151
|
Montagut E, Martin-Gomez MT, Marco MP. An Immunochemical Approach to Quantify and Assess the Potential Value of the Pseudomonas Quinolone Signal as a Biomarker of Infection. Anal Chem 2021; 93:4859-4866. [PMID: 33691411 PMCID: PMC8479725 DOI: 10.1021/acs.analchem.0c04731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023]
Abstract
Quorum sensing (QS) is a bacterial cell density-based communication system using low molecular weight signals called autoinducers (AIs). Identification and quantification of these molecules could provide valuable information related to the stage of colonization or infection as well as the stage of the disease. With this scenario, we report here for the first time the development of antibodies against the PQS (pseudomonas quinolone signal), the main signaling molecule from the pqs QS system of Pseudomonas aeruginosa, and the development of a microplate-based enzyme-linked immunosorbent assay (ELISA) able of quantifying this molecule in complex biological media in the low nanometer range (LOD, 0.36 ± 0.14 nM in culture broth media). Moreover, the PQS ELISA here reported has been found to be robust and reliable, providing accurate results in culture media. The technique allowed us to follow up the PQS profile of the release of bacterial clinical isolates obtained from patients of different disease status. A clear correlation was found between the PQS immunoreactivity equivalents and the chronic or acute infection conditions, which supports the reported differences on virulence and behavior of these bacterial strains due to their adaptation capability to the host environment. The results obtained point to the potential of the PQS as a biomarker of infection and to the value of the antibodies and the technology developed for improving diagnosis and management of P. aeruginosa infections based on the precise identification of the pathogen, appropriate stratification of the patients according to their disease status, and knowledge of the disease progression.
Collapse
Affiliation(s)
- Enrique
J. Montagut
- Nanobiotechnology
for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC)
of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Teresa Martin-Gomez
- Microbiology
Department, Vall d’Hebron University
Hospital (VHUH), 08035 Barcelona, Spain
- Genetics
and Microbiology Department, Universitat
Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - M. Pilar Marco
- Nanobiotechnology
for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC)
of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
152
|
Anti-quorum sensing and antibiofilm potential of 1,8-cineole derived from Musa paradisiaca against Pseudomonas aeruginosa strain PAO1. World J Microbiol Biotechnol 2021; 37:66. [PMID: 33740144 DOI: 10.1007/s11274-021-03029-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is one of the vulnerable opportunistic pathogens associated with nosocomial infections, cystic fibrosis, burn wounds and surgical site infections. Several studies have reported that quorum sensing (QS) systems are controlled the P. aeruginosa pathogenicity. Hence, the targeting of QS considered as an alternative approach to control P. aeruginosa infections. This study aimed to evaluate the anti-quorum sensing and antibiofilm inhibitory potential of Musa paradisiaca against Chromobacterium violaceum (ATCC 12472) and Pseudomonas aeruginosa. The methanol extract of M. paradisiacsa exhibits that better antibiofilm potential against P. aeruginosa. Then, the crude methanol extract was subjected to purify by column chromatography and collected the fractions. The mass-spectrometric analysis of a methanol extract of M. paradisiaca revealed that 1,8-cineole is the major compounds. 1, 8-cineole significantly inhibited the QS regulated violacein production in C. violaceum. Moreover, 1,8-cineole significantly inhibited the QS mediated virulence production and biofilm formation of P. aeruginosa without affecting their growth. The real-time PCR analysis showed the downregulation of autoinducer synthase and transcriptional regulator genes upon 1,8-cineole treatment. The findings of the present study strongly suggested that metabolite of M. paradisiaca impedes P. aeruginosa QS system and associated virulence productions.
Collapse
|
153
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
154
|
Morpholinium-based ionic liquids show antimicrobial activity against clinical isolates of Pseudomonas aeruginosa. Res Microbiol 2021; 172:103817. [PMID: 33741516 DOI: 10.1016/j.resmic.2021.103817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a multi-drug resistant (MDR) pathogen. It is classified by WHO as one of the most life-threatening pathogens causing nosocomial infections. Some of its clinical isolates and their subpopulations show high persistence to many antibiotics that are recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Thus, there is a need for non-traditional classes of antibiotics to fight the increasing threat of MDR P. aeruginosa. Ionic liquids (IL) are one such promising class of novel antibiotics. We selected four strains of P. aeruginosa and studied the growth inhibition and other effects of 12 different ILs. We used the well-characterized P. aeruginosa PAO1 (ATCC 15692) as model strain and compared it to three other isolates from chronic lung infection (LES B58), skin burn infection (UCBPP-PA14) and keratitis infection (39016), respectively. The ILs consisted of either 4,4-didecylmorpholinium [Dec2Mor]+ or 4-decyl-4-ethylmorpholinium [DecEtMor]+ cations combined with different anions. We found that the ILs with 4,4-didecylmorpholinium [Dec2Mor]+ cations most effectively inhibited bacterial growth as well as reduced strain fitness and virulence factor production. Our results indicate that these ILs could be used to treat P. aeruginosa infections.
Collapse
|
155
|
Mojsoska B, Ghoul M, Perron GG, Jenssen H, Alatraktchi FA. Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub-inhibitory concentrations of three common antibiotics. PLoS One 2021; 16:e0248014. [PMID: 33662048 PMCID: PMC7932067 DOI: 10.1371/journal.pone.0248014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental pathogen that can cause severe infections in immunocompromised patients. P. aeruginosa infections are typically treated with multiple antibiotics including tobramycin, ciprofloxacin, and meropenem. However, antibiotics do not always entirely clear the bacteria from the infection site, where they may remain virulent. This is because the effective antibiotic concentration and diffusion in vitro may differ from the in vivo environment in patients. Therefore, it is important to understand the effect of non-lethal sub-inhibitory antibiotic concentrations on bacterial phenotype. Here, we investigate if sub-inhibitory antimicrobial concentrations cause alterations in bacterial virulence factor production using pyocyanin as a model toxin. We tested this using the aforementioned antibiotics on 10 environmental P. aeruginosa strains. Using on-the-spot electrochemical screening, we were able to directly quantify changes in production of pyocyanin in a measurement time of 17 seconds. Upon selecting 3 representative strains to further test the effects of sub-minimum inhibitory concentration (MICs), we found that pyocyanin production changed significantly when the bacteria were exposed to 10-fold MIC of the 3 antibiotics tested, and this was strain specific. A series of biologically relevant measured pyocyanin concentrations were also used to assess the effects of increased virulence on a culture of epithelial cells. We found a decreased viability of the epithelial cells when incubated with biologically relevant pyocyanin concentrations. This suggests that the antibiotic-induced virulence also is a value worth being enclosed in regular testing of pathogens.
Collapse
Affiliation(s)
- Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- PreDiagnose, Karlslunde, Denmark
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gabriel G. Perron
- Department of Biology, Bard College, Annandale-On-Hudson, NY, United States of America
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | |
Collapse
|
156
|
PA1426 regulates Pseudomonas aeruginosa quorum sensing and virulence: an in vitro study. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
157
|
Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen MØ, Schmidt B, Zurich RH, van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 2021; 12:1230. [PMID: 33623002 PMCID: PMC7902821 DOI: 10.1038/s41467-021-21473-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Helen Masson
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | | | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Cathrine Bunæs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Benjamin Schmidt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Raymond H Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan E Lewis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
158
|
Do H, Kwon SR, Baek S, Madukoma CS, Smiley MK, Dietrich LE, Shrout JD, Bohn PW. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Analyst 2021; 146:1346-1354. [PMID: 33393560 PMCID: PMC7937416 DOI: 10.1039/d0an02022b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Gonçalves T, Vasconcelos U. Colour Me Blue: The History and the Biotechnological Potential of Pyocyanin. Molecules 2021; 26:927. [PMID: 33578646 PMCID: PMC7916356 DOI: 10.3390/molecules26040927] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Pyocyanin was the first natural phenazine described. The molecule is synthesized by about 95% of the strains of Pseudomonas aeruginosa. From discovery up to now, pyocyanin has been characterised by a very rich and avant-garde history, which includes its use in antimicrobial therapy, even before the discovery of penicillin opened the era of antibiotic therapy, as well as its use in electric current generation. Exhibiting an exuberant blue colour and being easy to obtain, this pigment is the subject of the present review, aiming to narrate its history as well as to unveil its mechanisms and suggest new horizons for applications in different areas of engineering, biology and biotechnology.
