (ii) vagus nodose ganglion and (iii) colon myenteric plexus. A validated streptozotocin-induced diabetic rat model and age-matched healthy controls were studied. After 4-8 weeks of diabetes the animals were anaesthetized, fixed in situ and the relevant tissues removed. After 1 month of diabetes some animals were treated with insulin for 2 weeks to restore euglycaemia. Apoptosis was measured using immunohistochemical detection of activated caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)-positive cells in adjacent sections in neurones (PGP 9.5-positive cells). The level of apoptosis was confirmed using double-label assessment of caspase-3 and TUNEL in DRG preparations. Caspase-3 immunoreactive neurones demonstrated a range in staining intensity. When all grades of staining were included, 6-8% of the DRG, nodose ganglia and myenteric neurones were immunoreactive in the preparations from diabetic rats compared with 0.2-0.5% in controls. Neurones staining positive for both caspase-3 and TUNEL accounted for 1-2% of the total neuronal population in all three preparations in diabetic rats compared with 0.1-0.2% in controls (P < 0.05). Insulin treatment reversed the percentage of TUNEL-positive neurones in diabetic rats to control levels. Activation of the apoptosis cascade occurs relatively early in diabetic autonomic neuropathy and may contribute to the pathophysiology of this disorder.
Collapse
Affiliation(s)
- C Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
181
|
Gustafsson H, Söderdahl T, Jönsson G, Bratteng JO, Forsby A. Insulin-like growth factor type 1 prevents hyperglycemia-induced uncoupling protein 3 down-regulation and oxidative stress. J Neurosci Res 2004; 77:285-91. [PMID: 15211595 DOI: 10.1002/jnr.20142] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Uncoupling proteins (UCPs) have been reported to decrease the mitochondrial production of reactive oxygen species (ROS) by lowering the mitochondrial inner membrane potential (MMP). We have previously shown that UCP3 expression is positively regulated by insulin-like growth factor-1 (IGF-1). The aim of this study was to investigate the role of UCPs in IGF-1-mediated protection from hyperglycemia-induced oxidative stress and neurodegeneration. Human neuroblastoma SH-SY5Y cells were differentiated with retinoic acid for 6 days, after which exposure to 8, 30, or 60 mM glucose with or without 10 nM IGF-1 was started. After 48-72 hr, the number of neurites per cell, UCP3 protein expression, MMP, and intracellular levels of ROS and total glutathione were examined. These studies showed that glucose concentration-dependently reduced the number of neurites per cell, with a 50% reduction at 60 mM. In parallel, the UCP3 protein expression was down-regulated, and the MMP was raised 3.5-fold, compared with those in cells incubated with 8 mM glucose. Also, the ROS levels were increased, showing a twofold maximum at 60 mM glucose. This was accompanied by a twofold elevation of total glutathione levels, confirming an altered cellular redox state. IGF-1 treatment prevented the glucose-induced neurite degeneration and UCP3 down-regulation. Furthermore, the MMP and the intracellular levels of ROS and glutathione were normalized to those of control cells. These data indicate that IGF-1 may protect from hyperglycemia-induced oxidative stress and neuronal injuries by regulating MMP, possibly by the involvement of UCP3.
Collapse
Affiliation(s)
- Helena Gustafsson
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
182
|
Leinninger GM, Russell JW, van Golen CM, Berent A, Feldman EL. Insulin-like growth factor-I regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ 2004; 11:885-96. [PMID: 15105834 DOI: 10.1038/sj.cdd.4401429] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neuroblastoma, a pediatric peripheral nervous system tumor, frequently contains alterations in apoptotic pathways, producing chemoresistant disease. Insulin-like growth factor (IGF) system components are highly expressed in neuroblastoma, further protecting these cells from apoptosis. This study investigates IGF-I regulation of apoptosis at the mitochondrial level. Elevated extracellular glucose causes rapid mitochondrial enlargement coupled with an increase in the mitochondrial membrane potential (Delta Psi(M)) followed by mitochondrial membrane depolarization (MMD), uncoupling protein 3 (UCP3) downregulation, caspase-3 activation and decreased Bcl-2. MMD inhibition by Bongkrekic acid prevents high-glucose-induced loss of UCP3 and apoptosis. Glucose exposure induces caspase-9 cleavage within 30 min, and caspase-9 inhibition prevents glucose-mediated apoptosis. IGF-I prevents caspase activation and mitochondrial events leading to apoptosis. These results suggest that elevated glucose produces early initiator caspase activation, followed by Delta Psi(M) changes, in neuroblastoma cells; in turn, IGF-I prevents apoptosis by preventing downstream caspase activation, maintaining Delta Psi(M) and regulating Bcl proteins.
