151
|
|
152
|
D’Huyvetter M, Xavier C, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv 2014; 11:1939-54. [PMID: 25035968 PMCID: PMC4245996 DOI: 10.1517/17425247.2014.941803] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The integration of diagnostic testing for the presence of a molecular target is of interest to predict successful targeted radionuclide therapy (TRNT). This so-called 'theranostic' approach aims to improve personalized treatment based on the molecular characteristics of cancer cells. Moreover, it offers new insights in predicting adverse effects and provides appropriate tools to monitor therapy responses. Recent findings using nanobodies emphasize their potential as theranostic tools in cancer treatment. Nanobodies are recombinant, small antigen-binding fragments that are derived from camelid heavy-chain-only antibodies. AREAS COVERED We review the current status of theranostic approaches in TRNT, with a focus on antibodies, peptides, scaffold proteins and emerging nanobodies. In recent years, nanobodies have been evaluated intensively for molecular imaging. In addition, novel data on TRNT using radiolabeled nanobodies for carcinomas and multiple myeloma highlight their promising opportunities in cancer treatment. EXPERT OPINION We trust that radiolabeled nanobodies will have a future potential as theranostic tools in cancer therapy, both for diagnosis as well as for TRNT.
Collapse
Affiliation(s)
- Matthias D’Huyvetter
- Belgian Nuclear Research Center (SCK·CEN), Radiobiology Unit, Molecular and Cellular Biology Expert Group,
Mol, Belgium
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Catarina Xavier
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vicky Caveliers
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
- UZ Brussel, Department of Nuclear Medicine,
Brussels, Belgium
| | - Tony Lahoutte
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
- UZ Brussel, Department of Nuclear Medicine,
Brussels, Belgium
| | - Serge Muyldermans
- Vrije Universiteit Brussel (VUB), Cellular and Molecular Immunology,
Pleinlaan 2, 1050 Brussels, Belgium+32 2 6291969;
- Vlaams Instituut voor Biotechnologie (VIB), Structural Biology Research Center,
Brussels, Belgium
| | - Nick Devoogdt
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Cellular and Molecular Immunology,
Pleinlaan 2, 1050 Brussels, Belgium+32 2 6291969;
| |
Collapse
|
153
|
Mammatas LH, Verheul HMW, Hendrikse NH, Yaqub M, Lammertsma AA, Menke-van der Houven van Oordt CW. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol (Dordr) 2014; 38:49-64. [PMID: 25248503 DOI: 10.1007/s13402-014-0194-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Molecular imaging has been defined as the visualization, characterization and measurement of biological processes at the molecular and cellular level in humans and other living systems. In oncology it enables to visualize (part of) the functional behaviour of tumour cells, in contrast to anatomical imaging that focuses on the size and location of malignant lesions. Available molecular imaging techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET) and optical imaging. In PET, a radiotracer consisting of a positron emitting radionuclide attached to the biologically active molecule of interest is administrated to the patient. Several approaches have been undertaken to use PET for the improvement of personalized cancer care. For example, a variety of radiolabelled ligands have been investigated for intratumoural target identification and radiolabelled drugs have been developed for direct visualization of the biodistibution in vivo, including intratumoural therapy uptake. First indications of the clinical value of PET for target identification and response prediction in oncology have been reported. This new imaging approach is rapidly developing, but uniformity of scanning processes, standardized methods for outcome evaluation and implementation in daily clinical practice are still in progress. In this review we discuss the available literature on molecular imaging with PET for personalized targeted treatment strategies. CONCLUSION Molecular imaging with radiolabelled targeted anticancer drugs has great potential for the improvement of personalized cancer care. The non-invasive quantification of drug accumulation in tumours and normal tissues provides understanding of the biodistribution in relation to therapeutic and toxic effects.