Collapse
Affiliation(s)
| | - Ulrich Vasconcelos
- Centro de Biotecnologia, Departamento de Biotecnologia, Universidade Federal da Paraíba, R. Ipê Amarelo, s/n, Campus I, João Pessoa PB-CEP 58051-900, Brazil;
| |
Collapse
|
160
|
Hreha TN, Foreman S, Duran-Pinedo A, Morris AR, Diaz-Rodriguez P, Jones JA, Ferrara K, Bourges A, Rodriguez L, Koffas MAG, Hahn M, Hauser AR, Barquera B. The three NADH dehydrogenases of Pseudomonas aeruginosa: Their roles in energy metabolism and links to virulence. PLoS One 2021; 16:e0244142. [PMID: 33534802 PMCID: PMC7857637 DOI: 10.1371/journal.pone.0244142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen which relies on a highly adaptable metabolism to achieve broad pathogenesis. In one example of this flexibility, to catalyze the NADH:quinone oxidoreductase step of the respiratory chain, P. aeruginosa has three different enzymes: NUO, NQR and NDH2, all of which carry out the same redox function but have different energy conservation and ion transport properties. In order to better understand the roles of these enzymes, we constructed two series of mutants: (i) three single deletion mutants, each of which lacks one NADH dehydrogenase and (ii) three double deletion mutants, each of which retains only one of the three enzymes. All of the mutants grew approximately as well as wild type, when tested in rich and minimal medium and in a range of pH and [Na+] conditions, except that the strain with only NUO (ΔnqrFΔndh) has an extended lag phase. During exponential phase, the NADH dehydrogenases contribute to total wild-type activity in the following order: NQR > NDH2 > NUO. Some mutants, including the strain without NQR (ΔnqrF) had increased biofilm formation, pyocyanin production, and killed more efficiently in both macrophage and mouse infection models. Consistent with this, ΔnqrF showed increased transcription of genes involved in pyocyanin production.
Collapse
Affiliation(s)
- Teri N. Hreha
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Sara Foreman
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Ana Duran-Pinedo
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, United States of America
| | - Andrew R. Morris
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Patricia Diaz-Rodriguez
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - J. Andrew Jones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Kristina Ferrara
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Anais Bourges
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Lauren Rodriguez
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Mattheos A. G. Koffas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Mariah Hahn
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail:
| |
Collapse
|
161
|
Leanse LG, Zeng X, Dai T. Potentiated antimicrobial blue light killing of methicillin resistant Staphylococcus aureus by pyocyanin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112109. [PMID: 33486397 DOI: 10.1016/j.jphotobiol.2020.112109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
As antimicrobial resistance continues to threaten the efficacy of conventional antibiotic therapy, it is paramount that we investigate innovative approaches to treat infectious diseases. In this study, we investigated the antimicrobial capabilities of the innovative combination of antimicrobial blue light (aBL; 405 nm wavelength) with the Pseudomonas aeruginosa pigment pyocyanin against methicillin resistant Staphylococcus aureus (MSRA. We explored the effects of different radiant exposures of aBL and increasing concentrations of pyocyanin against planktonic cells and those within biofilms. In addition, we investigated the effect of the aBL/pyocyanin on the endogenous staphyloxanthin pigment, as well as the role of hydrogen peroxide and singlet oxygen scavenging in the efficacy of this combination. Lastly, we investigated the potential for the aBL/pyocyanin to reduce the MRSA burden within a proof-of-principle mouse abrasion infection model. We found pyocyanin to be a powerful potentiator of aBL activity under all in vitro conditions tested. In addition, we serendipitously discovered the capability of the aBL/pyocyanin combination to bleach staphyloxanthin within colonies of MRSA. Furthermore, we established that singlet oxygen is an important mediator during combined aBL/pyocyanin exposure. Moreover, we found that the combination of aBL and pyocyanin could significantly reduce the viability of MRSA within a proof-of-principle early onset MRSA skin abrasion infection. Exposure to the treatment did not have deleterious effects on skin tissue. In conclusion, the combination of aBL and pyocyanin represents a potentially powerful therapeutic modality for the treatment of infections caused by MRSA.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Xiaojing Zeng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; School of Medicine, Shanghai Jiao Tong University, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
162
|
McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L, Carlson RP. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457. [PMID: 33446818 PMCID: PMC7809481 DOI: 10.1038/s41598-020-80522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow common systems biology assumptions including preferential consumption of glucose with an 'overflow' metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as 'reverse diauxie'. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional strategy which minimized resource investment into central metabolism while completely oxidizing substrates. Application of a common, in silico optimization criterion, which maximizes growth rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic strategies foundational to its wide distribution and virulence including its potentially, mutualistic interactions with microorganisms found commonly in the environment and in medical infections.
Collapse
Affiliation(s)
- S Lee McGill
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Yeni Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Michael A Henson
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
163
|
Pseudomonas aeruginosa detachment from surfaces via a self-made small molecule. J Biol Chem 2021; 296:100279. [PMID: 33450229 PMCID: PMC7949062 DOI: 10.1016/j.jbc.2021.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a significant threat in both healthcare and industrial biofouling. Surface attachment of P. aeruginosa is particularly problematic as surface association induces virulence and is necessary for the ensuing process of biofilm formation, which hampers antibiotic treatments. Previous efforts have searched for dispersal agents of mature biofilm collectives, but there are no known factors that specifically disperse individual surface-attached P. aeruginosa. In this study, we develop a quantitative single-cell surface-dispersal assay and use it to show that P. aeruginosa itself produces factors that can stimulate its dispersal. Through bioactivity-guided fractionation, mass spectrometry, and nuclear magnetic resonance, we elucidated the structure of one such factor, 2-methyl-4-hydroxyquinoline (MHQ). MHQ is an alkyl quinolone with a previously unknown activity and is synthesized by the PqsABC enzymes. Pure MHQ is sufficient to disperse P. aeruginosa, but the dispersal activity of natural P. aeruginosa conditioned media requires additional factors. Whereas other alkyl quinolones have been shown to act as antibiotics or membrane depolarizers, MHQ lacks these activities and known antibiotics do not induce dispersal. In contrast, we show that MHQ inhibits the activity of Type IV Pili (TFP) and that TFP targeting can explain its dispersal activity. Our work thus identifies single-cell surface dispersal as a new activity of P. aeruginosa-produced small molecules, characterizes MHQ as a promising dispersal agent, and establishes TFP inhibition as a viable mechanism for P. aeruginosa dispersal.
Collapse
|
164
|
Amly DA, Hajardhini P, Jonarta AL, Yulianto HDK, Susilowati H. Enhancement of pyocyanin production by subinhibitory concentration of royal jelly in Pseudomonas aeruginosa. F1000Res 2021; 10:14. [PMID: 34540201 PMCID: PMC8424461 DOI: 10.12688/f1000research.27915.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/17/2023] Open
Abstract
Background:Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of P. aeruginosa. Methods:Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC 10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.