Collapse
Affiliation(s)
- G M Leinninger
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
183
|
Malina HZ, Hess OM. Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function. BMC Cell Biol 2004; 5:14. [PMID: 15068490 PMCID: PMC400728 DOI: 10.1186/1471-2121-5-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 04/06/2004] [Indexed: 11/10/2022] Open
Abstract
Background Xanthurenic acid is an endogenous molecule produced by tryptophan degradation, produced in the cytoplasm and mitochondria. Its accumulation can be observed in aging-related diseases, e.g. senile cataract and infectious disease. We previously reported that xanthurenic acid provokes apoptosis, and now present a study of the response of mitochondria to xanthurenic acid. Results Xanthurenic acid at 10 or 20 μM in culture media of human aortic smooth muscle cells induces translocation of the proteins Bax, Bak, Bclxs, and Bad into mitochondria. In 20 μM xanthurenic acid, Bax is also translocated to the nucleus. In isolated mitochondria xanthurenic acid leads to Bax and Bclxs oligomerization, accumulation of Ca2+, and increased oxygen consumption. Conclusion Xanthurenic acid interacts directly with Bcl-2 family proteins, inducing mitochondrial pathways of apoptosis and impairing mitochondrial functions.
Collapse
Affiliation(s)
- Halina Z Malina
- Xanthurenic Acid Laboratory, Department Cardiology, Inselspital, CH-3010 Bern, Switzerland
| | - Otto M Hess
- Swiss Cardiovascular Research Center, University Hospital-Inselspital, CH-3010 Bern, Switzerland
| |
Collapse
|
184
|
Berent-Spillson A, Robinson AM, Golovoy D, Slusher B, Rojas C, Russell JW. Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. J Neurochem 2004; 89:90-9. [PMID: 15030392 DOI: 10.1111/j.1471-4159.2003.02321.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.
Collapse
|
185
|
Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 2004; 53:726-34. [PMID: 14988258 DOI: 10.2337/diabetes.53.3.726] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The central role of mitochondria in most pathways leading to programmed cell death (PCD) has focused our investigations into the mechanisms of glucose-induced neuronal degeneration. It has been postulated that hyperglycemic neuronal injury results from mitochondria membrane hyperpolarization and reactive oxygen species formation. The present study not only provides further evidence to support our model of glucose-induced PCD but also demonstrates a potent ability for uncoupling proteins (UCPs) to prevent this process. Dorsal root ganglion (DRG) neurons were screened for UCP expression by Western blotting and immunocytochemistry. The abilities of individual UCPs to prevent hyperglycemic PCD were assessed by adenovirus-mediated overexpression of UCP1 and UCP3. Interestingly, UCP3 is expressed not only in muscle, but also in DRG neurons under control conditions. UCP3 expression is rapidly downregulated by hyperglycemia in diabetic rats and by high glucose in cultured neurons. Overexpression of UCPs prevents glucose-induced transient mitochondrial membrane hyperpolarization, reactive oxygen species formation, and induction of PCD. The loss of UCP3 in DRG neurons may represent a significant contributing factor in glucose-induced injury. Furthermore, the ability to prevent UCP3 downregulation or to reproduce the uncoupling response in DRG neurons constitutes promising novel approaches to avert diabetic complications such as neuropathy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
186
|
Abstract
The first purpose of this article is to examine general signaling transduction processes that become deranged in diabetes and the means by which they damage cells. However, among the cells that can be damaged by diabetes, the primary sensory neurons, also known as dorsal root ganglion (DRG) neurons, are uniquely sensitive. Damage to these cells results in diabetic peripheral neuropathy (DPN), one of the costliest and most common diabetic complications. Therefore, the second purpose of this article is to focus attention on factors that make these cells particularly vulnerable to hyperglycemic damage. Some clinical inferences are drawn from these considerations. Finally, limitations in our knowledge about the effects of diabetes on signaling in DRG neurons are illustrated in an overview of the basic research literature.
