151
|
Joanitti GA, Sawant RS, Torchilin VP, Freitas SMD, Azevedo RB. Optimizing liposomes for delivery of Bowman-Birk protease inhibitors - Platforms for multiple biomedical applications. Colloids Surf B Biointerfaces 2018; 167:474-482. [PMID: 29723819 DOI: 10.1016/j.colsurfb.2018.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
One of the major challenges in the administration of therapeutic proteins involves delivery limitations. Liposomes are well-known drug delivery systems (DDS) that have been used to overcome this drawback; nevertheless, low protein entrapment efficiency (EE) still limits their wide biomedical application on a commercial scale. In the present work, different methods for protein entrapment into liposomes were tested in order to obtain tailored DDS platforms for multiple biomedical applications. The protein used as model was the Black-eyed pea Trypsin and Chymotrypsin Inhibitor (BTCI), a member of the Bowman-Birk protease inhibitor family (BBIs), which has been largely explored for its potential application in many biomedical therapies. We optimized reverse-phase evaporation (REV) and freeze/thaw (F/T) entrapment methods, using a cationic lipid matrix to entrap expressive amounts of BTCI (∼100 μM) in stable liposomes without affecting its protease inhibition activity. The influence of various parameters (e.g. entrapment method, liposome composition, buffer type) on particle size, charge, polydispersity, and EE of liposomes was investigated to provide an insight on how to control such parameters in view of obtaining a high entrapment yield. In addition, BTCI liposome platforms obtained herein showed to be versatile vesicles, allowing surface modification with moieties/polymers of interest (e.g. PEG, transferrin). The aforementioned results are relevant to focusing on the entrapment of other promising BBIs or protein agents sharing similar structural features. These findings encourage future studies to investigate the advantages of using the liposome platforms presented herein to broaden the use of this type of DDS for BBI biomedical applications.
Collapse
Affiliation(s)
- Graziella Anselmo Joanitti
- Laboratory of Nanobiotecnology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil; Universidade de Brasília (UnB), Campus Ceilândia (FCE) Centro Metropolitano, Conjunto A - Lote 01, Brasília, DF, 72220-900, Brazil.
| | - Rupa S Sawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Vertex Pharmaceuticals, Boston, MA 02210, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotecnology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|
152
|
Chhibber S, Kaur J, Kaur S. Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection. Front Microbiol 2018; 9:561. [PMID: 29651276 PMCID: PMC5884882 DOI: 10.3389/fmicb.2018.00561] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Diabetic populations are more prone to developing wound infections which results in poor and delayed wound healing. Infection with drug resistant organisms further worsen the situation, driving searches for alternative treatment approaches such as phage therapy. Major drawback of phage therapy, however, is low phage persistence in situ, suggesting further refinement of the approach. In the present work we address this issue by employing liposomes as delivery vehicles. A liposome entrapped phage cocktail was evaluated for its ability to resolve a Staphylococcus aureus-induced diabetic excission wound infection. Two characterized S. aureus specific lytic phages, MR-5 and MR-10 alone, in combination (cocktail), or entrapped in liposomes (versus as free phages) were assesed for their therapeutic efficacy in resolving diabetic wound infection. Mice treated with free phage cocktail showed significant reduction in wound bioburden, greater wound contraction and faster tissue healing than with free monophage therapy. However, to further enhance the availability of viable phages the encapsulation of phage cocktail in the liposomes was done. Results of in vitro stability studies and in vivo phage titer determination, suggests that liposomal entrapment of phage cocktail can lead to better phage persistence at the wound site. A 2 log increase in phage titre, however, was observed at the wound site with liposome entrapped as compared to the free phage cocktail, and this was associaed with increased rates of infection resolution and wound healing. Entrapment of phage cocktails within liposomes thus could represent an attractive approach for treatment of bacterial infections, not responding to antibiotis as increased phage persistence in vitro and in vivo at the wound site was observed.
Collapse
Affiliation(s)
- Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jasjeet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
153
|
Hartkamp R, Moore TC, Iacovella CR, Thompson MA, Bulsara PA, Moore DJ, McCabe C. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers. J Phys Chem B 2018; 122:3113-3123. [PMID: 29504755 PMCID: PMC6028149 DOI: 10.1021/acs.jpcb.8b00747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The permeability
of multicomponent phospholipid bilayers in the
gel phase is investigated via molecular dynamics simulation. The physical
role of the different molecules is probed by comparing multiple mixed-component
bilayers containing distearylphosphatidylcholine (DSPC) with varying
amounts of either the emollient isostearyl isostearate or long-chain
alcohol (dodecanol, octadecanol, or tetracosanol) molecules. Permeability
is found to depend on both the tail packing density and hydrogen bonding
between lipid headgroups and water. Whereas the addition of emollient
or alcohol molecules to a gel-phase DSPC bilayer can increase the
tail packing density, it also disturbed the hydrogen-bonding network,
which in turn can increase interfacial water dynamics. These phenomena
have opposing effects on bilayer permeability, which is found to depend
on the balance between enhanced tail packing and decreased hydrogen
bonding.