Collapse
Affiliation(s)
- Dina Auliya Amly
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Puspita Hajardhini
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Alma Linggar Jonarta
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| |
Collapse
|
165
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
166
|
Cai L, Chen Q, Yao Z, Sun Q, Wu L, Ni Y. Glucocorticoid receptors involved in melatonin inhibiting cell apoptosis and NLRP3 inflammasome activation caused by bacterial toxin pyocyanin in colon. Free Radic Biol Med 2021; 162:478-489. [PMID: 33189867 DOI: 10.1016/j.freeradbiomed.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
The immunoinhibitory effect of glucocorticoid and immunoenhancing attributes of melatonin (MEL) are well known, however, the involvement of glucocorticoid receptor (GR) in melatonin modulation of bacterial toxins caused-inflammation has not been studied in colon. Pyocyanin (PCN), a toxin released by Pseudomonas aeruginosa, can destroy cells through generating superoxide products and inflammatory response. Here we report that PCN treatment elevated the generation of reactive oxygen species (ROS), which further lead to mitochondrial swelling and caspase cascades activation both in vivo and in vitro. However, MEL treatment alleviated the oxidative stress caused by PCN on cells through scavenging ROS and restoring the expression of antioxidant enzyme so that to effectively alleviate the apoptosis. Large amounts of ROS can activate the NLRP3 signaling pathway, so MEL inhibited PCN induced NLRP3 inflammasome activation and inflammatory cytokines (IL-1β, IL-8, and TNF-α) secretion. In order to further investigate the molecular mechanism, goblet cells were exposed to MEL and PCN in the presence of luzindole and RU486, inhibitors of MEL receptors and GR respectively. It was found that PCN significantly inhibited the expression level of GR, and MEL effectively alleviated the inhibition phenomenon. Moreover, we found that MEL mainly upregulated the expression of GR to achieve its anti-inflammatory and anti-apoptotic functions rather than through its own receptor (MT2) in colon goblet cells. Therefore, MEL can reverse the inhibitory effects of PCN on GR/p-GR expression to present its anti-oxidative and anti-apoptotic function.
Collapse
Affiliation(s)
- Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
167
|
Alva PP, Suresh S, Nanjappa DP, James JP, Kaverikana R, Chakraborty A, Sarojini BK, Premanath R. Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sci 2020; 267:118878. [PMID: 33358909 DOI: 10.1016/j.lfs.2020.118878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The study aimed at isolating and identifying potential anti-quorum sensing (QS) compounds from Cinnamomum verum leaves against Pseudomonas aeruginosa. METHODOLOGY Isolation of anti-QS compounds from C. verum leaf ethanol extract was carried out by column chromatography. The bioactive fraction was analysed by UV, IR, and GCMS spectroscopy. Various virulence assays were performed to assess the QS quenching ability of the purified compounds. In vivo toxicity of the purified compounds was examined in zebrafish model. The expression of the virulence genes was evaluated by qPCR analysis and in silico assessment was accomplished to check the binding ability of the compounds with the autoinducer molecule. KEY FINDINGS The QS inhibitors isolated and identified showed a remarkable ability in reducing the production of elastase, pyocyanin, swarming motility and biofilm formation in P. aeruginosa. In the presence of the characterized compounds, the expression of virulence genes of P. aeruginosa was significantly reduced. Toxicity studies in zebrafish model indicated no effects on development and organogenesis at a concentration below 100 mg/l. Further, in silico analysis demonstrated the binding efficiency of the anti-QS compounds to AHL molecules, thus proving the QS quenching ability of the isolated compounds. SIGNIFICANCE To the best of our knowledge this is the first report of isolation of anti-QS compounds from C. verum leaves against P. aeruginosa. The identified compounds qualify as potential QS antagonists. Further studies on these compounds can pave way for an effective and attractive anti-pathogenic therapy, to overcome the emergence of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Prathiksha Prabhakara Alva
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Sarika Suresh
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Jainey Puthenveetil James
- NITTE (Deemed to be University), Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Rajesh Kaverikana
- NITTE (Deemed to be University), Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Anirban Chakraborty
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Balladka K Sarojini
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | - Ramya Premanath
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
168
|
Montagut EJ, Vilaplana L, Martin-Gomez MT, Marco MP. High-Throughput Immunochemical Method to Assess the 2-Heptyl-4-quinolone Quorum Sensing Molecule as a Potential Biomarker of Pseudomonas aeruginosa Infections. ACS Infect Dis 2020; 6:3237-3246. [PMID: 33210530 DOI: 10.1021/acsinfecdis.0c00604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial quorum sensing (QS) is being contemplated as a promising target for developing innovative diagnostic and therapeutic strategies. Here we report for the first time the development of antibodies against 2-heptyl-4-quinolone (HHQ), a signaling molecule from the pqs QS system of Pseudomonas aeruginosa, involved in the production of important virulent factors and biofilm formation. The antibodies produced were used to develop an immunochemical diagnostic approach to assess the potential of this molecule as a biomarker of P. aeruginosa infection. The ELISA developed is able to reach a detectability in the low nM range (IC50 = 4.59 ± 0.29 nM and LOD = 0.34 ± 0.13 nM), even in complex biological samples such as Müeller Hinton (MH) culture media. The ELISA developed is robust and reproducible and has been found to be specific to HHQ, with little interference from other related alkylquinolones from the pqs QS system. The ELISA has been used to analyze the HHQ production kinetics of P. aeruginosa clinical isolates grown in MH media, pointing to its potential as a biomarker of infection and at the possibility to use the technology developed to obtain additional information about the disease stage.
Collapse
Affiliation(s)
- Enrique J. Montagut
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluisa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Teresa Martin-Gomez
- Microbiology Department, Vall d’Hebron University Hospital (VHUH), 08035 Barcelona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
| | - M. Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
169
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
170
|
Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, Feuilloley M, Cornelis P, Lesouhaitier O, Grougnet R, Boutefnouchet S, Wolfender JL, Chevalier S, Tahrioui A. Tackling Pseudomonas aeruginosa Virulence by Mulinane-Like Diterpenoids from Azorella atacamensis. Biomolecules 2020; 10:E1626. [PMID: 33276611 PMCID: PMC7761567 DOI: 10.3390/biom10121626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence.