Collapse
Affiliation(s)
- Lemonitsa H Mammatas
- Dept of Medical Oncology VUmc Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
154
|
Broisat A, Toczek J, Dumas LS, Ahmadi M, Bacot S, Perret P, Slimani L, Barone-Rochette G, Soubies A, Devoogdt N, Lahoutte T, Fagret D, Riou LM, Ghezzi C. 99mTc-cAbVCAM1-5 imaging is a sensitive and reproducible tool for the detection of inflamed atherosclerotic lesions in mice. J Nucl Med 2014; 55:1678-84. [PMID: 25157043 DOI: 10.2967/jnumed.114.143792] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED (99m)Tc-cAbVCAM1-5, a single-domain antibody fragment directed against mouse or human vascular cell adhesion molecule 1 (VCAM-1), recently has been proposed as a new imaging agent for the detection of inflamed atherosclerotic lesions. Indeed, in a mouse model of atherosclerosis, (99m)Tc-cAbVCAM1-5 specifically bound to VCAM-1-positive lesions, thereby allowing their identification on SPECT images. The purpose of the present study was to investigate (99m)Tc-cAbVCAM1-5 imaging sensitivity using a reference statin therapy. METHODS Thirty apolipoprotein E-deficient mice were fed a western-type diet. First, the relationship between the level of VCAM-1 expression and (99m)Tc-cAbVCAM1-5 uptake was evaluated in 18 mice using immunohistochemistry and autoradiography. Second, longitudinal SPECT/CT imaging was performed on control (n = 9) or atorvastatin-treated mice (0.01% w/w, n = 9). RESULTS (99m)Tc-cAbVCAM1-5 uptake in atherosclerotic lesions correlated with the level of VCAM-1 expression (P < 0.05). Atorvastatin exerted significant antiatherogenic effects, and (99m)Tc-cAbVCAM1-5 lesion uptake was significantly reduced in 35-wk-old atorvastatin-treated mice, as indicated by ex vivo γ-well counting and autoradiography (P < 0.05). SPECT imaging quantification based on contrast-enhanced CT was reproducible (interexperimenter intraclass correlation coefficient, 0.97; intraexperimenter intraclass correlation coefficient, 0.90), and yielded results that were highly correlated with tracer biodistribution (r = 0.83; P < 0.0001). Therefore, reduced (99m)Tc-cAbVCAM1-5 uptake in atorvastatin-treated mice was successfully monitored noninvasively by SPECT/CT imaging (0.87 ± 0.06 vs. 1.11 ± 0.09 percentage injected dose per cubic centimeter in control group, P < 0.05). CONCLUSION (99m)Tc-cAbVCAM1-5 imaging allowed the specific, sensitive, and reproducible quantification of VCAM-1 expression in mouse atherosclerotic lesions. (99m)Tc-cAbVCAM1-5 therefore exhibits suitable characteristics for the evaluation of novel antiatherogenic agents.
Collapse
Affiliation(s)
- Alexis Broisat
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Jakub Toczek
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Laurent S Dumas
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Mitra Ahmadi
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Sandrine Bacot
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Pascale Perret
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Lotfi Slimani
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Gilles Barone-Rochette
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France Cardiology Department, Grenoble University Hospital, Grenoble, France
| | - Audrey Soubies
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium; and
| | - Tony Lahoutte
- In vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium; and Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Daniel Fagret
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Laurent M Riou
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| | - Catherine Ghezzi
- Unité 1039, INSERM, Grenoble, France Radiopharmaceutiques Biocliniques, Université Joseph Fourier Grenoble 1, Grenoble, France
| |
Collapse
|
155
|
Goethals LR, Bos TJ, Baeyens L, De Geeter F, Devoogdt N, Lahoutte T. Camelid reporter gene imaging: a generic method for in vivo cell tracking. EJNMMI Res 2014; 4:32. [PMID: 25024930 PMCID: PMC4086443 DOI: 10.1186/s13550-014-0032-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022] Open
Abstract