Collapse
Affiliation(s)
- Jeannette M McHugh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | |
Collapse
|
187
|
Cowell RM, Russell JW. Nitrosative Injury and Antioxidant Therapy in the Management of Diabetic Neuropathy. J Investig Med 2004. [DOI: 10.1177/108155890405200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Strong evidence implicates oxidative stress as a mediator of diabetes-induced microvascular complications, including distal symmetric polyneuropathy. Dorsal root ganglia neurons are particularly susceptible to glucose-mediated oxidative stress and die by apoptotic mechanisms in animal and cell culture models of diabetes. Key mediators of glucose-induced oxidative injury are superoxide anions and nitric oxide (NO). Superoxides are believed to underlie many of the oxidative changes in hyperglycemic conditions, including increases in aldose reductase and protein kinase C activity. Superoxides can also react with NO, forming peroxynitrite (ONOO-), which rapidly causes protein nitration or nitrosylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and cell death. ONOO- formation is dependent on both superoxide and NO concentrations; therefore, cells that constitutively express NO synthase, such as endothelial cells and neurons, may be more vulnerable to ONOO–induced cell death in conditions favoring the production of superoxides. Although NO and ONOO- can cause endothelial and neuronal cell death in vitro, in animal models of diabetes, reductions in endothelial NO production can inhibit vasodilatation and cause nerve ischemia. Therefore, ideal therapeutic approaches should limit the formation of superoxides and ONOO while preventing reductions in vascular NO. Despite strong evidence that oxidative stress is associated with complications of diabetes, including neuropathy, the results of clinical trials of antioxidants have shown some promise but not established therapeutic efficacy. Clinical studies of several antioxidants, including α-lipoic acid, vitamins C and E, aldose reductase inhibitors, and growth factors, in diabetic neuropathy are discussed.
Collapse
Affiliation(s)
- Rita M. Cowell
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - James W. Russell
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Department of Neurology Ann Arbor Veterans Administrative Medical Center, Ann Arbor, MI
| |
Collapse
|
188
|
Matsuka Y, Spigelman I. Hyperosmolar Solutions Selectively Block Action Potentials in Rat Myelinated Sensory Fibers: Implications for Diabetic Neuropathy. J Neurophysiol 2004; 91:48-56. [PMID: 13679399 DOI: 10.1152/jn.00689.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic neuropathy is a common complication of diabetes mellitus patients. It is a wide range of abnormalities affecting proximal and distal peripheral sensory and motor nerves. Although plasma hyperosmolality is a common finding in diabetes mellitus, the effects of hyperosmolality on conduction of various sensory signal components have not been addressed in detail. Here we show that in rat dorsal root ganglion (DRG) preparations from normal rats, hyperosmolar solutions (360 mmol/kg, containing increased glucose, sucrose, NaCl, or mannitol) produce a selective block of signal propagation in myelinated sensory A-fibers. In compound action potential (CAP) recordings with suction electrodes, peak A-fiber CAP amplitude was selectively decreased (20%), while the C-fiber peak remained intact or was slightly increased. Hyperosmolar solutions had smaller effects on conduction velocity (CV) of both A- and C-fibers (approximately 5% decrease). Hyperosmolality-induced CAP changes could not be observed during recordings from isolated spinal nerves but were evident during recordings from desheathed spinal nerves. In intracellular recordings, hyperosmolar solutions produced a block of spinal nerve-evoked action potential invasion into the somata of some A-fiber neurons. Removal of extracellular calcium completely prevented the hyperosmolality-induced CAP decreases. Based on these data, we propose that the decreased CAP amplitudes recorded in human patients and in animal models of diabetes are in part due to the effects of hyperosmolality and would depend on the extracellular osmolality at the time of sensory testing. We also hypothesize that hyperosmolality may contribute to both the sensory abnormalities (paresthesias) and the chronic pain symptoms of diabetic neuropathy.