Collapse
Affiliation(s)
- Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
- Department of Biological Sciences, Alex-Ekwueme Federal University, Ndufu Alike Ikwo PMB1010, Nigeria
| | - Sergio Ortiz
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Raphaël Grougnet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Sabrina Boutefnouchet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| |
Collapse
|
171
|
Simoska O, Duay J, Stevenson KJ. Electrochemical Detection of Multianalyte Biomarkers in Wound Healing Efficacy. ACS Sens 2020; 5:3547-3557. [PMID: 33175510 DOI: 10.1021/acssensors.0c01697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The targeted diagnosis and effective treatments of chronic skin wounds remain a healthcare burden, requiring the development of sensors for real-time monitoring of wound healing activity. Herein, we describe an adaptable method for the fabrication of carbon ultramicroelectrode arrays (CUAs) on flexible substrates with the goal to utilize this sensor as a wearable device to monitor chronic wounds. As a proof-of-concept study, we demonstrate the electrochemical detection of three electroactive analytes as biomarkers for wound healing state in simulated wound media on flexible CUAs. Notably, to follow pathogenic responses, we characterize analytical figures of merit for identification and monitoring of bacterial warfare toxin pyocyanin (PYO) secreted by the opportunistic human pathogen Pseudomonas aeruginosa. We also demonstrate the detection of uric acid (UA) and nitric oxide (NO•), which are signaling molecules indicative of wound healing and immune responses, respectively. The electrochemically determined limit of detection (LOD) and linear dynamic range (LDR) for PYO, UA, and NO• fall within the clinically relevant concentrations. Additionally, we demonstrate the successful use of flexible CUAs for quantitative, electrochemical detection of PYO from P. aeruginosa strains and cellular NO• from immune cells in the wound matrix. Moreover, we present an electrochemical examination of the interaction between PYO and NO•, providing insight into pathogen-host responses. Finally, the effects of the antimicrobial agent, silver (Ag+), on P. aeruginosa PYO production rates are investigated on flexible CUAs. Our electrochemical results show that the addition of Ag+ to P. aeruginosa in wound simulant decreases PYO secretion rates.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Jonathon Duay
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Keith J. Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoi Boulevard 30 Bld. 1, Moscow 121205, Russia
| |
Collapse
|
172
|
Mahavy CE, Duez P, ElJaziri M, Rasamiravaka T. African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9110830. [PMID: 33228261 PMCID: PMC7699609 DOI: 10.3390/antibiotics9110830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties against pathogenic bacteria, notably by disrupting mechanisms of bacterial virulence and/or biofilm formation which are both regulated by the cell-to-cell communication mechanism called ‘quorum sensing’ (QS). Certainly, targeting the virulence of bacteria and their capacity to form biofilms, without affecting their viability, may contribute to reduce their pathogenicity, allowing sufficient time for an immune response to infection and a reduction in the use of antibiotics. African plants, through their huge biodiversity, present a considerable reservoir of secondary metabolites with a very broad spectrum of biological activities, a potential source of natural products targeting such non-microbicidal mechanisms. The present paper aims to provide an overview on two main aspects: (i) succinct presentation of bacterial virulence and biofilm formation as well as their entanglement through QS mechanisms and (ii) detailed reports on African plant extracts and isolated compounds with antivirulence properties against particular pathogenic bacteria.
Collapse
Affiliation(s)
- Christian Emmanuel Mahavy
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906 Antananarivo 101, Madagascar;
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, 7000 Mons, Belgium;
| | - Mondher ElJaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Tsiry Rasamiravaka
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906 Antananarivo 101, Madagascar;
- Correspondence: ; Tel.: +261-32-61-903-38
| |
Collapse
|
173
|
Elbargisy RM. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Pseudomonas aeruginosa. Saudi J Biol Sci 2020; 28:993-1000. [PMID: 33424392 PMCID: PMC7783791 DOI: 10.1016/j.sjbs.2020.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a highly pathogenic bacteria involved in numerous diseases among which, are urinary tract infections (UTIs). The pyocyanin secreted as a virulence factor by this bacterium has many beneficial applications but its high cost remains an obstacle for its widespread use. In this study, a total of fifty urine isolates were identified as P. aeruginosa. All strains produced pyocyanin pigment with a range of 1.3-31 µg/ml. The highest producer clinical strain P21 and the standard strain PA14 were used in optimization of pyocyanin production. Among tested media, king's A fluid medium resulted in the highest yield of pyocyanin pigment followed by nutrient broth. Growth at 37 °C was superior in pyocyanin production than growth at 30 °C. Both shaking and longer incubation periods (3-4 days) improved pyocyanin production. The pyocyanin yield was indifferent upon growth of P21 at both pH 7 and pH 8. In conclusion, the optimum conditions for pyocyanin production are to use King's A fluid medium of pH 7 and incubate the inoculated medium at 37 °C with shaking at 200 rpm for a period of three to four days.
Collapse
Affiliation(s)
- Rehab Mohammed Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
174
|
Beasley KL, Cristy SA, Elmassry MM, Dzvova N, Colmer-Hamood JA, Hamood AN. During bacteremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those involved in quorum sensing. PLoS One 2020; 15:e0240351. [PMID: 33057423 PMCID: PMC7561203 DOI: 10.1371/journal.pone.0240351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that produces numerous virulence factors and causes serious infections in trauma patients and patients with severe burns. We previously showed that the growth of P. aeruginosa in blood from severely burned or trauma patients altered the expression of numerous genes. However, the specific influence of whole blood from healthy volunteers on P. aeruginosa gene expression is not known. Transcriptome analysis of P. aeruginosa grown for 4 h in blood from healthy volunteers compared to that when grown in laboratory medium revealed that the expression of 1085 genes was significantly altered. Quorum sensing (QS), QS-related, and pyochelin synthesis genes were downregulated, while genes of the type III secretion system and those for pyoverdine synthesis were upregulated. The observed effect on the QS and QS-related genes was shown to reside within serum fraction: growth of PAO1 in the presence of 10% human serum from healthy volunteers significantly reduced the expression of QS and QS-regulated genes at 2 and 4 h of growth but significantly enhanced their expression at 8 h. Additionally, the production of QS-regulated virulence factors, including LasA and pyocyanin, was also influenced by the presence of human serum. Serum fractionation experiments revealed that part of the observed effect resides within the serum fraction containing <10-kDa proteins. Growth in serum reduced the production of many PAO1 outer membrane proteins but enhanced the production of others including OprF, a protein previously shown to play a role in the regulation of QS gene expression. These results suggest that factor(s) within human serum: 1) impact P. aeruginosa pathogenesis by influencing the expression of different genes; 2) differentially regulate the expression of QS and QS-related genes in a growth phase- or time-dependent mechanism; and 3) manipulate the production of P. aeruginosa outer membrane proteins.
Collapse
Affiliation(s)
- Kellsie L. Beasley
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Shane A. Cristy
- Honors College, Texas Tech University, Lubbock, Texas, Untied States of America
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, Untied States of America
| | - Nyaradzo Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- * E-mail:
| |
Collapse
|
175
|
Abstract
The role of microbes in sustaining agricultural plant growth has great potential consequences for human prosperity. Yet we have an incomplete understanding of the basic function of rhizosphere microbial communities and how they may change under future stresses, let alone how these processes might be harnessed to sustain or improve crop yields. A reductionist approach may aid the generation and testing of hypotheses that can ultimately be translated to agricultural practices. With this in mind, we ask whether some rhizosphere microbial communities might be governed by 'keystone metabolites', envisioned here as microbially produced molecules that, through antibiotic and/or growth-promoting properties, may play an outsized role in shaping the development of the community spatiotemporally. To illustrate this point, we use the example of redox-active metabolites, and in particular phenazines, which are produced by many bacteria found in agricultural soils and have well-understood catalytic properties. Phenazines can act as potent antibiotics against a variety of cell types, yet they also can promote the acquisition of essential inorganic nutrients. In this essay, we suggest the ways these metabolites might affect microbial communities and ultimately agricultural productivity in two specific scenarios: firstly, in the biocontrol of beneficial and pathogenic fungi in increasingly arid crop soils and, secondly, through promotion of phosphorus bioavailability and sustainable fertilizer use. We conclude with specific proposals for future research.
Collapse
Affiliation(s)
- Kurt M Dahlstrom
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Darcy L McRose
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
176
|
Sen CK, Mathew-Steiner SS, Das A, Sundaresan VB, Roy S. Electroceutical Management of Bacterial Biofilms and Surgical Infection. Antioxid Redox Signal 2020; 33:713-724. [PMID: 32466673 PMCID: PMC7475090 DOI: 10.1089/ars.2020.8086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023]
Abstract
Significance: In the host-microbe microenvironment, bioelectrical factors influence microbes and hosts as well as host-microbe interactions. This article discusses relevant mechanistic underpinnings of this novel paradigm. It also addresses how such knowledge may be leveraged to develop novel electroceutical solutions to manage biofilm infection. Recent Advances: Systematic review and meta-analysis of several hundred wound studies reported a 78.2% prevalence of biofilms in chronic wounds. Biofilm infection is a major cause of delayed wound healing. In the host-microbe microenvironment, bioelectrical factors influence interactions between microbes and hosts. Critical Issues: Rapid biological responses are driven by electrical signals generated by ion currents moving across cell membranes. Bacterial life, growth, and function rely on a bioelectrical milieu, which when perturbed impairs their ability to form a biofilm, a major threat to health care. Electrokinetic stability of several viral particles depend on electrostatic forces. Weak electrical field strength, otherwise safe for humans, can be anti-microbial in this context. In the host, the electric field enhanced keratinocyte migration, bolstered immune defenses, improved mitochondrial function, and demonstrated multiple other effects consistent with supporting wound healing. A deeper mechanistic understanding of bioelectrical principles will inform the design of next-generation electroceuticals. Future Directions: This is an opportune moment in time as there is a surge of interest in electroceuticals in medicine. Projected to reach $35.5 billion by 2025, electroceuticals are becoming a cynosure in the global market. The World Health Organization reports that more than 50% of surgical site infections can be antibiotic resistant. Electroceuticals offer a serious alternative.
