151
|
Dong D, Xia G, Li Z, Li Z. Human Serum Albumin and HER2-Binding Affibody Fusion Proteins for Targeted Delivery of Fatty Acid-Modified Molecules and Therapy. Mol Pharm 2016; 13:3370-3380. [DOI: 10.1021/acs.molpharmaceut.6b00265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Guanjun Xia
- Department
of Pathology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | | | | |
Collapse
|
152
|
Wagner MC, Myslinski J, Pratap S, Flores B, Rhodes G, Campos-Bilderback SB, Sandoval RM, Kumar S, Patel M, Ashish, Molitoris BA. Mechanism of increased clearance of glycated albumin by proximal tubule cells. Am J Physiol Renal Physiol 2016; 310:F1089-102. [PMID: 26887834 PMCID: PMC4889321 DOI: 10.1152/ajprenal.00605.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022] Open
Abstract
Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins.
Collapse
Affiliation(s)
- Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Jered Myslinski
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Shiv Pratap
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Brittany Flores
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - George Rhodes
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Silvia B Campos-Bilderback
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Sudhanshu Kumar
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Monika Patel
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ashish
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; and
| |
Collapse
|
153
|
Abstract
INTRODUCTION Many of the biotherapeutics approved or under development suffer from a short half-life necessitating frequent applications in order to maintain a therapeutic concentration over an extended period of time. The implementation of half-life extension strategies allows the generation of long-lasting therapeutics with improved pharmacokinetic and pharmacodynamic properties. AREAS COVERED This review gives an overview of the different half-life extension strategies developed over the past years and their application to generate next-generation biotherapeutics. It focuses on srategies already used in approved drugs and drugs that are in clinical development. These strategies include those aimed at increasing the hydrodynamic radius of the biotherapeutic and strategies which further implement recycling by the neonatal Fc receptor (FcRn). EXPERT OPINION Half-life extension strategies have become an integral part of development for many biotherapeutics. A diverse set of these strategies is available for the fine-tuning of half-life and adaption to the intended treatment modality and disease. Currently, half-life extension is dominated by strategies utilizing albumin binding or fusion, fusion to an immunoglobulin Fc region and PEGylation. However, a variety of alternative strategies, such as fusion of flexible polypeptide chains as PEG mimetic substitute, have reached advanced stages and offer further alternatives for half-life extension.
Collapse
Affiliation(s)
- Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
154
|
Yang B, Lim SI, Kim JC, Tae G, Kwon I. Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo. Biomacromolecules 2016; 17:1811-7. [PMID: 27050863 DOI: 10.1021/acs.biomac.6b00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyethylene glycol (PEG) has been widely used as a serum half-life extender of therapeutic proteins. However, due to immune responses and low degradability of PEG, developing serum half-life extender alternatives to PEG is required. Human serum albumin (HSA) has several beneficial features as a serum half-life extender, including a very long serum half-life, good degradability, and low immune responses. In order to further evaluate the efficacy of HSA, we compared the extent of serum half-life extension of a target protein, superfolder green fluorescent protein (sfGFP), upon HSA conjugation with PEG conjugation side-by-side. Combination of site-specific incorporation of p-azido-l-phenylalanine into sfGFP and copper-free click chemistry achieved the site-specific conjugation of a single HSA, 20 kDa PEG, or 30 kDa PEG to sfGFP. These sfGFP conjugates exhibited the fluorescence comparable to or even greater than that of wild-type sfGFP (sfGFP-WT). In mice, HSA-conjugation to sfGFP extended the serum half-life 9.0 times compared to that of unmodified sfGFP, which is comparable to those of PEG-conjugated sfGFPs (7.3 times for 20 kDa PEG and 9.5 times for 30 kDa PEG). These results clearly demonstrated that HSA was as effective as PEG in extending the serum half-life of a target protein. Therefore, with the additional favorable features, HSA is a good serum half-life extender of a (therapeutic) protein as an alternative to PEG.