Background To combine the sensitivity of bioluminescent imaging (BLI) with the 3D and quantitative properties of pinhole single-photon emission computed tomography (SPECT)/micro-computed tomography (CT) (phSPECT/micro-CT), we generated stable cell lines that express a yellow-fluorescent protein (YFP) and Gaussia luciferase (GLuc) fusion protein (YFP/GLuc). For in vivo phSPECT detection of this YFP/GLuc protein, a nanobody, targeted against yellow and green fluorescent proteins (anti-YFP-Nb), was site specifically labelled with 99mTc. Methods Human embryonic kidney cells (HEK293T) were cultured and passaged every 3 days. 10E5 cells were transduced with YFP/GLuc-containing vector: both membrane-targeted (MT-YFP/GLuc) and non-targeted (YFP/GLuc) fusion proteins were developed. These vectors were compared against a SKOV-3 cell line stably expressing green fluorescent-firefly luciferase (GFP/Fluc) and HEK293T cells expressing red fluorescent protein in combination with a Gaussia luciferase (Red/GLuc). Transduction efficiencies were scored by fluorescence microscopy, and transduced cells were enriched by fluorescence-activated cell sorting (FACS). GLuc and FLuc functionality was tested in vitro by list-mode BLI. Subsequently, cells were transplanted subcutaneously in athymic (nu/nu) mice (MT-YFP/GLuc: n = 4, YFP/GLuc: n = 6, GFP/FLuc: n = 6, Red/GLuc: n = 4). Labelling efficiency of anti-YFP-Nb was measured using instant thin layer chromatography. One week after transplantation, 99mTc-labelled anti-YFP-Nb was injected intravenously and pinhole (ph) SPECT/micro-CT was performed, followed by in vivo BLI. Results Cells showed high levels of fluorescence after transduction. The cells containing the MT-YFP/GLuc were positive on fluorescence microscopy, with the fluorescent signal confined to the cell membrane. After cell sorting, transduced cells were assayed by BLI and showed a significantly higher light output both in vitro and in vivo compared with non-transduced HEK293T cells. The anti-YFP-Nb labelling efficiency was 98%, and subsequent phSPECT/micro-CT demonstrated visible cell binding and significantly higher transplant-to-muscle ratio for both the MT-YFP/GLuc and YFP/GLuc transplanted cells, compared with the GFP/FLuc and Red/GLuc group. Conclusion This study provides a proof of principle for a nanobody-based cell tracking method, using a YFP/GLuc fusion protein and anti-YFP-Nb in a model of subcutaneously transplanted transduced HEK293T cells.
Collapse
Affiliation(s)
- Lode Ry Goethals
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette 1090, Belgium ; Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Jette 1090, Belgium
| | - Tomas J Bos
- Department of Cellular and Molecular Medicine, UC San Diego, 9500 Gilman Drive, La Jolla 92093, CA, USA
| | - Luc Baeyens
- Beta Cell Neogenesis, Vrije Universiteit Brussel, Laarbeeklaan103, Jette 1090, Belgium
| | - Frank De Geeter
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette 1090, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette 1090, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette 1090, Belgium ; Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Jette 1090, Belgium
| |
Collapse
|
156
|
Massa S, Xavier C, De Vos J, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem 2014; 25:979-88. [PMID: 24815083 DOI: 10.1021/bc500111t] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-specific labeling of molecular imaging probes allows the development of a homogeneous tracer population. The resulting batch-to-batch reproducible pharmacokinetic and pharmacodynamic properties are of great importance for clinical translation. Camelid single-domain antibody-fragments (sdAbs)-the recombinantly produced antigen-binding domains of heavy-chain antibodies, also called Nanobodies-are proficient probes for molecular imaging. To safeguard their intrinsically high binding specificity and affinity and to ensure the tracer's homogeneity, we developed a generic strategy for the site-specific labeling of sdAbs via a thio-ether bond. The unpaired cysteine was introduced at the carboxyl-terminal end of the sdAb to eliminate the risk of antigen binding interference. The spontaneous dimerization and capping of the unpaired cysteine required a reduction step prior to conjugation. This was optimized with the mild reducing agent 2-mercaptoethylamine in order to preserve the domain's stability. As a proof-of-concept the reduced probe was subsequently conjugated to maleimide-DTPA, for labeling with indium-111. A single conjugated tracer was obtained and confirmed via mass spectrometry. The specificity and affinity of the new sdAb-based imaging probe was validated in a mouse xenograft tumor model using a modified clinical lead compound targeting the human epidermal growth factor receptor 2 (HER2) cancer biomarker. These data provide a versatile and standardized strategy for the site-specific labeling of sdAbs. The conjugation to the unpaired cysteine results in the production of a homogeneous group of tracers and is a multimodal alternative to the technetium-99m labeling of sdAbs.