Collapse
Affiliation(s)
- Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shomita S. Mathew-Steiner
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
177
|
Xu D, Zhang Y, Cheng P, Wang Y, Li X, Wang Z, Yi H, Chen H. Inhibitory effect of a novel chicken-derived anti-biofilm peptide on P. aeruginosa biofilms and virulence factors. Microb Pathog 2020; 149:104514. [PMID: 32976967 DOI: 10.1016/j.micpath.2020.104514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
The antibiotic resistance of Pseudomonas aeruginosa (P. aeruginosa) is correlated with the formation of biofilms. Several studies have focused on biofilms and the treatment of biofilm infection by antimicrobial peptides (AMPs). The present study analyzed the feasibility of cCATH-2 (a chicken-derived antimicrobial peptide) as a new strategy for anti-biofilm activities. Biofilm biomass (crystal violet staining) and viability of biofilm bacteria (colony counting) were measured in P. aeruginosa PAO1 biofilm at the stage of attachment (4 h), formation (14 h), and maturation (24 h). cCATH-2 (1/2MIC) had the ability to reduce the initial attachment of viable bacteria due to decreasing planktonic bacteria. All tested concentrations of cCATH-2 (1/32-1/2MIC) significantly reduced the biomass at the biofilm formation stage. In addition, cCATH-2 (2MIC) had significant effects on the biomass and viability of bacteria of pre-biofilms, which caused significant killing (>90%) of the bacteria in the biofilm. Thus, it was confirmed that cCATH-2 could infiltrate into pre-biofilm to kill the biofilm cells, as assessed by confocal laser scanning microscopy (CLSM). Furthermore, cCATH-2 had an obvious effect on the production of the majority of the virulence factors of PAO1 biofilms, and the effect was better than that of ciprofloxacin, especially on alginate (the structural component of biofilms). These findings suggested that cCATH-2 is a putative candidate for the development of anti-biofilm and anti-infective drugs.
Collapse
Affiliation(s)
- Dengfeng Xu
- Chongqing Academy of Animal Sciences,Chongqing, 402460, China
| | - Yang Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Peng Cheng
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yidong Wang
- Hunan Reseach Center for Safety Evaluation of Drugs,Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs,Changsha, 410331, China
| | - Xiaofen Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
178
|
Alatraktchi FA, Svendsen WE, Molin S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. SENSORS 2020; 20:s20185218. [PMID: 32933125 PMCID: PMC7570525 DOI: 10.3390/s20185218] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa (PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyocyanin is one of PA’s virulence factors used to establish infections. Pyocyanin promotes virulence by interfering in numerous cellular functions in host cells due to its redox-activity. Fortunately, the redox-active nature of pyocyanin makes it ideal for detection with simple electrochemical techniques without sample pretreatment or sensor functionalization. The previous decade has seen an increased interest in the electrochemical detection of pyocyanin either as an indicator of the presence of PA in samples or as a tool for quantifying PA virulence. This review provides the first overview of the advances in electrochemical detection of pyocyanin and offers an input regarding the future directions in the field.
Collapse
Affiliation(s)
| | - Winnie E. Svendsen
- Department of Biomedicine and Bioengineering, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| |
Collapse
|
179
|
Brindhadevi K, LewisOscar F, Mylonakis E, Shanmugam S, Verma TN, Pugazhendhi A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
180
|
Roy R, Jan R, Joshi U, Bhor R, Pai K, Satsangi PG. Characterization, pro-inflammatory response and cytotoxic profile of bioaerosols from urban and rural residential settings in Pune, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114698. [PMID: 32387676 PMCID: PMC7190302 DOI: 10.1016/j.envpol.2020.114698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Microbiota associated with airborne particulate matter (PM) is an important indicator of indoor pollution as they can be pathogenic and cause serious health threats to the exposed occupants. Present study aimed to investigate the level of culturable microbes associated with PM and their toxicological characterization in urban and rural houses of Pune city. Highest concentration of bacterial aerosols observed to be associated with PM10 size fraction in urban site (2136 ± 285 CFU/m3) whereas maximum fungal concentration has been measured in rural houses (1521 ± 302 CFU/m3). Predominantly found bacterial species were Bacillus sp., S. aureus, and Pseudomonas aeruginosa and fungal species were Aspergillus sp., Cladosporium sp., and Penicillium sp. in both urban and rural residential premises. Concentration of endotoxin measured using the kinetic Limulus Amebocyte Lysate assay exhibited that the level of endotoxin in both urban and rural sites are associated with household characteristics and the activities performed in indoor as well as outdoor. Cell free DTT assay confirmed the ability of these airborne microbes to induce the production of reactive oxygen species (ROS) varying along with the types of microorganisms. On exposure of A549 cells to airborne microbes, a significant decrease in cell viability was observed in terms of both necrosis and apoptosis pathway. Elevated production of nitric oxide (NO) and proinflammatory cytokines in epithelial cells and macrophages clearly suggest the inflammatory nature of these airborne microbes. Results derived from the present study demonstrated that the indoor air of urban and rural houses of Pune is contaminated in terms of microbial load. Therefore, attention should be paid to control the factors favoring the microbial growth in order to safeguard the health of exposed inhabitants.
Collapse
Affiliation(s)
- Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Uttara Joshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Renuka Bhor
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| |
Collapse
|
181
|
Sass G, Nazik H, Chatterjee P, Stevens DA. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains. Med Mycol 2020; 59:453-464. [PMID: 32827431 DOI: 10.1093/mmy/myaa066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Airways of immunocompromised patients, or individuals with cystic fibrosis (CF), are common ground for Pseudomonas aeruginosa and Aspergillus fumigatus infections. Hence, in such a microenvironment both pathogens compete for resources. While under limiting iron conditions the siderophore pyoverdine is the most effective antifungal P. aeruginosa product, we now provide evidence that under nonlimiting iron conditions P. aeruginosa supernatants lack pyoverdine but still possess considerable antifungal activity. Spectrometric analyses of P. aeruginosa supernatants revealed the presence of phenazines, such as pyocyanin, only under nonlimiting iron conditions. Supernatants of quorum sensing mutants of strain PA14, defective in phenazine production, as well as supernatants of the P. aeruginosa strain PAO1, lacked pyocyanin, and were less inhibitory toward A. fumigatus biofilms under nonlimiting iron conditions. When blood as a natural source of iron was present during P. aeruginosa supernatant production, pyoverdine was absent, and phenazines, including pyocyanin, appeared, resulting in an antifungal effect on A. fumigatus biofilms. Pure pyocyanin reduced A. fumigatus biofilm metabolism. In summary, P. aeruginosa has mechanisms to compete with A. fumigatus under limiting and non-limiting iron conditions, and can switch from iron-denial-based to toxin-based antifungal activity. This has implications for the evolution of the microbiome in clinical settings where the two pathogens co-exist. Important differences in the iron response of P. aeruginosa laboratory strains PA14 and PAO1 were also uncovered.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California, USA
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, California, USA
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
182
|
A novel scaffold to fight Pseudomonas aeruginosa pyocyanin production: early steps to novel antivirulence drugs. Future Med Chem 2020; 12:1489-1503. [PMID: 32772556 DOI: 10.4155/fmc-2019-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Although bacterial resistance is a growing concern worldwide, the development of antibacterial drugs has been steadily decreasing. One alternative to fight this issue relies on reducing the bacteria virulence without killing it. PhzS plays a pivotal role in pyocyanin production in Pseudomonas aeruginosa. Results: A total of 31 thiazolidinedione derivatives were evaluated as putative PhzS inhibitors, using thermo shift assays. Compounds that significantly shifted PhzS's Tm had their mode of inhibition (cofactor competitor) and affinity calculated by thermo shift assays as well. The most promising compound (E)-5-(4-((4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)methoxy)benzylidene)thiazolidine-2,4-dione had their affinity confirmed by microscale thermophoresis (Kd = 18 μM). Cellular assays suggest this compound reduces pyocyanin production in vitro, but does not affect P. aeruginosa viability. Conclusion: The first inhibitor of PhzS is described.
