2151
|
Libby P, King K. Biomarkers: A Challenging Conundrum in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2015; 35:2491-5. [PMID: 26543097 DOI: 10.1161/atvbaha.115.305233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
The use of biomarkers has proven utility in cardiovascular medicine and holds great promise for future advances, but their application requires considerable rigor in thinking and methodology. Numerous confounding factors can cloud the clinical and investigative uses of biomarkers. Yet, the thoughtful and critical use of biomarkers can doubtless aid discovery of new pathogenic pathways, identify novel therapeutic targets, and provide a bridge between the laboratory and the clinic. Biomarkers can provide diagnostic and prognostic tools to the practitioner. The careful application of biomarkers can also help design and guide clinical trials required to establish the efficacy of novel interventions to improve patient outcomes. Point of care testing, technological advances, such as microfluidic and wearable devices, and the power of omics approaches all promise to elevate the potential contributions of biomarkers to discovery science, translation, clinical trials, and the practice of cardiovascular medicine.
Collapse
Affiliation(s)
- Peter Libby
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L., K.K.); and Center for Systems Biology, Massachusetts General Hospital, Boston (K.K.).
| | - Kevin King
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L., K.K.); and Center for Systems Biology, Massachusetts General Hospital, Boston (K.K.)
| |
Collapse
|
2152
|
Wang R, Ding Q, Yaqoob U, de Assuncao TM, Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC, Shah VH. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration. J Biol Chem 2015; 290:30684-96. [PMID: 26534962 DOI: 10.1074/jbc.m115.671735] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.
Collapse
Affiliation(s)
- Ruisi Wang
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Qian Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Thiago M de Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Vikas K Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | | | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| |
Collapse
|
2153
|
Abstract
Exosomes are membrane-bound, intercellular communication shuttles that are defined by their endocytic origin and size range of 30–140 nm. Secreted by nearly all mammalian cell types and present in myriad bodily fluids, exosomes confer messages between cells, proximal and distal, by transporting biofunctional cargo in the form of proteins, nucleic acids, and lipids. They play a vital role in cellular signaling in both normal physiology and disease states, particularly cancer. Exosomes are powerful progenitors in altering target cell phenotypes, particularly in tumorigenesis and cancer progression, with the ability to alter tumor microenvironments and to assist in establishing the pre-metastatic niche. Many aspects of exosomes present them as novel means to identify cancer biomarkers for early detection and therapeutic targets, and using intrinsic and engineered characteristics of exosomes as therapeutic devices to ameliorate the progression of the disease. This review outlines some of the recent and major findings with regard to exosomes in cancer, and their utilization as therapeutic tools.
Collapse
|
2154
|
Lakhter AJ, Sims EK. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Mol Endocrinol 2015; 29:1535-48. [PMID: 26393296 PMCID: PMC4627606 DOI: 10.1210/me.2015-1206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| | - Emily K Sims
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|
2155
|
Majumder S, Chari ST, Ahlquist DA. Molecular detection of pancreatic neoplasia: Current status and future promise. World J Gastroenterol 2015; 21:11387-11395. [PMID: 26526068 PMCID: PMC4616215 DOI: 10.3748/wjg.v21.i40.11387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/15/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is usually diagnosed at an advanced stage and curative resection is feasible in only a small minority of patients at the time of diagnosis. Diagnosis at an early stage is unequivocally associated with better long-term survival. Several candidate molecular markers for early detection are currently under investigation in different phases of discovery and validation. Recent advances in the technology for whole genome, methylome, ribonucleome, and proteome interrogation has enabled rapid advancements in the field of biomarker discovery. In this review we discuss the current status of molecular markers for detection of pancreatic cancer in blood, pancreatic cyst fluid, pancreatic juice and stool and briefly highlight some promising preliminary results of new approaches that have the potential of advancing this field in the near future.
Collapse
|
2156
|
Gururajan M, Josson S, Chung LWK. Targeting the tumor-stromal-immune cell axis. Oncoscience 2015; 2:743-4. [PMID: 26501076 PMCID: PMC4606004 DOI: 10.18632/oncoscience.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Murali Gururajan
- Uro-oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Bristol-Myers Squibb, Princeton, NJ, USA
| | - Sajni Josson
- Uro-oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Bristol-Myers Squibb, Princeton, NJ, USA
| | - Leland W K Chung
- Uro-oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Bristol-Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
2157
|
The Emerging Role of Extracellular Vesicle-Mediated Drug Resistance in Cancers: Implications in Advanced Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454837. [PMID: 26587537 PMCID: PMC4637461 DOI: 10.1155/2015/454837] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
Collapse
|
2158
|
Yokoi A, Yoshioka Y, Ochiya T. Towards the realization of clinical extracellular vesicle diagnostics: challenges and opportunities. Expert Rev Mol Diagn 2015; 15:1555-66. [DOI: 10.1586/14737159.2015.1104249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
2159
|
Krause M, Samoylenko A, Vainio SJ. Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol 2015; 3:65. [PMID: 26539435 PMCID: PMC4611857 DOI: 10.3389/fcell.2015.00065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Cells secrete around 30–1000 nm membrane-enclosed vesicles, of which members of the subgroup between 30 and 100 nm are termed exosomes (EXs). EXs are released into the extracellular space and are widely present in body fluids and incorporated mRNA, miRNA, proteins, and signaling molecules. Increasing amounts of evidence suggest that EXs play an important role not only in cell-to-cell communication but also in various physiological and disease processes. EXs secreted by kidney cells control nephron function and are involved in kidney diseases and cancers. This makes them potential targets for diagnostic and therapeutic applications such as non-invasive biomarkers and cell-free vaccines and for use as drug delivery vehicles. This review provides an overview on the known roles of EXs in kidney development and diseases, including renal cancer. Additionally, it covers recent findings on their significance as diagnostic markers and on therapeutic applications to renal diseases and cancers. The intention is to promote an awareness of how many questions still remain open but are certainly worth investigating.