Collapse
Affiliation(s)
- Sam Massa
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB) , 1090 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
157
|
Morais M, Cantante C, Gano L, Santos I, Lourenço S, Santos C, Fontes C, Aires da Silva F, Gonçalves J, Correia JD. Biodistribution of a 67Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag). Nucl Med Biol 2014; 41 Suppl:e44-8. [DOI: 10.1016/j.nucmedbio.2014.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 11/30/2022]
|
158
|
D'Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, De Raeve H, Muyldermans S, Caveliers V, Devoogdt N, Lahoutte T. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Am J Cancer Res 2014; 4:708-20. [PMID: 24883121 PMCID: PMC4038753 DOI: 10.7150/thno.8156] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022] Open
Abstract
RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MW < 15 kDa) functional antigen-binding fragments that are derived from heavy chain-only camelid antibodies. Here, we show that the extend of kidney retention of nanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70 % drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90 %. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88 % when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95 % with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival between the treated and the control groups (P < 0.0001). Based on histology analyses, no evidence of renal inflammation, apoptosis or necrosis was obtained. In conclusion, these data highlight the importance of the amino acid composition of the nanobody's C-terminus, as it has a predominant effect on kidney retention. Moreover, we show successful nanobody-based targeted radionuclide therapy in a xenograft model and highlight the potential of radiolabeled nanobodies as a valuable adjuvant therapy candidate for treatment of minimal residual and metastatic disease.
Collapse
|
159
|
Zheng F, Put S, Bouwens L, Lahoutte T, Matthys P, Muyldermans S, De Baetselier P, Devoogdt N, Raes G, Schoonooghe S. Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med 2014; 55:824-9. [PMID: 24686780 DOI: 10.2967/jnumed.113.130617] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED An accurate and noninvasive tracer able to detect molecular events underlying the development of rheumatoid arthritis (RA) would be useful for RA diagnosis and drug efficacy assessment. A complement receptor of the Ig superfamily (CRIg) is expressed on synovial macrophages of RA patients, making it an interesting target for molecular imaging of RA. We aim to develop a radiotracer for the visualization of CRIg in a mouse model for RA using radiolabeled single-domain variable antibody VHH fragments (Nanobodies). METHODS Quantitative polymerase chain reaction was used to locate CRIg expression in mice with collagen-induced arthritis (CIA). A Nanobody, NbV4m119, was generated to specifically target CRIg. Flow cytometry, phosphorimaging, and confocal microscopy were used to confirm NbVm119 binding to CRIg-positive cells. SPECT (SPECT/CT) was used to image arthritic lesions in the inflamed paws of 29 mice using (99m)Tc-NbV4m119 Nanobody. RESULTS CRIg is constitutively expressed in the liver and was found to be upregulated in synovial tissues of CIA mice. SPECT/CT imaging revealed that (99m)Tc-NbV4m119 specifically targeted CRIg-positive liver macrophages in naïve wild-type but not in CRIg(-/-) (CRIg knockout) mice. In CIA mice, (99m)Tc-NbV4m119 accumulation in arthritic lesions increased according to the severity of the inflammation. In the knees of mice with CIA, (99m)Tc-NbV4m119 was found to accumulate even before the onset of macroscopic clinical symptoms. CONCLUSION SPECT/CT imaging with (99m)Tc-NbV4m119 visualizes joint inflammation in CIA. Furthermore, imaging could predict which mice will develop clinical symptoms during CIA. Consequently, imaging of joint inflammation with CRIg-specific Nanobodies offers perspectives for clinical applications in RA patients.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends Pharmacol Sci 2014; 35:247-55. [PMID: 24690241 DOI: 10.1016/j.tips.2014.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a major therapeutic target class. A large proportion of marketed drugs exert their effect through modulation of GPCR function, and GPCRs have been successfully targeted with small molecules. Yet, the number of small new molecular entities targeting GPCRs that has been approved as therapeutics in the past decade has been limited. With new and improved immunization-related technologies and advances in GPCR purification and expression techniques, antibody-based targeting of GPCRs has gained attention. The serendipitous discovery of a unique class of heavy chain antibodies (hcAbs) in the sera of camelids may provide novel GPCR-directed therapies. Antigen-binding fragments of hcAbs, also referred to as nanobodies, combine the advantages of both small molecules (e.g., molecular cavity binding, low production costs) and monoclonal antibodies (e.g., high affinity and specificity). Nanobodies are gaining ground as therapeutics and are also starting to find application as diagnostics and as high-quality tools in GPCR research. Herein, we review recent advances in the use of nanobodies in GPCR research.