Collapse
|
183
|
Drabinska J, Ziecina M, Modzelan M, Jagura‐Burdzy G, Kraszewska E. Individual Nudix hydrolases affect diverse features of Pseudomonas aeruginosa. Microbiologyopen 2020; 9:e1052. [PMID: 32419387 PMCID: PMC7424265 DOI: 10.1002/mbo3.1052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Nudix proteins catalyze the hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. The genome of an important opportunistic human pathogen, Pseudomonas aeruginosa, encodes multiple Nudix proteins. To determine the role of nine Nudix hydrolases of the P. aeruginosa PAO1161 strain in its fitness, virulence or antibiotic resistance mutants devoid of individual enzymes were constructed and analyzed for growth rate, motility, biofilm formation, pyocyanin production, and susceptibility to oxidative stress and different antibiotics. The potential effect on bacterial virulence was studied using the Caenorhabditis elegans-P. aeruginosa infection model. Of the nine mutants tested, five had an altered phenotype in comparison with the wild-type strain. The ΔPA3470, ΔPA3754, and ΔPA4400 mutants showed increased pyocyanin production, were more resistant to the β-lactam antibiotic piperacillin, and were more sensitive to killing by H2 O2 . In addition, ΔPA4400 and ΔPA5176 had impaired swarming motility and were less virulent for C. elegans. The ΔPA4841 had an increased sensitivity to oxidative stress. These changes were reversed by providing the respective nudix gene in trans indicating that the observed phenotype alterations were indeed due to the lack of the particular Nudix protein.
Collapse
Affiliation(s)
| | | | - Marta Modzelan
- Institute of Biochemistry and Biophysics PASWarsawPoland
| | | | | |
Collapse
|
184
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
185
|
Abstract
Bacteria have evolved a wide range of mechanisms to harm and kill their competitors, including chemical, mechanical and biological weapons. Here we review the incredible diversity of bacterial weapon systems, which comprise antibiotics, toxic proteins, mechanical weapons that stab and pierce, viruses, and more. The evolution of bacterial weapons is shaped by many factors, including cell density and nutrient abundance, and how strains are arranged in space. Bacteria also employ a diverse range of combat behaviours, including pre-emptive attacks, suicidal attacks, and reciprocation (tit-for-tat). However, why bacteria carry so many weapons, and why they are so often used, remains poorly understood. By comparison with animals, we argue that the way that bacteria live - often in dense and genetically diverse communities - is likely to be key to their aggression as it encourages them to dig in and fight alongside their clonemates. The intensity of bacterial aggression is such that it can strongly affect communities, via complex coevolutionary and eco-evolutionary dynamics, which influence species over space and time. Bacterial warfare is a fascinating topic for ecology and evolution, as well as one of increasing relevance. Understanding how bacteria win wars is important for the goal of manipulating the human microbiome and other important microbial systems.
Collapse
|
186
|
Dehbashi S, Pourmand MR, Alikhani MY, Asl SS, Arabestani MR. Coordination of las regulated virulence factors with Multidrug-Resistant and extensively drug-resistant in superbug strains of P. aeruginosa. Mol Biol Rep 2020; 47:4131-4143. [PMID: 32474845 DOI: 10.1007/s11033-020-05559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Successful pathogenicity often resulted from a complicated association between virulence and antibiotic resistance in Pseudomonas aeruginosa infections. Therefore, the current study aimed to investigate the relationship between the las system and antibiotic resistance. Seventy-three (73) P. aeruginosa isolates were collected from burn wounds (26.02%), blood cultures (30.13%), catheters (12.32%), and urine culture (31.50%). Among the 73 collected isolates, 22 isolates were considered as multi-drug resistant (MDR) and 11 isolates as extensively-drug resistant (XDR). Furthermore, phenazines and LasA protease were detected among 21.91% and 32.87% of isolates, respectively. Quantitative real-time PCR assessment of KPC, MBL, and lasI/R indicated that resistance and virulence factors are more expressed in XDR strains than MDR strains. Also, the expression level of KPC and MBL reduced in non-biofilm forming strains. However, increased expression levels of lasI, lasR, and the KPC genes were observed in LasA and LasB protease producing strains. Interestingly, 16 known sequence types (including ST108, ST260, ST217) and three novel STs (ST2452, ST2427, and ST2542) were characterized among the collected isolates, which are related to the virulence and resistance. In MDR-XDR strains, a strong correlation between lasI/R and the variants of antibiotic resistance genes was found. In conclusion, the pathogenicity of P. aeruginosa may increase the prevalence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
187
|
Vilaplana L, Marco MP. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: synthesis regulation, pathogenesis and analytical methods for their detection. Anal Bioanal Chem 2020; 412:5897-5912. [PMID: 32462363 DOI: 10.1007/s00216-020-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases are still a worldwide important problem. This fact has led to the characterization of new biomarkers that would allow an early, fast and reliable diagnostic and targeted therapy. In this context, Pseudomonas aeruginosa can be considered one of the most threatening pathogens since it causes a wide range of infections, mainly in patients that suffer other diseases. Antibiotic treatment is not trivial given the incidence of resistance processes and the fewer new antibiotics that are placed on the market. With this scenario, relevant quorum sensing (QS) molecules that regulate the secretion of virulence factors and biofilm formation can play an important role in diagnostic and therapeutic issues. In this review, we have focused our attention on phenazines, as possible new biomarkers. They are pigmented metabolites that are produced by diverse bacteria, characterized for presenting unique redox properties. Phenazines are involved in virulence, competitive fitness and are an essential component of the bacterial QS system. Here we describe their role in bacterial pathogenesis and we revise phenazine production regulation systems. We also discuss phenazine levels previously reported in bacterial isolates and in clinical samples to evaluate them as putative good candidates to be used as P. aeruginosa infection biomarkers. Moreover we deeply go through all analytical techniques that have been used for their detection and also new approaches are discussed from a critical point. Graphical abstract.
