2151
|
The emerging role of Mule and ARF in the regulation of base excision repair. FEBS Lett 2011; 585:2831-5. [PMID: 21726556 DOI: 10.1016/j.febslet.2011.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 12/13/2022]
Abstract
The ARF (Alternative Reading Frame) protein is encoded in the Ink4a locus of human chromosome 9 that is frequently mutated in cancer cells. It was recently demonstrated that ARF is induced in response to DNA damage and inhibits, by direct interaction, the E3 ubiquitin ligase Mule that regulates p53 protein levels. Mule inhibition leads to p53 accumulation and activates cellular DNA damage responses. Mule has also recently been identified as a major E3 ubiquitin ligase involved in the regulation of DNA base excision repair. In this review, we will summarise the major properties of Mule and ARF and their roles in the coordination of DNA repair and DNA replication.
Collapse
|
2152
|
Abstract
The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.
Collapse
|
2153
|
Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 2011; 12:439-52. [PMID: 21697901 DOI: 10.1038/nrm3143] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proper regulation of apoptosis is essential for the survival of multicellular organisms. Furthermore, excessive apoptosis can contribute to neurodegenerative diseases, anaemia and graft rejection, and diminished apoptosis can lead to autoimmune diseases and cancer. It has become clear that the post-translational modification of apoptotic proteins by ubiquitylation regulates key components in cell death signalling cascades. For example, ubiquitin E3 ligases, such as MDM2 (which ubiquitylates p53) and inhibitor of apoptosis (IAP) proteins, and deubiquitinases, such as A20 and ubiquitin-specific protease 9X (USP9X) (which regulate the ubiquitylation and degradation of receptor-interacting protein 1 (RIP1) and myeloid leukaemia cell differentiation 1 (MCL1), respectively), have important roles in apoptosis. Therapeutic agents that target apoptotic regulatory proteins, including those that are part of the ubiquitin-proteasome system, might afford clinical benefits.
Collapse
Affiliation(s)
- Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
2154
|
Abstract
Tumor suppressor p53 plays a central role in tumor prevention. As a transcription factor, p53 mainly exerts its function through transcription regulation of its target genes to initiate various cellular responses. To maintain its proper function, p53 is tightly regulated by a wide variety of regulators in cells. Thus, p53, its regulators and regulated genes form a complex p53 network which is composed of hundreds of genes and their products. microRNAs (miRNAs) are a class of endogenously expressed, small non-coding RNA molecules which play a key role in regulation of gene expression at the post-transcriptional level. Recent studies have demonstrated that miRNAs interact with p53 and its network at multiple levels. p53 regulates the transcription expression and the maturation of a group of miRNAs. On the other hand, miRNAs can regulate the activity and function of p53 through direct repression of p53 or its regulators in cells. These findings have demonstrated that miRNAs are important components in the p53 network, and also added another layer of complexity to the p53 network.
Collapse
Affiliation(s)
- Zhaohui Feng
- Department of Radiation Oncology, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA.
| | | | | | | |
Collapse
|
2155
|
Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011; 2011:978312. [PMID: 21765642 PMCID: PMC3134396 DOI: 10.1155/2011/978312] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/04/2011] [Accepted: 04/24/2011] [Indexed: 12/13/2022] Open
Abstract
TP53, encoding p53, is one of the most famous tumor suppressor genes. The majority of human cancers demonstrate the inactivation of the p53 pathway. Mutant p53 not only, no longer, functions as a tumor suppressor but can also exert tumor-promoting effects. The basic function of p53 is to respond to cellular stress. We herein review the recent advances in p53 research and focus on apoptosis, cell cycle arrest, and senescence in response to stress. We also review the clinical applications of p53-based therapy for human cancer.
Collapse
|
2156
|
Enhanced tumor suppression by an ING4/IL-24 bicistronic adenovirus-mediated gene cotransfer in human non-small cell lung cancer cells. Cancer Gene Ther 2011; 18:627-36. [PMID: 21660060 DOI: 10.1038/cgt.2011.31] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ING4 as a member of inhibitor of growth (ING) tumor suppressor family has potent inhibitory effects on a variety of tumors. Interleukin-24 (IL-24), a cytokine-tumor suppressor, also shows broad-spectrum and tumor-specific antitumor activities. In this report, we constructed an ING4/IL-24 bicistronic adenovirus (Ad-ING4-IL-24) and assessed its combined effect on in vitro and in vivo A549 human non-small cell lung cancer cells. We demonstrated that ING4 and IL-24 combination treatment by adenovirus-mediated ING4 and IL-24 coexpression induced additive growth suppression and apoptosis as well as an overlapping effect on upregulation of P21, P27, Fas, Bax and cleaved Caspases-8, 9, 3 and downregulation of Bcl-2 in in vitro A549 lung carcinoma cells. Moreover, Ad-ING4-IL-24 treatment additively inhibited in vivo A549 lung carcinoma subcutaneous (s.c.) xenografted tumor growth and reduced CD34 and microvessel density in A549 xenografted tumors in athymic nude mice. The enhanced antitumor activity elicited by Ad-ING4-IL-24 was closely associated with the coordinate activation of extrinsic and intrinsic apoptotic pathways and additive inhibition of tumor angiogenesis. Thus, our results indicate that cancer gene therapy combining two or more tumor suppressors such as ING4 and IL-24 may constitute a novel and effective therapeutic strategy for lung carcinoma and other cancers.
Collapse
|
2157
|
Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer. J Mol Biol 2011; 409:358-68. [PMID: 21457718 PMCID: PMC3176915 DOI: 10.1016/j.jmb.2011.03.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/30/2022]
Abstract
The tetrameric tumor suppressor p53 plays a pivotal role in the control of the cell cycle and provides a paradigm for an emerging class of oligomeric, multidomain proteins with structured and intrinsically disordered regions. Many of its biophysical and functional properties have been extrapolated from truncated variants, yet the exact structural and functional role of certain segments of the protein is unclear. We found from NMR and X-ray crystallography that the DNA-binding domain (DBD) of human p53, usually defined as residues 94-292, extends beyond these domain boundaries. Trp91, in the hinge region between the disordered proline-rich N-terminal domain and the DBD, folds back onto the latter and has a cation-π interaction with Arg174. These additional interactions increase the melting temperature of the DBD by up to 2 °C and inhibit aggregation of the p53 tetramer. They also modulate the dissociation of the p53 tetramer. The absence of the Trp91/Arg174 packing presumably allows nonnative DBD-DBD interactions that both nucleate aggregation and stabilize the interface. These data have important implications for studies of multidomain proteins in general, highlighting the fact that weak ordered-disordered domain interactions can modulate the properties of proteins of complex structure.
Collapse
|
2158
|
Kurzhals RL, Titen SWA, Xie HB, Golic KG. Chk2 and p53 are haploinsufficient with dependent and independent functions to eliminate cells after telomere loss. PLoS Genet 2011; 7:e1002103. [PMID: 21655087 PMCID: PMC3107200 DOI: 10.1371/journal.pgen.1002103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/08/2011] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues.