Collapse
Affiliation(s)
- Remco Hartkamp
- Process & Energy Department , Delft University of Technology , Leeghwaterstraat 39 , 2628 CB Delft , The Netherlands
| | | | | | - Michael A Thompson
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - Pallav A Bulsara
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - David J Moore
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | | |
Collapse
|
154
|
Misra SK, Kampert TL, Pan D. Nano-Assembly of Pamitoyl-Bioconjugated Coenzyme-A for Combinatorial Chemo-Biologics in Transcriptional Therapy. Bioconjug Chem 2018; 29:1419-1427. [PMID: 29466855 DOI: 10.1021/acs.bioconjchem.8b00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenesis, the biological mechanism that leads to the diseased state, of many cancers is driven by interruptions to the role of Myc oncoprotein, a regulator protein that codes for a transcription factor. One of the most significant biological interruptions to Myc protein is noted as its dimerization with Max protein, another important factor of family of transcription factors. Binding of this heterodimer to E-Boxes, enhancer boxes as DNA response element found in some eukaryotes that act as a protein-binding site and have been found to regulate gene expression, are interrupted to regulate cancer pathogenesis. The systemic effectiveness of potent small molecule inhibitors of Myc-Max dimerization has been limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. The potential of gene therapy for targeting Myc can be fully realized by successful synthesis of a smart cargo. We developed a "nuclein" type nanoparticle "siNozyme" (45 ± 5 nm) from nanoassembly of pamitoyl-bioconjugated acetyl coenzyme-A for stable incorporation of chemotherapeutics and biologics to achieve remarkable growth inhibition of human melanoma. Results indicated that targeting transcriptional gene cMyc with siRNA with codelivery of a topoisomerase inhibitor, amonafide caused ∼90% growth inhibition and 95% protein inhibition.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering; Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute, Carle Foundation Hospital , 502 North Busey , Urbana , Illinois , 61801 , United States
| | - Taylor L Kampert
- Department of Bioengineering; Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute, Carle Foundation Hospital , 502 North Busey , Urbana , Illinois , 61801 , United States
| | - Dipanjan Pan
- Department of Bioengineering; Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute, Carle Foundation Hospital , 502 North Busey , Urbana , Illinois , 61801 , United States
| |
Collapse
|
155
|
Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 2018; 57:646-660. [DOI: 10.1111/ijd.13902] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Babar Iqbal
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Javed Ali
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| |
Collapse
|
156
|
Amjadi M, Sheykhansari S, Nelson BJ, Sitti M. Recent Advances in Wearable Transdermal Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704530. [PMID: 29315905 DOI: 10.1002/adma.201704530] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Indexed: 05/19/2023]
Abstract
Wearable transdermal delivery systems have recently received tremendous attention due to their noninvasive, convenient, and prolonged administration of pharmacological agents. Here, the material prospects, fabrication processes, and drug-release mechanisms of these types of therapeutic delivery systems are critically reviewed. The latest progress in the development of multifunctional wearable devices capable of closed-loop sensation and drug delivery is also discussed. This survey reveals that wearable transdermal delivery has already made an impact in diverse healthcare applications, while several grand challenges remain.
Collapse
Affiliation(s)
- Morteza Amjadi
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Sahar Sheykhansari
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Bradley J Nelson
- Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| |
Collapse
|
157
|
Ross K. Towards topical microRNA-directed therapy for epidermal disorders. J Control Release 2017; 269:136-147. [PMID: 29133119 DOI: 10.1016/j.jconrel.2017.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
There remains an unmet dermatological need for innovative topical agents that achieve better longterm outcomes with fewer side effects. Modulation of the expression and activity of microRNA (miRNAs) represents an emerging translational framework for the development of such innovative therapies because changes in the expression of one miRNA can have wide-ranging effects on diverse cellular processes associated with disease. In this short review, the roles of miRNA in epidermal development, psoriasis, cutaneous squamous cell carcinoma and re-epithelisation are highlighted. Consideration is given to the delivery of oligonucleotides that mimic or inhibit miRNA function using vehicles such as cell penetrating peptides, spherical nucleic acids, deformable liposomes and liquid crystalline nanodispersions. Formulation of miRNA-directed oligonucleotides with such skin-penetrating epidermal agents will drive the development of RNA-based cutaneous therapeutics for deployment as primary or adjuvant therapies for epidermal disorders.