Collapse
Affiliation(s)
- Yoshizo Matsuka
- Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
189
|
Bierhaus A, Humpert PM, Rudofsky G, Wendt T, Morcos M, Hamann A, Nawroth PP. New treatments for diabetic neuropathy: pathogenetically oriented treatment. Curr Diab Rep 2003; 3:452-8. [PMID: 14611740 DOI: 10.1007/s11892-003-0007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although there is clear evidence from experimental diabetic neuropathy (DN) models that the multiple pathways involved in neuronal degeneration cause overproduction of reactive oxygen species, oxidative stress, and cellular dysfunction, therapeutic approaches addressing these mechanisms have not yet provided a basis for a successful treatment of patients with DN. This review discusses the current knowledge on the pathomechanisms of unchecked reactive oxygen species accumulation, implications for specific treatment, and the need for carefully designed experimental studies and clinical trials closing the gap between promising results in experimental DN and its implementation into a pathogenetically oriented treatment.
Collapse
|
190
|
Abstract
Peripheral diabetic neuropathy (PDN) affects up to 60% to 70% of diabetic patients, and is the leading cause of foot amputation. The pathogenesis of PDN involves multiple mechanisms. The findings obtained in 1999 to 2003 support the role of previously established mechanisms such as increased aldose reductase activity, nonenzymatic glycation or glyco-oxidation, activation of protein kinase C, enhanced oxidative stress, impaired neurotrophic support, and reveal the importance of new downstream effectors of oxidative injury. Those include mitogen-activated protein kinases and poly (ADP-ribose) polymerase that are activated by diabetes, and contribute to such neuropathic changes as motor and sensory nerve conduction deficits, decreased nerve blood flow, and energy failure. Further studies are needed to understand the role of other signaling pathways as well as interactions among previously discovered mechanisms in the pathogenesis of PDN.
Collapse
Affiliation(s)
- Irina G Obrosova
- University of Michigan, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, MSRB II, Room 5570, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
191
|
Sayers NM, Beswick LJ, Middlemas A, Calcutt NA, Mizisin AP, Tomlinson DR, Fernyhough P. Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes 2003; 52:2372-80. [PMID: 12941778 DOI: 10.2337/diabetes.52.9.2372] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The relation between neurofilament expression and/or phosphorylation in the proximal versus distal components of the sensory peripheral neuraxis was studied and related to disorders in structure and function of the distal axon of streptozocin (STZ)-induced diabetic rats studied for 14 weeks. The ability of neurotrophin-3 (NT-3) to prevent abnormalities in neurofilament biology was also investigated. Compared with age-matched controls, neurofilament heavy (NF-H) (3.3-fold) and neurofilament medium (NF-M) (2.5-fold), but not neurofilament light (NF-L), subunits accumulated in the proximal axon of sensory neurons of the lumbar dorsal root ganglia (DRG) in untreated diabetic rats. Neurofilament accumulation was prevented by NT-3. Small- and large-diameter sensory neurons exhibited elevated levels of NF-H protein accumulation and phosphorylation in the DRG of untreated diabetic rats, levels that were ameliorated by NT-3. The sural nerve of untreated diabetic rats showed a 50% decrease in the levels of NF-H and NF-M, but not NF-L, subunits; NT-3 only partially normalized the defect in NF-M expression. These observations were associated with significant lowering of motor and sensory nerve conduction velocity but no alteration in the mean axonal diameter of myelinated axons in the sural nerve in untreated diabetic rats. It is proposed that the accumulation of NF-H and NF-M subunits in the proximal axon is an etiologic factor in the distal axon degeneration observed in diabetes.