Collapse
Affiliation(s)
- Rebeccah L. Kurzhals
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Simon W. A. Titen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Heng B. Xie
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kent G. Golic
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
2159
|
van Heemst D. Variation in DNA damage response pathway activity: focus on intermediate phenotype instead of genetic polymorphisms. Cell Cycle 2011; 10:1714. [PMID: 21537112 DOI: 10.4161/cc.10.11.15592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
2160
|
|
2161
|
Tp53 deletion in B lineage cells predisposes mice to lymphomas with oncogenic translocations. Oncogene 2011; 30:4757-64. [PMID: 21625223 DOI: 10.1038/onc.2011.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inactivating Tp53 mutations are frequent genetic lesions in human tumors that harbor genomic instability, including B lineage lymphomas with IG translocations. Antigen receptor genes are assembled and modified in developing lymphocytes by RAG/AID-initiated genomic rearrangements that involve the induction of DNA double strand breaks (DSBs). Although TP53 inhibits the persistence of DSBs and induces apoptosis to protect cells from genomic instability and transformation, the development of spontaneous tumors harboring clonal translocations has not been reported in mice that only lack wild-type Tp53 protein or express Tp53 mutants. Tp53-deficient (Tp53(-/-)) mice succumb to T lineage lymphomas lacking clonal translocations but develop B lymphoid tumors containing immunoglobulin (Ig) translocations upon combined inactivation of DSB repair factors, RAG mutation or AID overexpression; mice expressing apoptosis-defective Tp53 mutants develop B cell lymphomas that have not been characterized for potential genomic instability. As somatic rather than germline inactivating mutations of TP53 are typically associated with human cancers and Tp53 deletion has cellular context dependent effects upon lymphocyte transformation, we generated mice with conditional Tp53 deletion in lineage-committed B lymphocytes to avoid complications associated with defective Tp53 responses during embryogenesis and/or in multi-lineage potential cells and, thereby, directly evaluate the potential physiological role of Tp53 in suppressing translocations in differentiated cells. These mb1-cre:Tp53(flox/flox) mice succumbed to lymphoid tumors containing Ig gene rearrangements and immunophenotypes characteristic of B cells from various developmental stages. Most mb1-cre:Tp53(flox/flox) tumors harbored clonal translocations, including Igh/c-myc or other oncogenic translocations generated by the aberrant repair of RAG/AID-generated DSBs. Our data indicate that Tp53 serves critical functions in B lineage lymphocytes to prevent transformation caused by translocations in cell populations experiencing physiological levels of RAG/AID-initiated DSB intermediates, and provide evidence that the somatic TP53 mutations found in diffuse large B-cell lymphoma and Burkitt's lymphoma may contribute to the development of these human malignancies.
Collapse
|
2162
|
Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1350-60. [PMID: 21356385 DOI: 10.1016/j.ajpath.2010.11.061] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/25/2010] [Accepted: 11/09/2010] [Indexed: 11/24/2022]
Abstract
The TP63 gene, a member of the TP53 tumor suppressor gene family, can be expressed as at least six isoforms due to alternative promoter use and alternative splicing. The lack of p63 isoform-specific antibodies has limited the analysis of the biological significance of p63. We report a novel set of well-defined antibodies to examine p63 isoforms in mouse and human urothelium during embryogenesis and tumor progression, respectively. We provide evidence that basal and intermediate urothelial cells express p63 isoforms, with the TAp63 variant the first to be detected during development, whereas umbrella cells are characterized by a p63-negative phenotype. Notably, we report that p63-null mice develop a bladder with an abnormal urothelium, constituted by a single layer of cells that express uroplakin II and low molecular weight cytokeratins, consistent with an umbrella cell phenotype. Finally, analysis of 202 human bladder carcinomas revealed a new categorization of invasive tumors into basal-like (positive for ΔNp63 and high molecular weight cytokeratins and negative for low molecular weight cytokeratins) versus luminal-like (negative for ΔNp63 and high molecular weight cytokeratins and positive for low molecular weight cytokeratins) phenotypes, with ΔNp63 expression associated with an aggressive clinical course and poor prognosis. This study highlights the relevance of p63 isoforms in both urothelial development and bladder carcinoma progression, with ΔNp63 acting as an oncogene in certain invasive bladder tumors.
Collapse
|
2163
|
Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Bruce JN, Canoll P. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 2011; 6:e20041. [PMID: 21625383 PMCID: PMC3100315 DOI: 10.1371/journal.pone.0020041] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM). Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors. METHODOLOGY/PRINCIPAL FINDINGS To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival. CONCLUSIONS/SIGNIFICANCE This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies.
Collapse
Affiliation(s)
- Liang Lei
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Adam M. Sonabend
- Department of Neurological Surgery, Columbia University, New York, New
York, United States of America
| | - Paolo Guarnieri
- Biomedical Informatics Shared Resources, Bioinformatics Division,
Columbia University, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Craig Soderquist
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
| | - Thomas Ludwig
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Steven Rosenfeld
- Department of Neurology, Columbia University, New York, New York, United
States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University, New York, New
York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| |
Collapse
|
2164
|
Chen Y, Zhang L, Jones KA. SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing. Genes Dev 2011; 25:701-16. [PMID: 21460037 DOI: 10.1101/gad.2002611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Ski-interacting protein SKIP/SNW1 functions as both a splicing factor and a transcriptional coactivator for induced genes. We showed previously that transcription elongation factors such as SKIP are dispensable in cells subjected to DNA damage stress. However, we report here that SKIP is critical for both basal and stress-induced expression of the cell cycle arrest factor p21(Cip1). RNAi chromatin immunoprecipitation (RNAi-ChIP) and RNA immunoprecipitation (RNA-IP) experiments indicate that SKIP is not required for transcription elongation of the gene under stress, but instead is critical for splicing and p21(Cip1) protein expression. SKIP interacts with the 3' splice site recognition factor U2AF65 and recruits it to the p21(Cip1) gene and mRNA. Remarkably, SKIP is not required for splicing or loading of U2AF65 at other investigated p53-induced targets, including the proapoptotic gene PUMA. Consequently, depletion of SKIP induces a rapid down-regulation of p21(Cip1) and predisposes cells to undergo p53-mediated apoptosis, which is greatly enhanced by chemotherapeutic DNA damage agents. ChIP experiments reveal that SKIP is recruited to the p21(Cip1), and not PUMA, gene promoters, indicating that p21(Cip1) gene-specific splicing is predominantly cotranscriptional. The SKIP-associated factors DHX8 and Prp19 are also selectively required for p21(Cip1) expression under stress. Together, these studies define a new step that controls cancer cell apoptosis.
Collapse
Affiliation(s)
- Yupeng Chen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
2165
|
Rinn JL, Huarte M. To repress or not to repress: this is the guardian's question. Trends Cell Biol 2011; 21:344-53. [PMID: 21601459 DOI: 10.1016/j.tcb.2011.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
p53 is possibly the most central tumor suppressor gene of our cells, integrating stress signals to activate a transcriptional program responsible for maintaining cellular homeostasis. Many of the downstream effects of p53 are a consequence of its activity as a transcription factor, resulting in the induction of multiple target genes. In addition to gene activation, however, gene repression is an essential part of the p53 cellular response. Despite extensive research efforts towards the elucidation of p53 functions, the molecular mechanisms and biological consequences of gene repression by p53 have not been studied extensively. We review our current knowledge of the mechanisms and biological consequences of p53 repression, with special attention to recently discovered mechanisms of repression that involve non-coding RNA molecules, an emerging aspect of regulation in the p53 cellular network.
Collapse
Affiliation(s)
- John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
2166
|
Abstract
PURPOSE OF REVIEW We used two examples of genes, TP53 and EGFR, which are somatically altered by intragenic mutations in common cancer types to illustrate how somatic mutations have followed very different routes to clinical applications. RECENT FINDINGS TP53 somatic mutations are frequent in many cancers. Their prognostic and predictive values are currently assessed in several clinical trials and TP53 gene therapy is in use in China. Mutations in EGFR have been proved to be predictive of response to tyrosine kinase inhibitors, allowing for the licensing of gefitinib in lung adenocarcinomas carrying a mutated EGFR gene. SUMMARY With the accumulation of knowledge on the predictive and prognostic value of somatic mutations, and with recent advances in large-scale sequencing techniques and reduction in cost of sequencing, sequencing several genes in human tumors is on the verge of becoming routine clinical practice.