Collapse
Affiliation(s)
- Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
158
|
Jain A, Pooladanda V, Bulbake U, Doppalapudi S, Rafeeqi TA, Godugu C, Khan W. Liposphere mediated topical delivery of thymoquinone in the treatment of psoriasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017. [DOI: 10.1016/j.nano.2017.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
159
|
Rajchakit U, Sarojini V. Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjug Chem 2017; 28:2673-2686. [DOI: 10.1021/acs.bioconjchem.7b00368] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Urawadee Rajchakit
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| |
Collapse
|
160
|
Akhter MH, Rizwanullah M, Ahmad J, Ahsan MJ, Mujtaba MA, Amin S. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:873-884. [DOI: 10.1080/21691401.2017.1366333] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, Najran University, Najran, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
161
|
Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, Kesharwani P. Lipid based nanocarriers system for topical delivery of photosensitizers. Drug Discov Today 2017; 22:1274-1283. [DOI: 10.1016/j.drudis.2017.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023]
|
162
|
Muzzalupo R, Pérez L, Pinazo A, Tavano L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int J Pharm 2017; 529:245-252. [PMID: 28668583 DOI: 10.1016/j.ijpharm.2017.06.083] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022]
Abstract
The natural capability shown by cationic vesicles in interacting with negatively charged surfaces or biomolecules has recently attracted increased interest. Important pharmacological advantages include the selective targeting of the tumour vasculature, the promotion of permeation across cell membranes, as well as the influence of cationic vesicles on drug delivery. Accordingly, cationic amphiphiles derived from amino acids may represent an alternative to traditional synthetic cationic surfactants due to their lower cytotoxicity. The importance of a synthesized lysine-based gemini surfactant (labelledC6(LL)2) was evaluated in drug delivery by designing cationic niosomes as usable pharmaceutical tools of chemotherapeutics and antibiotics, respectively like methotrexate and tetracycline. The influence of formulation factors on the vesicles' physical-chemical properties, drug entrapment efficiency, in vitro release and ex-vivo skin permeation were investigated. A niosomal gel containing the gemini surfactant was also tested as a viable multi-component topical formulation. Results indicate that in the presence of cholesterol, C6(LL)2 was able to form stable and nanosized niosomes, loading hydrophilic or hydrophobic molecules. Furthermore, in vitro release studies and ex-vivo permeation profiles showed that C6(LL)2-based vesicles behave as sustained and controlled delivery systems in the case of parenteral administration, and as drug percutaneous permeation enhancers after topical application. Finally, cationic C6(LL)2 acts as a carrier constituent, conferring peculiar and interesting functionality to the final formulation.
Collapse
Affiliation(s)
- Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy
| | - Lourdes Pérez
- Department of Chemical and Surfactants Technology, IQACCSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Aurora Pinazo
- Department of Chemical and Surfactants Technology, IQACCSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lorena Tavano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
163
|
Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, Pandit A, Rochev Y. Biomimetic Lipid-Based Nanosystems for Enhanced Dermal Delivery of Drugs and Bioactive Agents. ACS Biomater Sci Eng 2017; 3:1262-1272. [PMID: 33440514 DOI: 10.1021/acsbiomaterials.6b00681] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical utility of conventional oral therapies is limited by their inability to deliver therapeutic molecules at the local or targeted site, causing a variety of side effects. Transdermal delivery has made a significant contribution in the management of skin diseases with enhanced therapeutic activities over the past two decades. In the modern era, various biomimetic and biocompatible polymer-lipid hybrid systems have been used to augment the transdermal delivery of therapeutics such as dermal patches, topical gels, iontophoresis, electroporation, sonophoresis, thermal ablation, microneedles, cavitational ultrasound, and nano or microlipid vesicular systems. Nevertheless, the stratum corneum still represents the main barrier to the delivery of vesicles into the skin. Lipid based formulations applied to the skin are at the center of attention and are anticipated to be increasingly functional as the skin offers many advantages for the direction of such systems. Accordingly, this review provides an overview of the development of conventional to advanced biomimetic lipid vesicles for skin delivery of a variety of therapeutics, with special emphasis on recent developments in this field including the development of transferosomes, niosomes, aquasomes, cubosomes, and other new generation lipoidal carriers.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Bhargavi Chandrasekar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Peadar Rooney
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - K Vijaya Krishna
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland.,School of Chemistry, National University of Ireland Galway, Newcastle, Galway, Ireland.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation
| |
Collapse
|
164
|
Abstract
With the refinement of functional properties, the interest around biodegradable materials, in biorelated applications and, in particular, in their use as controlled drug-delivery systems, increased in the last decades. Biodegradable materials are an ideal platform to obtain nanoparticles for spatiotemporal controlled drug delivery for the in vivo administration, thanks to their biocompatibility, functionalizability, the control exerted on delivery rates and the complete degradation. Their application in systems for cancer treatment, brain and cardiovascular diseases is already a consolidated practice in research, while the bench-to-bedside translation is still late. This review aims at summarizing reported applications of biodegradable materials to obtain drug-delivery nanoparticles in the last few years, giving a complete overview of pros and cons related to degradable nanomedicaments.