Collapse
|
161
|
Evazalipour M, D'Huyvetter M, Tehrani BS, Abolhassani M, Omidfar K, Abdoli S, Arezumand R, Morovvati H, Lahoutte T, Muyldermans S, Devoogdt N. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:211-20. [DOI: 10.1002/cmmi.1558] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/13/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Mehdi Evazalipour
- Department of Immunology; Pasteur Institute of Iran; Tehran Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy; Guilan University of Medical Sciences; Rasht Iran
| | - Matthias D'Huyvetter
- In vivo Cellular and Molecular Imaging Laboratory; Vrije Universiteit Brussel; Brussels Belgium
- Radiobiology Unit, Molecular and Cellular Biology Expert Group; Belgian Nuclear Research Center (SCK•CEN); Mol Belgium
| | - Bahram Soltani Tehrani
- Cellular and Molecular Research Center, Faculty of Medicine; Guilan University of Medical Sciences; Rasht Iran
| | | | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| | | | - Roghaye Arezumand
- Department of Molecular Medicine; Pasteur Institute of Iran; Tehran Iran
| | - Hamid Morovvati
- Animal Facility; Guilan University of Medical Sciences; Rasht Iran
| | - Tony Lahoutte
- In vivo Cellular and Molecular Imaging Laboratory; Vrije Universiteit Brussel; Brussels Belgium
- Nuclear Medicine Department; UZ Brussel Brussels Belgium
| | - Serge Muyldermans
- Cellular and Molecular Immunology Unit; Vrije Universiteit Brussel; Brussels Belgium
- Department of Structural Biology, VIB; Brussels Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
162
|
Persson M, El Ali HH, Binderup T, Pfeifer A, Madsen J, Rasmussen P, Kjaer A. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging. Nucl Med Biol 2014; 41:290-5. [DOI: 10.1016/j.nucmedbio.2013.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/28/2013] [Accepted: 12/07/2013] [Indexed: 01/08/2023]
|
163
|
Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N, Lahoutte T, Lyerly HK, Zalutsky MR. Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 2014; 55:650-6. [PMID: 24578241 DOI: 10.2967/jnumed.113.127100] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain-only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-(125/131)I-iodobenzoate (*I-SGMIB). METHODS The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with N(ε)-(3-*I-iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN ((125)I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. RESULTS *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated (125)I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor-to-normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs and kidneys, for which the values were 10.4 ± 4.5 and 5.2 ± 1.5, respectively. CONCLUSION Labeling anti-HER2 Nanobody 5F7GGC with *I-SGMIB yields a promising new conjugate for targeting HER2-expressing malignancies. Further research is needed to determine the potential utility of *I-SGMIB-5F7GGC labeled with (124)I, (123)I, and (131)I for PET and SPECT imaging and for targeted radiotherapy, respectively.
Collapse
Affiliation(s)
- Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
164
|
New researches and application progress of commonly used optical molecular imaging technology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:429198. [PMID: 24696850 PMCID: PMC3947735 DOI: 10.1155/2014/429198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/20/2013] [Indexed: 12/26/2022]
Abstract
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.
Collapse
|
165
|
Chen ZY, Wang YX, Lin Y, Zhang JS, Yang F, Zhou QL, Liao YY. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:819324. [PMID: 24689058 PMCID: PMC3943245 DOI: 10.1155/2014/819324] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 02/06/2023]
Abstract
Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.