Collapse
|
2167
|
Wang X, Wang J, Jiang X. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J Biol Chem 2011; 286:23725-34. [PMID: 21572037 DOI: 10.1074/jbc.m110.213868] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic evidence has implicated both Mdm2 and MdmX as essential in negative regulation of p53. However, the exact role of MdmX in this Mdm2-dependent protein degradation is not well understood. Most, if not all, previous Mdm2 studies used GST-Mdm2 fusion proteins in the in vitro assays. Here, we show that the p53 polyubiquitination activity of GST-Mdm2 is conferred by the GST tag and non-GST-tagged Mdm2 only catalyzes monoubiquitination of p53 even at extremely high concentrations. We further demonstrate that MdmX is a potent activator of Mdm2, facilitating dose-dependent p53 polyubiquitination. This activation process requires the RING domains of both MdmX and Mdm2 proteins. The polyubiquitination activity of Mdm2/MdmX is Mdm2-dependent. Unlike Mdm2 or MdmX overexpression alone, co-overexpression of MdmX and Mdm2 consistently triggered p53 degradation in cells. Moreover, cellular polyubiquitination of p53 was only observable in the cytoplasm where both Mdm2 and MdmX are readily detectable. Importantly, RNAi knockdown of MdmX increased levels of endogenous p53 accompanied by reduced p53 polyubiquitination. In conclusion, our work has resolved a major confusion in the field derived from using GST-Mdm2 and demonstrated that MdmX is the cellular activator that converts Mdm2 from a monoubiquitination E3 ligase to a polyubiquitination E3 ligase toward p53. Together, our findings provide a biochemical basis for the requirement of both Mdm2 and MdmX in the dynamic regulation of p53 stability.
Collapse
Affiliation(s)
- Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
2168
|
Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y, Sugiyama Y, Aburatani H, Harris CC, Nakagama H. Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 2011; 71:4628-39. [PMID: 21565979 DOI: 10.1158/0008-5472.can-10-2475] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selective activation of p53 target genes in response to various cellular stresses is a critical step in determining the ability to induce cell-cycle arrest or apoptosis. Here we report the identification of the microRNA miR-22 as a p53 target gene that selectively determines the induction of p53-dependent apoptosis by repressing p21. Combinatorial analyses of the AGO2 immunocomplex and gene expression profiles identified p21 as a direct target of miR-22. Induction of p21 was inhibited by miR-22 after exposure to the genotoxic agent Adriamycin (doxorubicin; Bedford Laboratories), sensitizing cells to p53-dependent apoptosis. Interestingly, the activation of miR-22 depended on the intensity of the stresses that induced cells to undergo apoptosis in the presence of p21 suppression. Our findings define an intrinsic molecular switch that determines p53-dependent cellular fate through post-transcriptional regulation of p21.
Collapse
Affiliation(s)
- Naoto Tsuchiya
- Division of Cancer Development System and Cancer Differentiation, National Cancer Center Research Institute, Tsukiji, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2169
|
Sun XX, DeVine T, Challagundla KB, Dai MS. Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem 2011; 286:22730-41. [PMID: 21561866 DOI: 10.1074/jbc.m111.223651] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins play a critical role in tightly coordinating p53 signaling with ribosomal biogenesis. Several ribosomal proteins have been shown to induce and activate p53 via inhibition of MDM2. Here, we report that S27a, a small subunit ribosomal protein synthesized as an 80-amino acid ubiquitin C-terminal extension protein (CEP80), functions as a novel regulator of the MDM2-p53 loop. S27a interacts with MDM2 at the central acidic domain of MDM2 and suppresses MDM2-mediated p53 ubiquitination, leading to p53 activation and cell cycle arrest. Knockdown of S27a significantly attenuates the p53 activation in cells in response to treatment with ribosomal stress-inducing agent actinomycin D or 5-fluorouracil. Interestingly, MDM2 in turn ubiquitinates S27a and promotes proteasomal degradation of S27a in response to actinomycin D treatment, thus forming a mutual-regulatory loop. Altogether, our results reveal that S27a plays a non-redundant role in mediating p53 activation in response to ribosomal stress via interplaying with MDM2.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
2170
|
Bonnefoi H, Piccart M, Bogaerts J, Mauriac L, Fumoleau P, Brain E, Petit T, Rouanet P, Jassem J, Blot E, Zaman K, Cufer T, Lortholary A, Lidbrink E, André S, Litière S, Lago LD, Becette V, Cameron DA, Bergh J, Iggo R. TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial. Lancet Oncol 2011; 12:527-39. [PMID: 21570352 DOI: 10.1016/s1470-2045(11)70094-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND TP53 has a crucial role in the DNA damage response. We therefore tested the hypothesis that taxanes confer a greater advantage than do anthracyclines on breast cancers with mutated TP53 than in those with wild-type TP53. METHODS In an open-label, phase 3 study, women (age <71 years) with locally advanced, inflammatory, or large operable breast cancers were randomly assigned in a 1:1 ratio to either a standard anthracycline regimen (six cycles of intravenous fluorouracil 500 mg/m², epirubicin 100 mg/m², and cyclophosphamide 500 mg/m² every 21 days [FEC100], or fluorouracil 600 mg/m², epirubicin 75 mg/m², cyclophosphamide 900 mg/m² [tailored FEC] starting on day 1 and then every 21 days) or a taxane-based regimen (three cycles of docetaxel 100 mg/m², intravenously infused over 1 h on day 1 every 21 days, followed by three cycles of intravenous epirubicin 90 mg/m² and docetaxel 75 mg/m² on day 1 every 21 days [T-ET]) at 42 centres in Europe. Randomisation was by use of a minimisation method that stratified patients by institution and initial tumour stage. The primary endpoint was progression-free survival (PFS) according to TP53 status. Analysis was by intention to treat. This is the final analysis of this trial. The study is registered with ClinicalTrials.gov, number NCT00017095. FINDINGS 928 patients were enrolled in the FEC group and 928 in the T-ET group. TP53 status was not assessable for 183 (20%) patients in the FEC group and 204 (22%) patients in the T-ET group mainly because of low tumour-cell content in the biopsy. 361 primary endpoint events were recorded in the FEC group and 314 in the T-ET group. In patients with TP53-mutated tumours, 5-year PFS was 59·5% (95% CI 53·4-65·1) in the T-ET group (n=326) and 55·3% (49·2-60·9) in the FEC group (n=318; hazard ratio 0·84, 98% CI 0·63-1·14; p=0·17). In patients with TP53 wild-type tumours, 5-year PFS was 66·8% (95% CI 61·4-71·6) in the T-ET group (n=398) and 64·7% (59·6-69·4) in the FEC group (n=427; 0·89, 98% CI 0·68-1·18; p=0·35). For all patients, irrespective of TP53 status, 5-year PFS was 65·1% (95% CI 61·6-68·3) in the T-ET group and 60·8% (57·3-64·2) in the FEC group (0·85, 98% CI 0·71-1·02; p=0·035). At the sites using FEC100 versus T-ET, the most common grade 3 or 4 adverse events were febrile neutropenia (75 [9%] of 803 vs 173 [21%] of 809, respectively), and neutropenia (653 [81%] vs 730 [90%], respectively). At the sites using tailored FEC versus T-ET, the most common grade 3 or 4 adverse events were febrile neutropenia (ten [8%] of 118 vs 26 [22%] of 116, respectively), and neutropenia (100 [85%] vs 115 [99%], respectively). Two patients died of toxicity during or within 30 days of chemotherapy completion and without disease relapse (one in each group). INTERPRETATION Although TP53 status was prognostic for overall survival, it was not predictive of preferential sensitivity to taxanes. TP53 status tested by use of the yeast assay in this patient population cannot be used to select patients for an anthracycline-based chemotherapy versus a taxane-based chemotherapy. FUNDING US National Cancer Institute, La Ligue Nationale Contre le Cancer, European Union, Pharmacia, and Sanofi-Aventis.