Collapse
|
165
|
Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J Pharm Sci 2016; 106:423-445. [PMID: 27865609 DOI: 10.1016/j.xphs.2016.10.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
In the recent decade, skin delivery (topical and transdermal) has gained an unprecedented popularity, especially due to increased incidences of chronic skin diseases, demand for targeted and patient compliant delivery, and interest in life cycle management strategies among pharmaceutical companies. Literature review of recent publications indicates that among various skin delivery systems, lipid-based delivery systems (vesicular carriers and lipid particulate systems) have been the most successful. Vesicular carriers consist of liposomes, ultradeformable liposomes, and ethosomes, while lipid particulate systems consist of lipospheres, solid lipid nanoparticles, and nanostructured lipid carriers. These systems can increase the skin drug transport by improving drug solubilization in the formulation, drug partitioning into the skin, and fluidizing skin lipids. Considering that lipid-based delivery systems are regarded as safe and efficient, they are proving to be an attractive delivery strategy for the pharmaceutical as well as cosmeceutical drug substances. However, development of these delivery systems requires comprehensive understanding of physicochemical characteristics of drug and delivery carriers, formulation and process variables, mechanism of skin delivery, recent technological advancements, specific limitations, and regulatory considerations. Therefore, this review article encompasses recent research advances addressing the aforementioned issues.
Collapse
Affiliation(s)
- Shashank Jain
- Department of Product Development, G & W Labs, 101 Coolidge Street, South Plainfield, New Jersey 07080.
| | - Niketkumar Patel
- Charles River Laboratories Contract Manufacturing PA, LLC, Boothwyn, Pennsylvania 19061
| | - Mansi K Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Pinak Khatri
- Department of Product Development, G & W PA Laboratories, Sellersville, Pennsylvania 18960
| | - Namrata Vora
- Department of Formulation Development, Capsugel Dosage Form Solutions Division, Xcelience, Tampa, Florida 33634
| |
Collapse
|
166
|
Jain A, Doppalapudi S, Domb AJ, Khan W. Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J Control Release 2016; 243:132-145. [PMID: 27725194 DOI: 10.1016/j.jconrel.2016.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
Psoriasis is an autoimmune skin disorder characterized by hyper proliferation and poor differentiation of keratinocytes. It significantly affects patient's quality of life. This study reports the anti-psoriatic efficacy of tacrolimus and curcumin loaded liposphere gel formulation. Poor solubility, poor skin penetration and erratic absorption are some problems associated with the topical delivery of these drugs. To overcome these problems, lipospheres containing combination of tacrolimus and curcumin was prepared with a particle size of nearly 50nm and incorporated into a gel for topical application. Liposphere gel showed slow release of both the drugs and shear thinning behaviour that is desirable property of topical formulation. Further, dermal distribution study using dye loaded formulation suggested penetration of dye into skin layers. The therapeutic efficacy of tacrolimus and curcumin loaded liposphere gel was assessed on imiquimod induced psoriatic plaque model, and the level of expression of psoriatic biochemical markers was evaluated using enzyme-linked immunosorbent assay. Results indicated improvement in the phenotypic and histopathological features of psoriatic skin treated with tacrolimus and curcumin loaded liposphere gel. There was reduction in the level of TNF-α, IL-17 and IL-22 compared to imiquimod group. These results corroborate the premise that liposphere gel containing combination of tacrolimus and curcumin can be an effective strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sindhu Doppalapudi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Abraham J Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
167
|
Rangsimawong W, Opanasopit P, Rojanarata T, Panomsuk S, Ngawhirunpat T. Influence of sonophoresis on transdermal drug delivery of hydrophilic compound-loaded lipid nanocarriers. Pharm Dev Technol 2016; 22:597-605. [PMID: 27492948 DOI: 10.1080/10837450.2016.1221428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of sonophoresis on the transdermal drug delivery of sodium fluorescein (NaFI)-loaded lipid nanocarriers such as liposomes (LI), niosomes (NI) and solid lipid nanoparticles (SLN) was investigated by confocal laser scanning microscopy (CLSM), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that SN decreased the skin penetration of NaFI-loaded SLN (6.32-fold) and NI (1.79-fold), while it increased the penetration of NaFI-loaded LI (5.36-fold). CLSM images showed the red fluorescence of the LI and NI bilayer on the superficial layer of the stratum corneum. However, the red fluorescent probe of the SLN was not visualized in the skin. FTIR results of the LI and NI with SN showed no effect on lipid stratum corneum ordering, suggesting that the fragment of bilayer vesicles might repair the damaged skin. For SLN, the strengthening of stratum corneum by covering the disrupted skin with solid lipids was shown. SEM images show disrupted carriers of all the formulations adsorbed onto the damaged skin. In conclusion, the SN changed the properties of both the skin surface and lipid nanocarrier, demonstrating that disrupted skin might be repaired by a disrupted nanocarrier.