Collapse
Affiliation(s)
- Nicola M Sayers
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
Long-term experimental diabetes may best model the prominent and irreversible sensory deficits of chronic human diabetic polyneuropathy. Whereas irretrievable loss of sensory neurons, if present, would be an unfortunate feature of the disease, systematic unbiased counting has indicated that sensory neurons survive long-term experimental diabetes. In this study, we examined whether incipient cell loss from apoptosis in chronic experimental diabetes might nonetheless be in process, or whether neurons somehow adapt to their chronic insults. We examined sensory neurons in L4 and L5 dorsal root ganglia of long-term experimental streptozotocin-induced diabetic rats using transferase-mediated dUTP nick-end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI) staining of nuclear morphology, and electron microscopic appraisal of cell morphology. None provided any evidence for ongoing apoptosis. Despite this confirmation that sensory neurons survive, neurons had elevated expression of activated caspase-3 in unique patterns that included their nuclei, cytoplasm, and proximal axonal segments. Bcl-2 expression, a marker of antiapoptosis signaling, was observed in similar numbers of diabetic and nondiabetic neurons. In contrast, diabetic sensory neurons had elevated expression of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) in their nuclei, cytoplasm, and proximal axonal segments not overlapping with caspase-3 localization. Diabetic sensory neurons also had an apparent rise in cytoplasmic labeling of nitrotyrosine, a marker of peroxynitrite toxicity reported to activate PARP.
Collapse
Affiliation(s)
- Chu Cheng
- University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
193
|
Abstract
The distinction between metabolic and structural changes occurring in autonomic neurons during diabetes has not been fully clarified. Here we demonstrate that nitric oxide synthase-containing (nitrergic) neurons innervating the penis and gastric pylorus of streptozotocin-induced diabetic rats undergo a selective degenerative process in two phases. In the first phase, nitrergic nerve fibers lose some of their neuronal nitric oxide synthase content and function. In the second phase, nitrergic degeneration takes place in the cell bodies in the ganglia, leading to complete loss of nitrergic function. The changes in the first phase are reversible with insulin replacement; however, the neurodegeneration in the second phase is irreversible. Neurodegeneration is due to apoptotic cell death in the ganglia, which is selective for the nitrergic neurones.
Collapse
Affiliation(s)
- Selim Cellek
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
194
|
Shangguan Y, Hall KE, Neubig RR, Wiley JW. Diabetic neuropathy: inhibitory G protein dysfunction involves PKC-dependent phosphorylation of Goalpha. J Neurochem 2003; 86:1006-14. [PMID: 12887697 DOI: 10.1046/j.1471-4159.2003.01912.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the hypothesis that decreased inhibitory G protein function in diabetic neuropathy is associated with increased protein kinase C (PKC)-dependent phosphorylation of the Goalpha subunit. Streptozotocin-induced diabetic rats were studied between 4 and 8 weeks after onset of diabetes and compared with aged-matched healthy animals as controls. Opioid-mediated inhibition of forskolin-stimulated cyclic AMP was significantly less in dorsal root ganglia (DRGs) from diabetic rats compared with controls. Activation of PKC in DRGs from control rats was associated with a significant decrease in opioid-mediated inhibition of forskolin-stimulated cyclic AMP that was similar to the decrease in inhibition observed in DRGs from diabetic rats. Both basal and PKC-mediated labeling of Goalpha with 32Pi was significantly less in DRGs from diabetic rats, supporting increased endogenous PKC-dependent phosphorylation of Goalpha. Probing of immunoprecipitated Goalpha with an anti-phospho-serine/threonine specific antibody revealed a significant increase in baseline phosphorylation in diabetic DRGs. Activation of PKC produced a significant increase in phosphorylation in control DRGs but no significant increase in Goalpha in diabetic DRGs. Phosphorylation of PKC-alpha was increased, PKC-betaII was unchanged and PKC-delta decreased in diabetic DRGs. These results suggest that diminished inhibitory G protein function observed in DRGs neurons from diabetic rats involves an isoform-specific PKC-dependent pathway.