Collapse
Affiliation(s)
- Byungseop Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) , Gwangju 61005, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Jong Chul Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) , Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) , Gwangju 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) , Gwangju 61005, Republic of Korea.,Department of Chemical Engineering, University of Virginia , Charlottesville, Virginia 22904, United States
| |
Collapse
|
155
|
Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park AM, Hasanovic F, Yanagihara R, Nagata S. Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology. ACTA MEDICA KINKI UNIVERSITY 2016; 41:37-52. [PMID: 28428682 DOI: pmid/28428682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Flavivirus, family Flaviviridae, which includes many human and animal pathogens, such as dengue virus (DENV), West Nile virus, and Japanese encephalitis virus. In the original as well as subsequent experimental and clinical reports, ZIKV seems to have moderate neurotropism (in animal models) and neurovirulence (in human fetuses), but no neuroinvasiveness (in human adults). Intrauterine ZIKV infection (viral pathology) has been linked to an increased incidence of microcephaly, while increased Guillain-Barré syndrome (GBS) following ZIKV infection is likely immune-mediated (immunopathology). Clinically, in ZIKV infection, antibodies against other flaviviruses, such as DENV, have been detected; these antibodies can cross-react with ZIKV without ZIKV neutralization. In theory, such non-neutralizing antibodies are generated at the expense of decreased production of neutralizing antibodies ("antigenic sin"), leading to poor viral clearance, while the non-neutralizing antibodies can also enhance viral replication in Fc receptor (FcR)-bearing cells via antibody-dependent enhancement (ADE). Here, we propose three potential roles of the antibody-mediated pathogenesis of ZIKV infection: 1) cross-reactive antibodies that recognize ZIKV and neural antigens cause GBS; 2) ZIKV-antibody complex is transported transplacentally via neonatal FcR (FcRn), resulting in fetal infection; and 3) ZIKV-antibody complex is taken up at peripheral nerve endings and transported to neurons in the central nervous system (CNS), by which the virus can enter the CNS without crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Faris Hasanovic
- Department of Pathology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
156
|
Abstract
Albumin is a large, highly abundant protein circulating in the blood stream which is regulated and actively recycled via the neonatal Fc receptor (FcRn). In humans this results in serum albumin having an exceptional long half-life of ~21 days. Some time ago it was realized that these intrinsic properties could be harnessed and albumin could be used as a privileged drug delivery vehicle. However, active development of albumin based therapeutics has been hampered by the lack of economic, relevant experimental models which can accurately recapitulate human albumin metabolism and pharmacokinetics. In mice for example, introduced human albumin is not recycled and is catabolized rapidly. This is mainly due to the failure of mouse FcRn to bind human albumin consequently, human albumin has a half-life of only 2-3 days in mice. To overcome this we developed and characterized a humanized mouse model which is null for mouse FcRn and mouse albumin, but is transgenic for, and expressing functional human FcRn. Published data clearly demonstrate that upon injection of human albumin into this model animal that it accurately recapitulates human albumin FcRn dependent serum recycling, with human albumin now having a half-life ~24 days, closely mimicking that observed in humans. In this practical review we briefly review this model and outline its use for pharmacokinetic studies of human albumin.
Collapse
|
157
|
Deissler HL, Lang GK, Lang GE. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: Evidence for an involvement of the neonatal Fc receptor. Exp Eye Res 2015; 143:49-59. [PMID: 26481553 DOI: 10.1016/j.exer.2015.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
Bevacizumab is one of the VEGF-binding proteins that are established in clinical practice to treat various ocular diseases. In view of therapeutic long-term application, potential accumulation of the antibody in retinal cells gave reason for safety concerns. Internalization of considerable amounts of bevacizumab by retinal endothelial (REC) and pigment epithelial cells has been observed which may affect their important functions. Therefore we investigated the transport and intracellular localization of bevacizumab in immortalized bovine REC (iBREC) in detail, considering possible roles of vesicles and receptors mediating uptake and intracellular transport. By performing transcytosis assays with iBREC monolayers cultivated on porous membrane inserts, we demonstrated that bevacizumab was transported efficiently through a tight monolayer from the lower to the upper chamber or vice versa. When added to the lower chamber in excess, the internalized antibody was transported through the cells, but it was also recycled to be set free at the same side of the cell into a bevacizumab-free environment. The rates of both processes strongly depended on the concentration of fetal bovine serum (FBS) in the environment. This observation is important because in vivo REC might be exposed to varying amounts of serum, e.g. in patients with macular edema. FBS also affected the intracellular localization of bevacizumab as shown by analyses of subcellular fractions and direct immunofluorescence staining. When iBREC were cultivated in low-serum medium, most of the antibody was found in the fraction of cytoskeleton proteins and spots of high intensity of bevacizumab-specific staining close to the nuclei were observed. Cultivation in medium with FBS resulted in internalized bevacizumab predominately found in the membrane/organelle fraction in addition to its weaker association with proteins from the cytoskeleton and uniform staining of the cell. Bevacizumab-specific staining close to the cytoskeleton proteins α-tubulin or vimentin was also observed. Accumulation and association of the antibody with the cytoskeleton induced by serum reduction could be reversed by subsequent FBS addition. In uptake and transport of bevacizumab vesicles and binding to a receptor seems to be involved: Internalization was strongly temperature-dependent which ruled out paracellular passage and a fraction of the internalized bevacizumab was associated with early endosomes. Protein A inhibited transcytosis and affected intracellular localization suggesting a key role of the neonatal Fc receptor (FcRn). Interestingly, FcRn expression was decreased when iBREC were cultivated without FBS. Our results suggest this pathway of bevacizumab uptake and transition through iBREC: Independent of serum, bevacizumab is taken up through a nonspecific mechanism. The subsequent sorting into transport vesicles depends on the presence of serum as regulator of FcRn expression. Without sufficient amounts of the receptor being expressed, a likely obstructed exocytosis results in intracellular accumulation and an increased association with cytoskeleton proteins. Interaction of substantial amounts of bevacizumab with the cytoskeleton may be the reason for under these conditions suppressed migration of iBREC. If long-term therapies by intravitreal injection lead to accumulation of bevacizumab in REC in vivo and potentially harmful consequences, will have to be revealed by future investigations.
Collapse
Affiliation(s)
| | - Gerhard K Lang
- Department of Ophthalmology, University of Ulm, 89075 Ulm, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University of Ulm, 89075 Ulm, Germany
| |
Collapse
|
158
|
Shah DK. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. J Pharmacokinet Pharmacodyn 2015; 42:553-71. [PMID: 26373957 DOI: 10.1007/s10928-015-9447-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022]
Abstract
Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.
Collapse
Affiliation(s)
- Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
159
|
Pre-Clinical Intravenous Serum Pharmacokinetics of Albumin Binding and Non-Half-Life Extended Nanobodies®. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030141] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|