Collapse
Affiliation(s)
| | | | | | - Suwannee Panomsuk
- a Faculty of Pharmacy , Silpakorn University , Nakhon Pathom , Thailand
| | | |
Collapse
|
168
|
Tukappa A, Ultimo A, de la Torre C, Pardo T, Sancenón F, Martínez-Máñez R. Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8507-15. [PMID: 27468799 DOI: 10.1021/acs.langmuir.6b01715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are highly attractive as supports in the design of controlled delivery systems that can act as containers for the encapsulation of therapeutic agents, overcoming common issues such as poor water solubility and poor stability of some drugs and also enhancing their bioavailability. In this context, we describe herein the development of polyglutamic acid (PGA)-capped MSNs that can selectively deliver rhodamine B and doxorubicin. PGA-capped MSNs remain closed in an aqueous environment, yet they are able to deliver the cargo in the presence of pronase because of the hydrolysis of the peptide bonds in PGA. The prepared solids released less than 20% of the cargo in 1 day in water, whereas they were able to reach 90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. Studies of the PGA-capped nanoparticles with SK-BR-3 breast cancer cells were also undertaken. Rhodamine-loaded nanoparticles were not toxic, whereas doxorubicin-loaded nanoparticles were able to efficiently kill more than 90% of the cancer cells at a concentration of 100 μg/mL.
Collapse
Affiliation(s)
- Asha Tukappa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- Department of Biotechnology, Gulbarga University , Gulbarga 585106, Karnataka, India
| | - Amelia Ultimo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Teresa Pardo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
169
|
|
170
|
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1:10-29. [PMID: 29313004 PMCID: PMC5689513 DOI: 10.1002/btm2.10003] [Citation(s) in RCA: 820] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Nanoparticle/microparticle-based drug delivery systems for systemic (i.e., intravenous) applications have significant advantages over their nonformulated and free drug counterparts. For example, nanoparticle systems are capable of delivering therapeutics and treating areas of the body that other delivery systems cannot reach. As such, nanoparticle drug delivery and imaging systems are one of the most investigated systems in preclinical and clinical settings. Here, we will highlight the diversity of nanoparticle types, the key advantages these systems have over their free drug counterparts, and discuss their overall potential in influencing clinical care. In particular, we will focus on current clinical trials for nanoparticle formulations that have yet to be clinically approved. Additional emphasis will be on clinically approved nanoparticle systems, both for their currently approved indications and their use in active clinical trials. Finally, we will discuss many of the often overlooked biological, technological, and study design challenges that impact the clinical success of nanoparticle delivery systems.
Collapse
Affiliation(s)
- Aaron C Anselmo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge MA 02139
| | - Samir Mitragotri
- Dept. of Chemical Engineering, Center for Bioengineering University of California Santa Barbara CA 93106
| |
Collapse
|
171
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
172
|
Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016; 45:6520-6545. [DOI: 10.1039/c6cs00409a] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multifunctional lipid-based nanovesicles (L-NVs) prepared by molecular self-assembly of membrane components together with (bio)-active molecules, by means of compressed CO2-media or other non-conventional methods lead to highly homogeneous, tailor-made nanovesicles that are used for advanced nanomedicine. Confocal microscopy image of siRNA transfection using L-NVs, reprinted with permission from de Jonge,et al.,Gene Therapy, 2006,13, 400–411.
Collapse
Affiliation(s)
- N. Grimaldi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Nanomol Technologies SA
| | - F. Andrade
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - N. Segovia
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - L. Ferrer-Tasies
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Nanomol Technologies SA
| | - S. Sala
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - J. Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - N. Ventosa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| |
Collapse
|