Collapse
Affiliation(s)
- Hervé Bonnefoi
- Institut Bergonié, Université de Bordeaux, INSERM U916, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2171
|
Mandinova A, Lee SW. The p53 pathway as a target in cancer therapeutics: obstacles and promise. Sci Transl Med 2011; 3:64rv1. [PMID: 21209413 DOI: 10.1126/scitranslmed.3001366] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A large fraction of human tumors carry p53 mutations, which allow tumor initiation and progression; furthermore, it is now clear that restoration or reactivation of wild-type p53 function prompts rapid elimination of tumors. The discovery and design of compounds that reactivate or enhance the p53 pathway has resulted in the identification of promising drug candidates that have now entered clinical trials for anticancer strategies. However, some of these agents appear to elicit undesirable toxic effects on normal cells and tissues and therefore are restricted in the dose that can be applied in tumors. In this Review, we discuss the concerns about and promise of these p53 activators and propose ways to expand and optimize screening strategies to identify such molecules.
Collapse
Affiliation(s)
- Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
2172
|
Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc Natl Acad Sci U S A 2011; 108:8251-6. [PMID: 21525412 DOI: 10.1073/pnas.1105028108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lys120 in the DNA-binding domain (DBD) of p53 becomes acetylated in response to DNA damage. But, the role and effects of acetylation are obscure. We prepared p53 specifically acetylated at Lys120, AcK120p53, by in vivo incorporation of acetylated lysine to study biophysical and structural consequences of acetylation that may shed light on its biological role. Acetylation had no affect on the overall crystal structure of the DBD at 1.9-Å resolution, but significantly altered the effects of salt concentration on specificity of DNA binding. p53 binds DNA randomly in vitro at effective physiological salt concentration and does not bind specifically to DNA or distinguish among its different response elements until higher salt concentrations. But, on acetylation, AcK120p53 exhibited specific DNA binding and discriminated among response elements at effective physiological salt concentration. AcK120p53 and p53 had the highest affinity to the same DNA sequence, although acetylation reduced the importance of the consensus C and G at positions 4 and 7, respectively. Mass spectrometry of p53 and AcK120p53 DBDs bound to DNA showed they preferentially segregated into complexes that were either DNA(p53DBD)(4) or DNA(AcK120DBD)(4), indicating that the different DBDs prefer different quaternary structures. These results are consistent with electron microscopy observations that p53 binds to nonspecific DNA in different, relaxed, quaternary states from those bound to specific sequences. Evidence is accumulating that p53 can be sequestered by random DNA, and target search requires acetylation of Lys120 and/or interaction with other factors to impose specificity of binding via modulating changes in quaternary structure.
Collapse
|
2173
|
Fearon ER. Molecular genetics of colorectal cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:479-507. [PMID: 21090969 DOI: 10.1146/annurev-pathol-011110-130235] [Citation(s) in RCA: 1243] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past three decades, molecular genetic studies have revealed some critical mutations underlying the pathogenesis of the sporadic and inherited forms of colorectal cancer (CRC). A relatively limited number of oncogenes and tumor-suppressor genes-most prominently the APC, KRAS, and p53 genes-are mutated in a sizeable fraction of CRCs, and a larger collection of genes that are mutated in subsets of CRC have begun to be defined. Together with DNA-methylation and chromatin-structure changes, the mutations act to dysregulate conserved signaling networks that exert context-dependent effects on critical cell phenotypes, including the regulation of cellular metabolism, proliferation, differentiation, and survival. Much work remains to be done to fully understand the nature and significance of the individual and collective genetic and epigenetic defects in CRC. Some key concepts for the field have emerged, two of which are emphasized in this review. Specifically, the gene defects in CRC often target proteins and pathways that exert pleiotropic effects on the cancer cell phenotype, and particular genetic and epigenetic alterations are linked to biologically and clinically distinct subsets of CRC.
Collapse
Affiliation(s)
- Eric R Fearon
- The Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109-2200, USA.
| |
Collapse
|
2174
|
Gutekunst M, Oren M, Weilbacher A, Dengler MA, Markwardt C, Thomale J, Aulitzky WE, van der Kuip H. p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One 2011; 6:e19198. [PMID: 21532991 PMCID: PMC3080918 DOI: 10.1371/journal.pone.0019198] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Consistent with the excellent clinical results in testicular germ cell tumors
(TGCT), most cell lines derived from this cancer show an exquisite sensitivity
to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to
apoptosis plays a central role in this hypersensitive phenotype. The role of the
tumor suppressor p53 in this response, however, remains controversial. Here we
show that siRNA-mediated silencing of p53 is sufficient to completely abrogate
hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53
such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib.
The close relationship between p53 protein levels and induction of apoptosis is
lost upon short-term differentiation, indicating that this predominant
pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC)
cells. RNA interference experiments as well as microarray analysis demonstrated
a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent
apoptotic response of these cells. In conclusion, our data indicate that the
hypersensitivity of TGCT cells is a result of their unique sensitivity to p53
activation. Furthermore, in the very specific cellular context of germ
cell-derived pluripotent EC cells, p53 function appears to be limited to
induction of apoptosis.
Collapse
Affiliation(s)
- Matthias Gutekunst
- Dr Margarete-Fischer-Bosch Institute of Clinical Pharmacology and
University of Tuebingen, Stuttgart, Germany
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science,
Rehovot, Israel
| | - Andrea Weilbacher
- Dr Margarete-Fischer-Bosch Institute of Clinical Pharmacology and
University of Tuebingen, Stuttgart, Germany
| | - Michael A. Dengler
- Dr Margarete-Fischer-Bosch Institute of Clinical Pharmacology and
University of Tuebingen, Stuttgart, Germany
| | - Christiane Markwardt
- Dr Margarete-Fischer-Bosch Institute of Clinical Pharmacology and
University of Tuebingen, Stuttgart, Germany
| | - Jürgen Thomale
- Institute for Cell Biology, University of Duisburg-Essen Medical School,
Essen, Germany
| | - Walter E. Aulitzky
- 2 Department of Internal Medicine, Robert-Bosch-Hospital, Stuttgart,
Germany
| | - Heiko van der Kuip
- Dr Margarete-Fischer-Bosch Institute of Clinical Pharmacology and
University of Tuebingen, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
2175
|
Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis 2011; 2:e148. [PMID: 21509038 PMCID: PMC3122064 DOI: 10.1038/cddis.2011.33] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells.