Collapse
Affiliation(s)
- Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| |
Collapse
|
188
|
Tahrioui A, Ortiz S, Azuama OC, Bouffartigues E, Benalia N, Tortuel D, Maillot O, Chemat S, Kritsanida M, Feuilloley M, Orange N, Michel S, Lesouhaitier O, Cornelis P, Grougnet R, Boutefnouchet S, Chevalier S. Membrane-Interactive Compounds From Pistacia lentiscus L. Thwart Pseudomonas aeruginosa Virulence. Front Microbiol 2020; 11:1068. [PMID: 32528451 PMCID: PMC7264755 DOI: 10.3389/fmicb.2020.01068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is capable to deploy a collection of virulence factors that are not only essential for host infection and persistence, but also to escape from the host immune system and to become more resistant to drug therapies. Thus, developing anti-virulence agents that may directly counteract with specific virulence factors or disturb higher regulatory pathways controlling the production of virulence armories are urgently needed. In this regard, this study reports that Pistacia lentiscus L. fruit cyclohexane extract (PLFE1) thwarts P. aeruginosa virulence by targeting mainly the pyocyanin pigment production by interfering with 4-hydroxy-2-alkylquinolines molecules production. Importantly, the anti-virulence activity of PLFE1 appears to be associated with membrane homeostasis alteration through the modulation of SigX, an extracytoplasmic function sigma factor involved in cell wall stress response. A thorough chemical analysis of PLFE1 allowed us to identify the ginkgolic acid (C17:1) and hydroginkgolic acid (C15:0) as the main bioactive membrane-interactive compounds responsible for the observed increased membrane stiffness and anti-virulence activity against P. aeruginosa. This study delivers a promising perspective for the potential future use of PLFE1 or ginkgolic acid molecules as an adjuvant therapy to fight against P. aeruginosa infections.
Collapse
Affiliation(s)
- Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sergio Ortiz
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Nabiha Benalia
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Smain Chemat
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, CRAPC, Bou Ismaïl, Algeria
| | - Marina Kritsanida
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Michel
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Raphaël Grougnet
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Sabrina Boutefnouchet
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| |
Collapse
|
189
|
Soukarieh F, Liu R, Romero M, Roberston SN, Richardson W, Lucanto S, Oton EV, Qudus NR, Mashabi A, Grossman S, Ali S, Sou T, Kukavica-Ibrulj I, Levesque RC, Bergström CAS, Halliday N, Mistry SN, Emsley J, Heeb S, Williams P, Cámara M, Stocks MJ. Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa. Front Chem 2020; 8:204. [PMID: 32432073 PMCID: PMC7213079 DOI: 10.3389/fchem.2020.00204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Current treatments for Pseudomonas aeruginosa infections are becoming less effective because of the increasing rates of multi-antibiotic resistance. Pharmacological targeting of virulence through inhibition of quorum sensing (QS) dependent virulence gene regulation has considerable therapeutic potential. In P. aeruginosa, the pqs QS system regulates the production of multiple virulence factors as well as biofilm maturation and is a promising approach for developing antimicrobial adjuvants for combatting drug resistance. In this work, we report the hit optimisation for a series of potent novel inhibitors of PqsR, a key regulator of the pqs system, bearing a 2-((5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-yl)thio) acetamide scaffold. The initial hit compound 7 (PAO1-L IC50 0.98 ± 0.02 μM, PA14 inactive at 10 μM) was obtained through a virtual screening campaign performed on the PqsR ligand binding domain using the University of Nottingham Managed Chemical Compound Collection. Hit optimisation gave compounds with enhanced potency against strains PAO1-L and PA14, evaluated using P. aeruginosa pqs-based QS bioreporter assays. Compound 40 (PAO1-L IC50 0.25 ± 0.12 μM, PA14 IC50 0.34 ± 0.03 μM) is one of the most potent PqsR antagonists reported showing significant inhibition of P. aeruginosa pyocyanin production and pqs system signaling in both planktonic cultures and biofilms. The co-crystal structure of 40 with the PqsR ligand binding domain revealed the specific binding interactions occurring between inhibitor and this key regulatory protein.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ruiling Liu
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Manuel Romero
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Shaun N Roberston
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - William Richardson
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone Lucanto
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Eduard Vico Oton
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Naim Ruhul Qudus
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alaa Mashabi
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Scott Grossman
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sadiqur Ali
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tomás Sou
- Drug Delivery Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Pharmacometrics Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - Christel A S Bergström
- Drug Delivery Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.,The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nigel Halliday
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Shailesh N Mistry
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom.,School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Michael J Stocks
- The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom.,School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
190
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
191
|
Seleem NM, Abd El Latif HK, Shaldam MA, El-Ganiny A. Drugs with new lease of life as quorum sensing inhibitors: for combating MDR Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis 2020; 39:1687-1702. [PMID: 32328851 PMCID: PMC7180647 DOI: 10.1007/s10096-020-03882-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
The emergence of multidrug-resistant (MDR) strains is a major health problem worldwide. There is an urgent need for novel strategies to combat bacterial infections caused by MDR strains like Pseudomonas aeruginosa and Acinetobacter baumannii. Quorum sensing (QS) is a critical communication system in bacterial community controlling survival and virulence. The awareness of the importance of QS in bacterial infections has stimulated research to identify QS inhibitors (QSIs) to defeat microbes. In this study, four FDA-approved drugs (besides azithromycin as positive QSI) were tested for potential QS inhibition against clinical A. baumannii isolates and P. aeruginosa (PAO1) standard strain. The inhibitory effect of these drugs on virulence factors of both microbes has been investigated. The studied virulence factors include biofilm formation, twitching and swarming motilities, proteolytic enzyme production, and resistance to oxidative stress. The four tested drugs (erythromycin, levamisole, chloroquine, and propranolol) inhibited QS in Chromobacterium violaceum by 84, 72, 55.1, and 37.3%, respectively. They also significantly inhibited virulence factors in both PAO1 and A. baumannii at sub-inhibitory concentrations. These findings were confirmed by qRT-PCR and mice mortality test, where tested drugs highly repressed the expression of abaI gene and showed significantly improved mice survival rates. In addition, molecular docking studies against AbaI and AbaR proteins of QS system in A. baumannii revealed the potential inhibition of QS by tested drugs. Beside their known activities, the tested drugs could be given new life as QSIs to combat A. baumannii nosocomial infections (alone or in combination with antimicrobials).
Collapse
Affiliation(s)
- Noura M Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hemat K Abd El Latif
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Moataz A Shaldam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kafr-elsheikh University, Kafr El Sheikh, 33516, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
192
|
Anti-Virulence Potential and In Vivo Toxicity of Persicaria maculosa and Bistorta officinalis Extracts. Molecules 2020; 25:molecules25081811. [PMID: 32326481 PMCID: PMC7221584 DOI: 10.3390/molecules25081811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Many traditional remedies represent potential candidates for integration with modern medical practice, but credible data on their activities are often scarce. For the first time, the anti-virulence potential and the safety for human use of the ethanol extracts of two medicinal plants, Persicaria maculosa (PEM) and Bistorta officinalis (BIO), have been addressed. Ethanol extracts of both plants exhibited anti-virulence activity against the medically important opportunistic pathogen Pseudomonas aeruginosa. At the subinhibitory concentration of 50 µg/mL, the extracts demonstrated a maximal inhibitory effect (approx. 50%) against biofilm formation, the highest reduction of pyocyanin production (47% for PEM and 59% for BIO) and completely halted the swarming motility of P. aeruginosa. Both extracts demonstrated better anti-quorum sensing and antibiofilm activities, and a better ability to interfere with LasR receptor, than the tested dominant extracts’ constituents. The bioactive concentrations of the extracts were not toxic in the zebrafish model system. This study represents an initial step towards the integration of P. maculosa and B. officinalis for use in the treatment of Pseudomonas infections.