Collapse
Affiliation(s)
- Yu Shangguan
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
195
|
Huang TJ, Price SA, Chilton L, Calcutt NA, Tomlinson DR, Verkhratsky A, Fernyhough P. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 2003; 52:2129-36. [PMID: 12882932 DOI: 10.2337/diabetes.52.8.2129] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondrial dysfunction has been proposed as a mediator of neurodegeneration in diabetes complications. The aim of this study was to determine whether deficits in insulin-dependent neurotrophic support contributed to depolarization of the mitochondrial membrane in sensory neurons of streptozocin (STZ)-induced diabetic rats. Whole cell fluorescent video imaging using rhodamine 123 (R123) was used to monitor mitochondrial inner membrane potential (deltapsi(m)). Treatment of cultured dorsal root ganglia (DRG) sensory neurons from normal adult rats for up to 1 day with 50 mmol/l glucose had no effect; however, 1.0 nmol/l insulin increased deltapsi(m) by 100% (P < 0.05). To determine the role of insulin in vivo, STZ-induced diabetic animals were treated with background insulin and the deltapsi(m) of DRG sensory neurons was analyzed. Insulin therapy in STZ-induced diabetic rats had no effect on raised glycated hemoglobin or sciatic nerve polyol levels, confirming that hyperglycemia was unaffected. However, insulin treatment significantly normalized diabetes-induced deficits in sensory and motor nerve conduction velocity (P < 0.05). In acutely isolated DRG sensory neurons from insulin-treated STZ animals, the diabetes-related depolarization of the deltapsi(m) was corrected (P < 0.05). The results demonstrate that loss of insulin-dependent neurotrophic support may contribute to mitochondrial membrane depolarization in sensory neurons in diabetic neuropathy.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Ganglia, Spinal/cytology
- Glucose/pharmacology
- Hyperglycemia/drug therapy
- Hyperglycemia/physiopathology
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Male
- Membrane Potentials/drug effects
- Microscopy, Video
- Mitochondria/drug effects
- Mitochondria/physiology
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Polymers/metabolism
- Rats
- Rats, Wistar
- Receptor, Insulin/physiology
Collapse
Affiliation(s)
- Tze-Jen Huang
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
196
|
Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 2003; 39:497-511. [PMID: 12895423 DOI: 10.1016/s0896-6273(03)00462-8] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We hypothesized that TRPV4, a member of the transient receptor family of ion channels, functions as a sensory transducer for osmotic stimulus-induced nociception. We found that, as expected for a transducer molecule, TRPV4 protein is transported in sensory nerve distally toward the peripheral nerve endings. In vivo single-fiber recordings in rat showed that hypotonic solution activated 54% of C-fibers, an effect enhanced by the hyperalgesic inflammatory mediator prostaglandin E2. This osmotransduction causes nociception, since administration of a small osmotic stimulus into skin sensitized by PGE2 produced pain-related behavior. Antisense-induced decrease in expression of TRPV4 confirmed that the channel is required for hypotonic stimulus-induced nociception. Thus, we conclude that TRPV4 can function as an osmo-transducer in primary afferent nociceptive nerve fibers. Because this action is enhanced by an inflammatory mediator, TRPV4 may be important in pathological states and may be an attractive pharmacological target for the development of novel analgesics.