Collapse
|
2176
|
Gillotin S, Lu X. The ASPP proteins complex and cooperate with p300 to modulate the transcriptional activity of p53. FEBS Lett 2011; 585:1778-82. [PMID: 21513714 DOI: 10.1016/j.febslet.2011.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 11/25/2022]
Abstract
Understanding how p53 is able to specifically respond to particular stress signals and regulate many different signalling pathways remains a challenge. Several studies have demonstrated that p53's interactions with different protein partners are essential for it to be able to coordinate specific responses. In particular, the apoptotic pathway is regulated by p53 in cooperation with the Apoptosis Stimulating Proteins of p53 (ASPP) proteins. In this study, we showed that the ASPP proteins are able to bind and cooperate with p300, a well defined co-factor of p53, to selectively regulate p53's transcriptional activity on promoters such as p53-inducible gene 3 but not on p21waf1. This is the first demonstration that the ASPPs can function together with p300 in regulating the transcriptional activity of p53.
Collapse
Affiliation(s)
- Sébastien Gillotin
- Ludwig Institute for Cancer Research Ltd., University of Oxford, The Nuffield Department of Clinical Medicine, Oxford, United Kingdom
| | | |
Collapse
|
2177
|
Paleček E, Ostatná V, Černocká H, Joerger AC, Fersht AR. Electrocatalytic Monitoring of Metal Binding and Mutation-Induced Conformational Changes in p53 at Picomole Level. J Am Chem Soc 2011; 133:7190-6. [DOI: 10.1021/ja201006s] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Hana Černocká
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | | | - Alan R. Fersht
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, U.K
| |
Collapse
|
2178
|
p53 Spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res 2011; 21:705-7. [PMID: 21483453 DOI: 10.1038/cr.2011.62] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
2179
|
Idikio HA. Postmyocardial infarct remodeling and heart failure: potential contributions from pro- and antiaging factors. Cardiol Res Pract 2011; 2011:836806. [PMID: 21559227 PMCID: PMC3088096 DOI: 10.4061/2011/836806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction and adverse postinfarct remodeling in older persons lead to poor outcome and need greater understanding of the contributions of age-related factors on abnormal cardiac function and management. In this perspective, how normal aging processes could contribute to the events of post-myocardial infarction and remodeling is reviewed. Post-myocardial infarction and remodeling involve cardiomechanical factors and neurohormonal response. Many factors prevent or accelerate aging including immunosenescence, recruitment and regeneration of stem cells, telomere shortening, oxidative damage, antiaging hormones klotho and melatonin, nutrition, and Sirtiun protein family, and these factors could affect post-MI remodeling and heart failure. Interest in stem cell repair of myocardial infarcts to mitigate post-MI remodeling needs more information on aging of stem cells, and potential effects on stem cell use in infarct repair. Integrating genomics and proteomics methods may help find clinically novel therapy in the management of post-MI remodeling and heart failure in aged individuals.
Collapse
Affiliation(s)
- Halliday A Idikio
- Department of Laboratory Medicine and Pathology, University of Alberta, Room 5B4.11 WCM-HSC, 8440-112th Street, Edmonton, AB, Canada T6R 2B7
| |
Collapse
|
2180
|
Croft DR, Crighton D, Samuel MS, Lourenco FC, Munro J, Wood J, Bensaad K, Vousden KH, Sansom OJ, Ryan KM, Olson MF. p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Res 2011; 21:666-82. [PMID: 21079653 PMCID: PMC3145139 DOI: 10.1038/cr.2010.154] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/20/2010] [Accepted: 09/26/2010] [Indexed: 12/28/2022] Open
Abstract
The central arbiter of cell fate in response to DNA damage is p53, which regulates the expression of genes involved in cell cycle arrest, survival and apoptosis. Although many responses initiated by DNA damage have been characterized, the role of actin cytoskeleton regulators is largely unknown. We now show that RhoC and LIM kinase 2 (LIMK2) are direct p53 target genes induced by genotoxic agents. Although RhoC and LIMK2 have well-established roles in actin cytoskeleton regulation, our results indicate that activation of LIMK2 also has a pro-survival function following DNA damage. LIMK inhibition by siRNA-mediated knockdown or selective pharmacological blockade sensitized cells to radio- or chemotherapy, such that treatments that were sub-lethal when administered singly resulted in cell death when combined with LIMK inhibition. Our findings suggest that combining LIMK inhibitors with genotoxic therapies could be more efficacious than single-agent administration, and highlight a novel connection between actin cytoskeleton regulators and DNA damage-induced cell survival mechanisms.
Collapse
Affiliation(s)
- Daniel R Croft
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Diane Crighton
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Current address: Cancer Research Technology, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Michael S Samuel
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Filipe C Lourenco
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - June Munro
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jenifer Wood
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karim Bensaad
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Current address: Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Kevin M Ryan
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Michael F Olson
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
2181
|
Blackburn AC, Jerry DJ. Map making in the 21st century: charting breast cancer susceptibility pathways in rodent models. J Mammary Gland Biol Neoplasia 2011; 16:57-64. [PMID: 21380934 PMCID: PMC5512563 DOI: 10.1007/s10911-011-9201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 01/09/2023] Open
Abstract
Genetic factors play an important role in determining risk and resistance to increased breast cancer. Recent technological advances have made it possible to analyze hundreds of thousands of single nucleotide polymorphisms in large-scale association studies in humans and have resulted in identification of alleles in over 20 genes that influence breast cancer risk. Despite these advances, the challenge remains in identifying what the functional polymorphisms are that confer the increased risk, and how these genetic variants interact with each other and with environmental factors. In rodents, the incidence of mammary tumors varies among strains, such that they can provide alternate ideas for candidate pathways involved in humans. Mapping studies in animals have unearthed numerous loci for breast cancer susceptibility that have been validated in human populations. In a reciprocal manner, knockin and knockout mice have been used to validate the tumorigenicity of risk alleles found in population studies. Rodent studies also underscore the complexity of interactions among alleles. The fact that genes affecting risk and resistance to mammary tumors in rodents depend greatly upon the carcinogenic challenge emphasizes the importance of gene x environment interactions. The challenge to rodent geneticists now is to capitalize on the ability to control the genetics and environment in rodent models of tumorigenesis to better understand the biology of breast cancer development, to identify those polymorphisms most relevant to human susceptibility and to identify compensatory pathways that can be targeted for improved prevention in women at highest risk of developing breast cancer.
Collapse
Affiliation(s)
- Anneke C Blackburn
- John Curtin School of Medical Research, Australian National University, Acton, Canberra, ACT, Australia.
| | | |
Collapse
|
2182
|
Khazanov N, Levy Y. Sliding of p53 along DNA Can Be Modulated by Its Oligomeric State and by Cross-Talks between Its Constituent Domains. J Mol Biol 2011; 408:335-55. [DOI: 10.1016/j.jmb.2011.01.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/24/2011] [Accepted: 01/29/2011] [Indexed: 12/21/2022]
|
2183
|
Borrás C, Gómez-Cabrera MC, Viña J. The dual role of p53: DNA protection and antioxidant. Free Radic Res 2011; 45:643-52. [PMID: 21452930 DOI: 10.3109/10715762.2011.571685] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classical functions of p53 protein are those related to its role on DNA damage, cell growth arrest, senescence and apoptosis. For this reason it is called 'the guardian of the genome' and is considered one of the most important players in the development of cancer. However, more recently it has been show that p53 is not only involved in cancer, but also in ageing. p53 is stimulated by stress, which in turn results in the activation of a wide range of transcriptional targets. Low-intensity stress will activate p53 in a manner which results in antioxidant response, thus protecting against ageing because of its antioxidant function. On the contrary, high-intensity activation of p53 will result in an increase of oxidative stress by activation of p53-mediated pro-oxidant targets, thus increasing the rate of ageing, but protecting against cancer.