Collapse
|
193
|
Kononen TR, Mooney KM, Hoekstra KA. A Slight Shade of Green. Clin Chem 2020; 65:939-940. [PMID: 31253610 DOI: 10.1373/clinchem.2018.298448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Kenneth A Hoekstra
- PeaceHealth United General Medical Center and .,Quest Diagnostics, Sedro-Woolley, WA
| |
Collapse
|
194
|
Wang K, Kai L, Zhang K, Hao M, Yu Y, Xu X, Yu Z, Chen L, Chi X, Ge Y. Overexpression of phzM contributes to much more production of pyocyanin converted from phenazine-1-carboxylic acid in the absence of RpoS in Pseudomonas aeruginosa. Arch Microbiol 2020; 202:1507-1515. [PMID: 32222778 DOI: 10.1007/s00203-020-01837-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Pyocyanin produced by Pseudomonas aeruginosa is a key virulence factor that often causes heavy damages to airway and lung in patients. Conversion of phenazine-1-carboxylic acid to pyocyanin involves an extrametabolic pathway that contains two enzymes encoded, respectively, by phzM and phzS. In this study, with construction of the rpoS-deficient mutant, we first found that although phenazine production increased, pyocyanin produced in the mutant YTΔrpoS was fourfold much higher than that in the wild-type strain YT. To investigate this issue, we constructed phzM-lacZ fusion on a vector and on the chromosome. By quantifying β-galactosidase activities, we confirmed that expression of the phzM was up-regulated when the rpoS gene was inactivated. However, no changes occurred in the expression of phzS and phzH when the rpoS was knocked out. Taken together, overproduction of the SAM-dependent methyltransferase (PhzM) might contribute to the increased pyocyanin in the absence of RpoS in P. aeruginosa.
Collapse
Affiliation(s)
- Kewen Wang
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Le Kai
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Kailu Zhang
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Mengyue Hao
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Yanjie Yu
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Xinyu Xu
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Zhifen Yu
- Affiliated Hospital, Ludong University, Yantai, 264025, China
| | - Lijuan Chen
- Affiliated Hospital, Ludong University, Yantai, 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China.
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China. .,Affiliated Hospital, Ludong University, Yantai, 264025, China.
| |
Collapse
|
195
|
Froes TQ, Nicastro GG, de Oliveira Pereira T, de Oliveira Carneiro K, Alves Reis IM, Conceição RS, Branco A, Ifa DR, Baldini RL, Castilho MS. Calycopterin, a major flavonoid from Marcetia latifolia, modulates virulence-related traits in Pseudomonas aeruginosa. Microb Pathog 2020; 144:104142. [PMID: 32173496 DOI: 10.1016/j.micpath.2020.104142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 01/30/2023]
Abstract
Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood. The rich chemical diversity of natural products offers a good starting point to identify key compounds that shed some light on this matter. Therefore, we investigated the role of Marcetia latifolia ethanolic extract, as well as its major constituent, calycopterin (5,4'-dihydroxy-3,6,7,8-tetramethoxylflavone), in the regulation of virulence-related phenotypes of Pseudomonas aeruginosa. Our results show that calycopterin inhibits pyocyanin production (EC50 = 32 μM), reduces motility and increases biofilm formation in a dose-dependent manner. Such biological profile suggests that calycopterin modulates targets that may act upstream the quorum sensing regulators and points to its utility as a chemical probe to further investigate P. aeruginosa transition from planktonic to sessile lifestyle.
Collapse
Affiliation(s)
- Thamires Quadros Froes
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | | | | | - Kelli de Oliveira Carneiro
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Isabella Mary Alves Reis
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Rodrigo Souza Conceição
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Alexsandro Branco
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Demian Rocha Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, Canada
| | - Regina Lúcia Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brazil; Faculdade de Farmácia, Universidade Federal da Bahia, Bahia, Brazil.
| |
Collapse
|
196
|
Mohamed B, Abdel-Samii ZK, Abdel-Aal EH, Abbas HA, Shaldam MA, Ghanim AM. Synthesis of imidazolidine-2,4-dione and 2-thioxoimidazolidin-4-one derivatives as inhibitors of virulence factors production in Pseudomonas aeruginosa. Arch Pharm (Weinheim) 2020; 353:e1900352. [PMID: 32134150 DOI: 10.1002/ardp.201900352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
In an attempt to counteract bacterial pathogenicity, a set of novel imidazolidine-2,4-dione and 2-thioxoimidazolidin-4-one derivatives was synthesized and evaluated as inhibitors of bacterial virulence. The new compounds were characterized and screened for their effects on the expression of virulence factors of Pseudomonas aeruginosa, including protease, hemolysin, and pyocyanin. Imidazolidine-2,4-diones 4c, 4j, and 12a showed complete inhibition of the protease enzyme, and they almost completely inhibited the production of hemolysin at 1/4 MIC (1/4 minimum inhibitory concentration; 1, 0.5, and 0.5 mg/ml, respectively). 2-Thioxoimidazolidin-4-one derivative 7a exhibited the best inhibitory activity (96.4%) against pyocyanin production at 1 mg/ml (1/4 MIC). A docking study was preformed to explore the potential binding interactions with quorum-sensing receptors (LasR and RhlR), which are responsible for the expression of virulence genes.
Collapse
Affiliation(s)
- Basant Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eatedal H Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany M Ghanim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
197
|
Cerulli A, Napolitano A, Masullo M, Hošek J, Pizza C, Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res Int 2020; 129:108787. [DOI: 10.1016/j.foodres.2019.108787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
|
198
|
El Sayed MT, El-Sayed AS. Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi. J Microbiol Biotechnol 2020; 30:226-236. [PMID: 31474084 PMCID: PMC9728364 DOI: 10.4014/jmb.1906.06070] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 µg/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 µg/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 µg of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.
Collapse
Affiliation(s)
- Manal T. El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ashraf S.A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt,Corresponding author Phone: +201024686495 Fax: +55-230-8213 E-mail:
| |
Collapse
|
199
|
Kang M, Mun C, Jung HS, Ansah IB, Kim E, Yang H, Payne GF, Kim DH, Park SG. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification. NANOSCALE 2020; 12:3668-3676. [PMID: 31793610 DOI: 10.1039/c9nr08136d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode. Such redox-cycling reactions are facilitated by the nanostructure that increases the probabilities of both reactant-electrode and product-redox-capacitor encounters (i.e., the nanoconfinement effect), resulting in substantial signal amplification. Using redox-capacitor-tethered Au nanopillar electrodes, we demonstrate improved sensitivity for measuring pyocyanin (bacterial metabolite). This study paves a new way of using nanostructured materials in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials.
Collapse
Affiliation(s)
- Mijeong Kang
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - ChaeWon Mun
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Ho Sang Jung
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Iris Baffour Ansah
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Haesik Yang
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Dong-Ho Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| |
Collapse
|
200
|
García-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol 2020; 69:25-34. [PMID: 31794380 DOI: 10.1099/jmm.0.001116] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces several virulence factors such as lectin A, pyocyanin, elastase and rhamnolipids. These compounds are controlled transcriptionally by three quorum-sensing circuits, two based on the synthesis and detection of N-acyl-homoserine-lactone termed the Las and Rhl system and a third system named the Pseudomonas quinolone signal (PQS) system, which is responsible for generating 2-alkyl-4(1 h)-quinolones (AQs). The transcriptional regulator called PqsR binds to the promoter of pqsABCDE in the presence of PQS or HHQ creating a positive feedback-loop. PqsE, encoded in the operon for AQ synthesis, is a crucial protein for pyocyanin production, activating the Rhl system by a still not fully understood mechanism. In turn, the regulation of the PQS system is modulated by Las and Rhl systems, which act positively and negatively, respectively. This review focuses on the PQS system, from its discovery to its role in Pseudomonas pathogenesis, such as iron depletion and pyocyanin synthesis that involves the PqsE protein - an intriguing player of this system.
Collapse
Affiliation(s)
- Selene García-Reyes
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, Mexico
| | - Miguel Cocotl-Yanez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Av. Universidad 3000, Cd. Universitaria, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|