Collapse
Affiliation(s)
- Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yan Lin
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jin-Shan Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Feng Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qiu-Lan Zhou
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yang-Ying Liao
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
166
|
Trousil S, Hoppmann S, Nguyen QD, Kaliszczak M, Tomasi G, Iveson P, Hiscock D, Aboagye EO. Positron emission tomography imaging with 18F-labeled ZHER2:2891 affibody for detection of HER2 expression and pharmacodynamic response to HER2-modulating therapies. Clin Cancer Res 2014; 20:1632-43. [PMID: 24493830 DOI: 10.1158/1078-0432.ccr-13-2421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression of HER2 has profound implications on treatment strategies in various types of cancer. We investigated the specificity of radiolabeled HER2-targeting ZHER2:2891 Affibody, [(18)F]GE-226, for positron emission tomography (PET) imaging. EXPERIMENTAL DESIGN Intrinsic cellular [(18)F]GE-226 uptake and tumor-specific tracer binding were assessed in cells and xenografts with and without drug treatment. Specificity was further determined by comparing tumor localization of a fluorescently labeled analogue with DAKO HercepTest. RESULTS [(18)F]GE-226 uptake was 11- to 67-fold higher in 10 HER2-positive versus HER2-negative cell lines in vitro independent of lineage. Uptake in HER2-positive xenografts was rapid with net irreversible binding kinetics making possible the distinction of HER2-negative [MCF7 and MCF7-p95HER2: NUV60 (%ID/mL) 6.1 ± 0.7; Ki (mL/cm(3)/min) 0.0069 ± 0.0014] from HER2-positive tumors (NUV60 and Ki: MCF7-HER2, 10.9 ± 1.5 and 0.015 ± 0.0035; MDA-MB-361, 18.2 ± 3.4 and 0.025 ± 0.0052; SKOV-3, 18.7 ± 2.4 and 0.036 ± 0.0065) within 1 hour. Tumor uptake correlated with HER2 expression determined by ELISA (r(2) = 0.78), and a fluorophore-labeled tracer analogue colocalized with HER2 expression. Tracer uptake was not influenced by short-term or continuous treatment with trastuzumab in keeping with differential epitope binding, but reflected HER2 degradation by short-term NVP-AUY922 treatment in SKOV-3 xenografts (NUV60: 13.5 ± 2.1 %ID/mL vs. 9.0 ± 0.9 %ID/mL for vehicle or drug, respectively). CONCLUSIONS [(18)F]GE-226 binds with high specificity to HER2 independent of cell lineage. The tracer has potential utility for HER2 detection, irrespective of prior trastuzumab treatment, and to discern HSP90 inhibitor-mediated HER2 degradation.
Collapse
Affiliation(s)
- Sebastian Trousil
- Authors' Affiliations: Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, London; and GE Healthcare, Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, Buckinghamshire, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Am J Cancer Res 2014; 4:386-98. [PMID: 24578722 PMCID: PMC3936291 DOI: 10.7150/thno.8006] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.
Collapse
|
168
|
Abstract
Over recent years, there has been a rapid expansion in our knowledge of the factors that regulate tumor growth; this has resulted in the identification of new therapeutic targets and improvements in the long-term survival of cancer patients. New noninvasive biomarkers of drug targets and pathway modulation in vivo are needed to guide therapy selection and detect drug resistance early so that alternative, more effective treatments can be offered. The translation of new therapeutics into the clinic is disappointingly slow, expensive, and subject to high rates of attrition often occurring at late stages (phase 3) of development. In an attempt to mitigate these delays and failures, there has been resurgence in the development of new molecular imaging probes for studies with positron emission tomography (PET) to characterize tumor biology. In the assessment of therapeutic effects, PET allows imaging of entire tumor burden in a noninvasive repeatable manner. This chapter focuses on the clinical translation of PET imaging agents from bench to bedside. New probes are being used to study a diverse range of processes such as angiogenesis, apoptosis, fatty acid metabolism, and growth factor receptor expression. In the future, validation of these novel imaging probes could allow more innovative therapies to be adapted earlier in the clinic leading to improved patient outcomes.
Collapse
Affiliation(s)
- Laura M Kenny
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
169
|
Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen en Henegouwen PM. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release 2013; 172:607-17. [DOI: 10.1016/j.jconrel.2013.08.298] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
170
|
Montemagno C, Pagès G. Cholesterol content of serum lipoprotein fractions in children maintained on chronic hemodialysis. Cancers (Basel) 1981; 12:cancers12040821. [PMID: 32235331 PMCID: PMC7226533 DOI: 10.3390/cancers12040821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women throughout the world. Metastatic dissemination to vital organs is the leading cause of breast cancer-related deaths. The treatment of metastases is mainly based on the primary tumor characteristics. However, breast cancer metastases exhibit high heterogeneity leading to different prognosis and therapeutic responses. Getting access to phenotype of metastases would allow better management of patients. The advent of theranostics in nuclear medicine has opened new opportunities for the diagnosis and treatment of cancer patients. The aim of this review is to provide an overview of current knowledge and future directions in nuclear medicine for therapeutic management of metastatic breast cancer patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and INSERM U1081, University Côte d’Azur, 06200 Nice, France
- Correspondence: ; Tel.: +377-97-77-44-10
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and INSERM U1081, University Côte d’Azur, 06200 Nice, France
| |
Collapse
|