Collapse
Affiliation(s)
- Consuelo Borrás
- Department of Physiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez, 15 46010 Valencia, Spain.
| | | | | |
Collapse
|
2184
|
Kim SH, Dass CR. p53-targeted cancer pharmacotherapy: move towards small molecule compounds. ACTA ACUST UNITED AC 2011; 63:603-10. [PMID: 21492161 DOI: 10.1111/j.2042-7158.2010.01248.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES For the past three decades of research, p53 has been identified as one of the most targetable molecules for developing anticancer treatments. This tumour suppressor protein is involved in apoptosis, cell cycle arrest and senescence. A wide range of pharmaceutical drugs and radiotherapy treatments activate this protein and rely on p53 signalling for therapeutic outcome. Promising small molecular weight compounds, some of which are undergoing clinical trials, are discussed in this review. KEY FINDINGS The spectrum of potential therapeutic approaches trialled for p53 stretch from gene therapy to the more recent development of small molecules capable of activating wild-type p53 or reactivating mutant p53. SUMMARY Our ever-growing knowledge leads us to better understand this protein, from its structure and activities to its potential therapeutic application, firstly for cancer and then for other diseases and maybe even for reversal of ageing.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
2185
|
Leibowitz BJ, Qiu W, Liu H, Cheng T, Zhang L, Yu J. Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21. Mol Cancer Res 2011; 9:616-25. [PMID: 21450905 DOI: 10.1158/1541-7786.mcr-11-0052] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell-cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, we compared animal survival, as well as apoptosis, proliferation, cell-cycle progression, DNA damage, and regeneration in the crypts of WT, p53 knockout (KO), PUMA KO, p21 KO, and p21/PUMA double KO (DKO) mice in a whole body irradiation model. Deficiency in p53 or p21 led to shortened survival but accelerated crypt regeneration associated with massive nonapoptotic cell death. Nonapoptotic cell death is characterized by aberrant cell-cycle progression, persistent DNA damage, rampant replication stress, and genome instability. PUMA deficiency alone enhanced survival and crypt regeneration by blocking apoptosis but failed to rescue delayed nonapoptotic crypt death or shortened survival in p21 KO mice. These studies help to better understand p53 functions in tissue injury and regeneration and to potentially improve strategies to protect or mitigate intestinal damage induced by radiation.
Collapse
Affiliation(s)
- Brian J Leibowitz
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
2186
|
Zeng Y, Kotake Y, Pei XH, Smith MD, Xiong Y. p53 binds to and is required for the repression of Arf tumor suppressor by HDAC and polycomb. Cancer Res 2011; 71:2781-92. [PMID: 21447739 DOI: 10.1158/0008-5472.can-10-3483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The expression of tumor suppressor Arf is tightly repressed during normal cell growth at a young age and is activated by oncogenic insults, and during aging, results in p53 activation and cell-cycle arrest to prevent hyperproliferation. The mechanisms of both transcriptional repression and activation of Arf are not understood. We show that p53 binds to and represses Arf expression and that this repression requires the function of both histone deacetylases (HDAC) and polycomb group (PcG) proteins. Inactivation of p53 leads to increased Arf transcription in both mouse embryonic fibroblasts (MEF) cultured in vitro and in tissues and organs of p53 null mice. Activation of endogenous p53 enhances Arf repression, and reintroduction of p53 back into p53 null MEFs restores Arf repression. Both DNA binding and transactivation activities of p53 are required for Arf repression. We show that p53 is required for both HDAC and PcG to repress Arf expression. Bindings of both HDAC and PcG to Arf are disrupted by inactivation of p53 and can be restored in p53 null MEFs by the reintroduction of wild-type, but not mutant, p53. These results indicate that p53 recruits both HDAC and PcG to Arf locus to repress its expression, and this repression constitutes a second feedback loop in p53 regulation.
Collapse
Affiliation(s)
- Yaxue Zeng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
2187
|
Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, Rothenberg SM, Ellisen LW. A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest 2011; 121:809-20. [PMID: 21293058 DOI: 10.1172/jci43897] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/10/2010] [Indexed: 12/19/2022] Open
Abstract
The p53 tumor suppressor, a central mediator of chemosensitivity in normal cells, is functionally inactivated in many human cancers. Therefore, a central challenge in human cancer therapy is the identification of pathways that control tumor cell survival and chemosensitivity in the absence of functional p53. The p53-related transcription factors p63 and p73 exhibit distinct functions—p73 mediates chemosensitivity while p63 promotes proliferation and cell survival—and are both overexpressed in squamous cell carcinomas (SCCs). However, how p63 and p73 interact functionally and govern the balance between prosurvival and proapoptotic programs in SCC remains elusive. Here, we identify a microRNA-dependent mechanism of p63/p73 crosstalk that regulates p53-independent survival of both human and murine SCC. We first discovered that a subset of p63-regulated microRNAs target p73 for inhibition. One of these, miR-193a-5p, expression of which was repressed by p63, was activated by proapoptotic p73 isoforms in both normal cells and tumor cells in vivo. Chemotherapy caused p63/p73-dependent induction of this microRNA, thereby limiting chemosensitivity due to microRNA-mediated feedback inhibition of p73. Importantly, inhibiting miR-193a interrupted this feedback and thereby suppressed tumor cell viability and induced dramatic chemosensitivity both in vitro and in vivo. Thus, we have identified a direct, microRNA-dependent regulatory circuit mediating inducible chemoresistance, whose inhibition may provide a new therapeutic opportunity in p53-deficient tumors.
Collapse
Affiliation(s)
- Benjamin Ory
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
2188
|
Guo X, Shen S, Song S, He S, Cui Y, Xing G, Wang J, Yin Y, Fan L, He F, Zhang L. The E3 ligase Smurf1 regulates Wolfram syndrome protein stability at the endoplasmic reticulum. J Biol Chem 2011; 286:18037-47. [PMID: 21454619 DOI: 10.1074/jbc.m111.225615] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HECT-type ubiquitin ligase (E3) Smad ubiquitination regulatory factor 1 (Smurf1) targets various substrates, including Smad1/5, RhoA, Prickle 1, MEKK2, and JunB for degradation and thereby regulates adult bone formation and embryonic development. Here, we identify the endoplasmic reticulum (ER)-localized Wolfram syndrome protein (WFS1) as a specific degradation substrate of Smurf1. Mutations in the WFS1 gene cause Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy. WFS1 negatively regulates the ER stress response, and WFS1 deficiency in mice increases ER stress and triggers apoptosis. We show that Smurf1 interacts with WFS1 at the ER and promotes the ubiquitination and proteasomal degradation of WFS1. A C-terminal luminal region in WFS1, including residues 667-700, is involved in this degradation. Wild-type WFS1 as well as a subset of WFS1 mutants that include this degron region are susceptible to Smurf1-mediated degradation. By contrast, pathophysiological deletion mutants of WFS1 lacking the degron, such as W648X, Y660X, and Q667X, are resistant to degradation by Smurf1. Depletion of Smurf1 by RNA interference results in increased WFS1 and decreased ATF6α levels. Furthermore, we show that ER stress induces Smurf1 degradation and WFS1 up-regulation. These findings reveal for the first time that Smurf1 targets an ER-localized protein for degradation and that Smurf1 is regulated by ER stress.