Collapse
Affiliation(s)
- Nicole Alessandri-Haber
- Division of Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Pierson CR, Zhang W, Sima AAF. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 2003; 62:765-79. [PMID: 12901702 DOI: 10.1093/jnen/62.7.765] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We recently reported that early gene responses and expression of cytoskeletal proteins are perturbed in regenerating nerve in type 1 insulinopenic diabetes but not in type 2 hyperinsulinemic diabetes. We hypothesized that these differences were due to impaired insulin action in the former type of diabetes. To test this hypothesis, type 1 diabetic BB/Wor-rats were replaced with proinsulin C-peptide, which enhances insulin signaling without lowering blood glucose. Following sciatic nerve crush injury, early gene responses such as insulin-like growth factor, c-fos, and nerve growth factor were examined longitudinally in sciatic nerve. Neurotrophic factors, their receptors, and beta-tubulin and neurofilament expression were examined in dorsal root ganglia. C-peptide replacement significantly normalized early gene responses in injured sciatic nerve and partially corrected the expression of endogenous neurotrophic factors and their receptors, as well as neuroskeletal protein in dorsal root ganglia. These effects translated into normalization of axonal radial growth and significantly improved axonal elongation of regenerating fibers in C-peptide-replaced BB/Wor-rats. The findings in C-peptide replaced type 1 diabetic rats were similar to those previously reported in hyperinsulinemic and iso-hyperglycemic type 2 BB/Z-rats. We conclude that impaired insulin action may be more important than hyperglycemia in suppressing nerve fiber regeneration in type 1 diabetic neuropathy.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
198
|
Thakran S, Baquer NZ. Oral administration of orthovanadate and Trigonella foenum graecum seed power restore the activities of mitochondrial enzymes in tissues of alloxan-induced diabetic rats. Mol Cell Biochem 2003; 247:45-53. [PMID: 12841630 DOI: 10.1023/a:1024188600523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of oral administration of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP), a medicinal plant used extensively in Asia, on the mitochondrial metabolism in the alloxan diabetic rats has been investigated. Rats were injected with alloxan monohydrate (20 mg/100 g body wt) or vehicle (Na-acetate buffer), the former were treated with either 2 IU insulin i.p., 0.6 mg/ml SOV ad libitum, 5% TSP ad libitum, and a combination of 0.2% SOV and 5% TSP ad libitum for 21 days. Selected rate-limiting enzymes of the tricarboxylic acid cycle, hydrogen shuttle system, ketone body metabolism, amino acid metabolism and urea cycle were measured in the mitochondrial and cytosolic fractions of liver, kidney and brain tissues of the experimental rats. Majority of the mitochondrial enzymes in the tissues of the diabetic rats had significantly higher activities compared to the control rats. Similarly, the activities of mitochondrial and cytosolic aminotransferases and arginase were significantly higher in liver and kidney tissues of the diabetic rats. The separate administrations of SOV and TSP to diabetic rats were able to restore the activities of these enzymes to control values. The lower dose of SOV (0.2%) administered in combination with TSP to diabetic rats lowered the enzyme activities more significantly than when given in a higher dose (0.6%) separately. This is the first report of the effective combined action of oral SOV and TSP in ameliorating the altered mitochondrial enzyme activities during experimental type-1 diabetes. Our novel combined oral administration of SOV and TSP to diabetic rats thus conclusively proves as a possible method to minimize potential vanadate toxicity without compromising its positive effects in the therapy of experimental type-1 diabetes.