Collapse
Affiliation(s)
- Xing Guo
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2189
|
Abstract
FoxO transcription factors have a conserved role in longevity, and act as tissue-specific tumor suppressors in mammals. Several nodes of interaction have been identified between FoxO transcription factors and p53, a major tumor suppressor in humans and mice. However, the extent and importance of the functional interaction between FoxO and p53 have not been fully explored. Here, we show that p53 regulates the expression of FoxO3, one of the four mammalian FoxO genes, in response to DNA damaging agents in both mouse embryonic fibroblasts and thymocytes. We find that p53 transactivates FoxO3 in cells by binding to a site in the second intron of the FoxO3 gene, a genomic region recently found to be associated with extreme longevity in humans. While FoxO3 is not necessary for p53-dependent cell cycle arrest, FoxO3 appears to modulate p53-dependent apoptosis. We also find that FoxO3 loss does not interact with p53 loss for tumor development in vivo, although the tumor spectrum of p53-deficient mice appears to be affected by FoxO3 loss. Our findings indicate that FoxO3 is a p53 target gene, and suggest that FoxO3 and p53 are part of a regulatory transcriptional network that may have an important role during aging and cancer.
Collapse
|
2190
|
Warr MR, Pietras EM, Passegué E. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:681-701. [PMID: 21412991 DOI: 10.1002/wsbm.145] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hematopoiesis, the process by which all mature blood cells are generated from multipotent hematopoietic stem cells (HSCs), is a finely tuned balancing act in which HSCs must constantly decide between different cell fates: to proliferate, to self-renew or differentiate, to stay quiescent in the bone marrow niche or migrate to the periphery, to live or die. These fates are regulated by a complex interplay between cell-extrinsic cues and cell-intrinsic regulatory pathways whose function is to maintain a homeostatic balance between HSC self-renewal and life-long replenishment of lost blood cells. Improper regulation of these competing cellular programs can transform HSCs and progenitor cells into disease-initiating leukemic stem cells (LSCs). Strikingly, many of the mechanisms required for maintenance of normal HSC fate decisions are equally critical for the aberrant functions of LSCs. Because of the inherent complexities of these molecular mechanisms, a systematic approach to understanding the regulatory networks underlying HSC self-renewal is critical for uncovering the similarities and differences between HSCs and LSCs. In this review, we focus on recent developments in elucidating the regulatory networks governing normal HSC self-renewal programs and their implications for leukemic transformation. We describe the current technical and methodological limitations in isolating and characterizing HSCs and LSCs, and the emerging approaches that may afford a better understanding of the regulation of normal and leukemic hematopoiesis. Finally, we discuss how such basic mechanistic information may be of use for the design of novel therapies that will selectively reprogram and/or eliminate LSCs.
Collapse
Affiliation(s)
- Matthew R Warr
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
2191
|
The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene 2011; 30:3274-88. [PMID: 21399665 DOI: 10.1038/onc.2011.48] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Data on the relationship between ribosome biogenesis and p53 function indicate that the tumour suppressor can be activated by either nucleolar disruption or ribosomal protein defects. However, there is increasing evidence that the induction of p53 does not always require these severe cellular changes, and data are still lacking on a possible role of ribosome biogenesis in the downregulation of p53. Here, we studied the effect of the up- and downregulation of the rRNA transcription rate on p53 induction in mammalian cells. We found that a downregulation of rRNA synthesis, induced by silencing the POLR1A gene coding for the RNA polymerase I catalytic subunit, stabilised p53 without altering the nucleolar integrity in human cancer cells. p53 stabilisation was due to the inactivation of the MDM2-mediated p53 degradation by the binding of ribosomal proteins no longer used for ribosome building. p53 stabilisation did not occur when rRNA synthesis downregulation was associated with a contemporary reduction of protein synthesis. Furthermore, we demonstrated that in three different experimental models characterised by an upregulation of rRNA synthesis, cancer cells treated with insulin or exposed to the insulin-like growth factor 1, rat liver stimulated by cortisol and regenerating rat liver after partial hepatectomy, the p53 protein level was reduced due to a lowered ribosomal protein availability for MDM2 binding. It is worth noting that the upregulation of rRNA synthesis was responsible for a decreased p53-mediated response to cytotoxic stresses. These findings demonstrated that the balance between rRNA and ribosomal protein synthesis controls the function of p53 in mammalian cells, that p53 can be induced without the occurrence of severe changes of the cellular components controlling ribosome biogenesis, and that conditions characterised by an upregulated rRNA synthesis are associated with a reduced p53 response.
Collapse
|
2192
|
Vilborg A, Bersani C, Wilhelm MT, Wiman KG. The p53 target Wig-1: a regulator of mRNA stability and stem cell fate? Cell Death Differ 2011; 18:1434-40. [PMID: 21394102 DOI: 10.1038/cdd.2011.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Wig-1 is a transcriptional target of the tumor suppressor p53 and encodes an unusual zinc-finger protein involved in post-transcriptional gene regulation. Wig-1 is expressed in all cell types investigated so far, with the highest levels in the brain, and is enriched in stem cells as compared with more differentiated cells of the same lineage. Wig-1 binds to both long double-stranded (ds) RNA and short microRNA-like dsRNA. We have shown that Wig-1 acts in a positive feedback loop that stabilizes p53 mRNA through an AU-rich element (ARE) in the p53 3'untranslated region. Our preliminary data indicate a more general effect of Wig-1 on ARE-containing mRNA. Here we shall summarize current knowledge about Wig-1 and discuss possible implications on p53 function and other cellular processes.
Collapse
Affiliation(s)
- A Vilborg
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska, Stockholm, Sweden
| | | | | | | |
Collapse
|
2193
|
One function--multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol 2011; 2011:464916. [PMID: 21436991 PMCID: PMC3062963 DOI: 10.1155/2011/464916] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/17/2011] [Indexed: 12/31/2022] Open
Abstract
Maintenance of genome integrity is a dynamic process involving complex regulation systems. Defects in one or more of these pathways could result in cancer. The most important tumor-suppressor is the transcription factor p53, and its functional inactivation is frequently observed in many tumor types. The tumor suppressive function of p53 is mainly attributed to its ability to regulate numerous target genes at the transcriptional level. While the mechanism of transcriptional induction by p53 is well characterized, p53-dependent repression is not understood in detail. Here, we review the manifold mechanisms of p53 as a transcriptional repressor. We classify two different categories of repressed genes based on the underlying mechanism, and novel mechanisms which involve regulation through noncoding RNAs are discussed. The complete elucidation of p53 functions is important for our understanding of its tumor-suppressor activity and, therefore, represents the key for the development of novel therapeutic approaches.
Collapse
|
2194
|
Mehta S, Huillard E, Kesari S, Maire CL, Golebiowski D, Harrington EP, Alberta JA, Kane MF, Theisen M, Ligon KL, Rowitch DH, Stiles CD. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell 2011; 19:359-71. [PMID: 21397859 PMCID: PMC3070398 DOI: 10.1016/j.ccr.2011.01.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 12/02/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.
Collapse
Affiliation(s)
- Shwetal Mehta
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Emmanuelle Huillard
- Departments of Pediatrics and Neurological Surgery and Howard Hughes Medical Institute, UCSF, 513 Parnassus Avenue, San Francisco CA 94143
| | - Santosh Kesari
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Neurosciences, UCSD, San Diego, CA 92093
| | - Cecile L. Maire
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Diane Golebiowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Emily P. Harrington
- Departments of Pediatrics and Neurological Surgery and Howard Hughes Medical Institute, UCSF, 513 Parnassus Avenue, San Francisco CA 94143
| | - John A. Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Michael F. Kane
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Matthew Theisen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Keith L. Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Pathology, Division of Neuropathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115
| | - David H. Rowitch
- Departments of Pediatrics and Neurological Surgery and Howard Hughes Medical Institute, UCSF, 513 Parnassus Avenue, San Francisco CA 94143
- Authors for correspondence at or
| | - Charles D. Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Authors for correspondence at or
| |
Collapse
|
2195
|
Abstract
The EDD (E3 identified by differential display) gene, first identified as a progestin-induced gene in T-47D breast cancer cells, encodes an E3 ubiquitin ligase with a HECT domain. It was reported that EDD is involved in the G(2)/M progression through ubiquitination of phospho-katanin p60. Previous study has also shown that EDD can act as a transcription cofactor independently of its E3 ligase activity. In this study, we uncover a new role for EDD during cell cycle progression in an E3 ligase-independent manner. We demonstrate that EDD can physically interact with p53 and that this interaction blocks the phosphorylation of p53 by ataxia telangiectasia mutated (ATM). Silencing of EDD induces phosphorylation of p53 at Ser(15) and activates p53 target genes in fibroblasts and some transformed cells without activation of DNA damage response. The G(1)/S arrest induced by EDD depletion depends on p53. On the other hand, overexpression of EDD inhibits p53-Ser(15) phosphorylation and suppresses the induction of p53 target genes during DNA damage, and this effect does not require its E3 ligase activity. Thus, through binding to p53, EDD actively inhibits p53 phosphorylation by ATM and plays a role in ensuring smooth G(1)/S progression.
Collapse
Affiliation(s)
- Shiyun Ling
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
2196
|
Lanigan F, Geraghty JG, Bracken AP. Transcriptional regulation of cellular senescence. Oncogene 2011; 30:2901-11. [PMID: 21383691 DOI: 10.1038/onc.2011.34] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular senescence is an irreversible arrest of proliferation. It is activated when a cell encounters stress such as DNA damage, telomere shortening or oncogene activation. Like apoptosis, it impedes tumour progression and acts as a barrier that pre-neoplastic cells must overcome during their evolution toward the full tumourigenic state. This review focuses on the role of transcriptional regulators in the control of cellular senescence, explores how their function is perturbed in cancer and discusses the potential to harness this knowledge for future cancer therapies.
Collapse
Affiliation(s)
- F Lanigan
- Smurfit Genetics Department, The Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
2197
|
Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M. Role of p53 serine 46 in p53 target gene regulation. PLoS One 2011; 6:e17574. [PMID: 21394211 PMCID: PMC3048874 DOI: 10.1371/journal.pone.0017574] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022] Open
Abstract
The tumor suppressor p53 plays a crucial role in cellular growth control inducing a plethora of different response pathways. The molecular mechanisms that discriminate between the distinct p53-responses have remained largely elusive. Here, we have analyzed the p53-regulated pathways induced by Actinomycin D and Etoposide treatment resulting in more growth arrested versus apoptotic cells respectively. We found that the genome-wide p53 DNA-binding patterns are almost identical upon both treatments notwithstanding transcriptional differences that we observed in global transcriptome analysis. To assess the role of post-translational modifications in target gene choice and activation we investigated the genome-wide level of phosphorylation of Serine 46 of p53 bound to DNA (p53-pS46) and of Serine 15 (p53-pS15). Interestingly, the extent of S46 phosphorylation of p53 bound to DNA is considerably higher in cells directed towards apoptosis while the degree of phosphorylation at S15 remains highly similar. Moreover, our data suggest that following different chemotherapeutical treatments, the amount of chromatin-associated p53 phosphorylated at S46 but not at pS15 is higher on certain apoptosis related target genes. Our data provide evidence that cell fate decisions are not made primarily on the level of general p53 DNA-binding and that post-translationally modified p53 can have distinct DNA-binding characteristics.
Collapse
Affiliation(s)
- Leonie Smeenk
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Simon J. van Heeringen
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Max Koeppel
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Eva Janssen-Megens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marion Lohrum
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Georg-Speyer-Haus, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
2198
|
CITED2 is activated in ulcerative colitis and induces p53-dependent apoptosis in response to butyric acid. J Gastroenterol 2011; 46:339-49. [PMID: 21165656 DOI: 10.1007/s00535-010-0355-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 11/21/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND In ulcerative colitis (UC), Fusobacterium varium is significantly detected in patients' mucosa, and butyric acid (BA), abundantly produced by the bacterium, activates the p53 system and induces epithelial apoptosis, as we previously reported. However, factors active in the link between BA and p53 have yet to be clarified. Here, we identified a gene activated by BA specifically in UC-associated cancer cell lines and ascertained the mechanism of its activation of p53. METHODS cDNA microarray analysis based on the Percellome (per cell normalization) method was performed on BA-stimulated UC-associated cancers and sporadic colorectal cancer cell lines under conditions mimicking colonic epithelium UC. For validation of microarray results, molecular, biochemical, and histopathological analyses were performed. RESULTS We found the CBP/p300-interacting transactivator with glutamic acid/asparagine-rich carboxy-terminal domain 2 (CITED2) to be specifically upregulated in UC-associated cancer cell lines by BA treatment, at both mRNA and protein expression levels. CITED2 could be shown to induce p53 acetylation and p53-dependent apoptosis, accompanied by binding of CBP/p300. BA-dependent apoptosis was suppressed by an inhibitor of monocarboxylate transporter-1 and an siRNA for p53. In inflammatory foci of UC, histologically evident inflammatory activity and CITED2 expression were significantly correlated. CONCLUSIONS CITED2 was identified as UC-associated protein by cDNA microarray based on the Percellome method under UC-mimicking conditions in vitro. CITED2 activation may induce mucosal apoptosis and erosion by activating p53 and thus play a critical role in linking enteric bacteria with mucosal inflammation in UC.
Collapse
|
2199
|
Sturrock M, Terry AJ, Xirodimas DP, Thompson AM, Chaplain MA. Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J Theor Biol 2011; 273:15-31. [DOI: 10.1016/j.jtbi.2010.12.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
|
2200
|
Teplick A, Kowalski M, Biegel JA, Nichols KE. Educational paper: screening in cancer predisposition syndromes: guidelines for the general pediatrician. Eur J Pediatr 2011; 170:285-94. [PMID: 21210147 PMCID: PMC3086787 DOI: 10.1007/s00431-010-1377-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/07/2010] [Indexed: 12/22/2022]
Abstract
Improvements in our understanding of the genetic basis of human disease and increased utilization of genetic testing have identified a variety of heritable disorders associated with the onset of benign or malignant neoplasms during childhood. In many cases, the optimal management of affected children is dependent upon the early detection and treatment of tumors. Surveillance strategies based on the natural history of these lesions are often complex, requiring clinical examinations and radiologic and laboratory studies that evolve over a patient's lifetime. A general pediatrician may be the first to suspect one of these disorders in a patient, or may be faced with questions regarding genetic testing, cancer risk, and cancer screening. The pediatrician may also coordinate and interpret the results of specific surveillance studies. In this review, we present the genetic etiology, presentation, natural history, and surveillance recommendations for four disparate hereditary tumor predisposing syndromes, including Beckwith-Wiedemann syndrome/idiopathic hemihyperplasia, von Hippel-Lindau disease, Li-Fraumeni syndrome, and rhabdoid tumor/schwannomatosis. These examples are meant to offer the clinician practical recommendations as well as a framework upon which to base the understanding and management of other conditions associated with an increased risk to develop tumors in childhood.
Collapse
Affiliation(s)
- Alexis Teplick
- Division of Oncology, Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 3012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Megan Kowalski
- Division of Oncology, Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 3012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jaclyn A. Biegel
- Departments of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Departments of Pathology, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kim E. Nichols
- Division of Oncology, Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 3012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|