Collapse
Affiliation(s)
- Shalini Thakran
- Hormone and Drug Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
199
|
Yasuda H, Terada M, Maeda K, Kogawa S, Sanada M, Haneda M, Kashiwagi A, Kikkawa R. Diabetic neuropathy and nerve regeneration. Prog Neurobiol 2003; 69:229-85. [PMID: 12757748 DOI: 10.1016/s0301-0082(03)00034-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetic neuropathy is the most common peripheral neuropathy in western countries. Although every effort has been made to clarify the pathogenic mechanism of diabetic neuropathy, thereby devising its ideal therapeutic drugs, neither convinced hypotheses nor unequivocally effective drugs have been established. In view of the pathologic basis for the treatment of diabetic neuropathy, it is important to enhance nerve regeneration as well as prevent nerve degeneration. Nerve regeneration or sprouting in diabetes may occur not only in the nerve trunk but also in the dermis and around dorsal root ganglion neurons, thereby being implicated in the generation of pain sensation. Thus, inadequate nerve regeneration unequivocally contributes to the pathophysiologic mechanism of diabetic neuropathy. In this context, the research on nerve regeneration in diabetes should be more accelerated. Indeed, nerve regenerative capacity has been shown to be decreased in diabetic patients as well as in diabetic animals. Disturbed nerve regeneration in diabetes has been ascribed at least in part to all or some of decreased levels of neurotrophic factors, decreased expression of their receptors, altered cellular signal pathways and/or abnormal expression of cell adhesion molecules, although the mechanisms of their changes remain almost unclear. In addition to their steady-state changes in diabetes, nerve injury induces injury-specific changes in individual neurotrophic factors, their receptors and their intracellular signal pathways, which are closely linked with altered neuronal function, varying from neuronal survival and neurite extension/nerve regeneration to apoptosis. Although it is essential to clarify those changes for understanding the mechanism of disturbed nerve regeneration in diabetes, very few data are now available. Rationally accepted replacement therapy with neurotrophic factors has not provided any success in treating diabetic neuropathy. Aside from adverse effects of those factors, more rigorous consideration for their delivery system may be needed for any possible success. Although conventional therapeutic drugs like aldose reductase (AR) inhibitors and vasodilators have been shown to enhance nerve regeneration, their efficacy should be strictly evaluated with respect to nerve regenerative capacity. For this purpose, especially clinically, skin biopsy, by which cutaneous nerve pathology including nerve regeneration can be morphometrically evaluated, might be a safe and useful examination.
Collapse
Affiliation(s)
- Hitoshi Yasuda
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Pierson CR, Zhang W, Murakawa Y, Sima AAF. Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy. J Neuropathol Exp Neurol 2003; 62:260-71. [PMID: 12638730 DOI: 10.1093/jnen/62.3.260] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diabetic polyneuropathy (DPN) shows more severe functional and structural changes in type 1 than in type 2 human and experimental diabetes. We have previously suggested that these differences may be due to insulin and/or C-peptide deficiencies in type 1 diabetes. To further explore these differences between type I and type 2 DPN, we examined factors underlying nerve fiber regeneration in the hyperinsulinemic type 2 BB/Z-rat and compared these with previous data obtained from the iso-hyperglycemic, insulin and C-peptide-deficient type 1 diabetic BB/Wor-rat. The expression of neurotrophic factors and cytoskeletal proteins were studied in L4 and L5 dorsal root ganglia (DRG) at various time points after sciatic nerve crush. The data were compared to those of nondiabetes-prone BB-rats. Insulin-like growth factor 1 (IGF-1) and TrkA levels were lower in DRG from type 1 than from those of type 2 and control BB-rats. On the other hand, IGF-1 receptor expression was increased at baseline in type 1 BB/Wor-rats and decreased after crush injury, whereas its expression increased after crush injury in both control and type 2 BB/Z-rats. Following crush injury, betaII- and betaIII-tubulins were upregulated in type 2 BB/Z and control rats, which did not occur in type 1 BB/Wor-rats. Furthermore, type 2 BB/Z-rats showed the normal downregulation of low and medium molecular neurofilament (NF-L and NF-M, respectively), which did not occur in type 1 BB/Wor-rats. These findings were associated with significantly milder abnormalities in axonal elongation and caliber growth of regenerating fibers in type 2 compared to type 1 diabetic rats. These data suggest that impaired insulin signaling in type 1 diabetic nerve may be of greater significance in the regulation of neurotrophic and neurocytoskeletal protein synthesis than hyperglycemia in explaining the differences in nerve fiber regeneration between type 2 and type 1 diabetes.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Morris Hood Jr. Comprehensive Diabetes Center, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|