Collapse
Affiliation(s)
- Mirja Krause
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| | - Anatoliy Samoylenko
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| |
Collapse
|
2160
|
Momma S. Neuroimmune signaling by extracellular vesicles. Oncotarget 2015; 6:28521-2. [PMID: 26387131 PMCID: PMC4745667 DOI: 10.18632/oncotarget.5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Stefan Momma
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University Medical School, Frankfurt/Main, Germany
| |
Collapse
|
2161
|
Exosome-mediated microenvironment dysregulation in leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:464-470. [PMID: 26384870 DOI: 10.1016/j.bbamcr.2015.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022]
Abstract
The hematopoietic stem cell (HSC) niche is composed of a complex set of stromal support cells that maintain HSCs and promote normal hematopoiesis. We now know that molecular changes within the hematopoietic niche contribute to leukemia development. Leukemia cells often reorganize the hematopoietic niche to promote and support their own survival and growth. Here we will summarize recent works that decipher the normal hematopoietic niche cellular components and describe how the leukemia-transformed niche contributes to hematological malignances. Finally, we will discuss recent publications that highlight a possible role for exosomes in the leukemia-induced niche reorganization. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
2162
|
Zhu Y, Chen X, Pan Q, Wang Y, Su S, Jiang C, Li Y, Xu N, Wu L, Lou X, Liu S. A Comprehensive Proteomics Analysis Reveals a Secretory Path- and Status-Dependent Signature of Exosomes Released from Tumor-Associated Macrophages. J Proteome Res 2015; 14:4319-31. [PMID: 26312558 DOI: 10.1021/acs.jproteome.5b00770] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are 30-120 nm-sized membrane vesicles of endocytic origin that are released into the extracellular environment and play roles in cell-cell communication. Tumor-associated macrophages (TAMs) are important constituents of the tumor microenvironment; thus, it is critical to study the features and complex biological functions of TAM-derived exosomes. Here, we constructed a TAM cell model from a mouse macrophage cell line, Ana-1, and performed comparative proteomics on exosomes, exosome-free media, and cells between TAMs and Ana-1. Proteomic analysis between exosome and exosome-free fractions indicated that the functions of exosome dominant proteins were mainly enriched in RNA processing and proteolysis. TAM status dramatically affected the abundances of 20S proteasome subunits and ribosomal proteins in their exosomes. The 20S proteasome activity assay strongly indicated that TAM exosomes possessed higher proteolytic activity. In addition, Ana-1- and TAM-derived exosomes have different RNA profiles, which may result from differential RNA processing proteins. Taken together, our comprehensive proteomics study provides novel views for understanding the complicated roles of macrophage-derived exosomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Yinghui Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianwei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qingfei Pan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Siyuan Su
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Cuicui Jiang
- Beijing Protein Innovation , Beijing 101318, China
| | - Yang Li
- Beijing Protein Innovation , Beijing 101318, China
| | - Ningzhi Xu
- Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100021, China
| | - Lin Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
2163
|
Abstract
Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.
Collapse
Affiliation(s)
- Salomé S Pinho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
2164
|
Neuzillet C, Tijeras-Raballand A, Bourget P, Cros J, Couvelard A, Sauvanet A, Vullierme MP, Tournigand C, Hammel P. State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Pharmacol Ther 2015; 155:80-104. [PMID: 26299994 DOI: 10.1016/j.pharmthera.2015.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second cause of cancer-related death in 2030. PDAC is the poorest prognostic tumor of the digestive tract, with 80% of patients having advanced disease at diagnosis and 5-year survival rate not exceeding 7%. Until 2010, gemcitabine was the only validated therapy for advanced PDAC with a modest improvement in median overall survival as compared to best supportive care (5-6 vs 3 months). Multiple phase II-III studies have used various combinations of gemcitabine with other cytotoxics or targeted agents, most in vain, in attempt to improve this outcome. Over the past few years, the landscape of PDAC management has undergone major and rapid changes with the approval of the FOLFIRINOX and gemcitabine plus nab-paclitaxel regimens in patients with metastatic disease. These two active combination chemotherapy options yield an improved median overall survival (11.1 vs 8.5 months, respectively) thus making longer survival a reasonably achievable goal. This breakthrough raises some new clinical questions about the management of PDAC. Moreover, better knowledge of the environmental and genetic events that underpin multistep carcinogenesis and of the microenvironment surrounding cancer cells in PDAC has open new perspectives and therapeutic opportunities. In this new dynamic context of deep transformation in basic research and clinical management aspects of the disease, we gathered updated preclinical and clinical data in a multifaceted review encompassing the lessons learned from the past, the yet unanswered questions, and the most promising research priorities to be addressed for the next 5 years.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Digestive Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Medical Oncology, Henri Mondor University Hospital, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France.
| | - Annemilaï Tijeras-Raballand
- Department of Translational Research, AAREC Filia Research, 1 place Paul Verlaine, 92100 Boulogne-Billancourt, France
| | - Philippe Bourget
- Department of Clinical Pharmacy, Necker-Enfants Malades University Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Jérôme Cros
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Pathology, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Anne Couvelard
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Pathology, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Alain Sauvanet
- Department of Biliary and Pancreatic Surgery, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Marie-Pierre Vullierme
- Department of Radiology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor University Hospital, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Pascal Hammel
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Digestive Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| |
Collapse
|
2165
|
|
2166
|
Abstract
In clinical oncology, detecting and treating disease as early as possible is the brass ring to be grasped. Does a new test based on circulating exosomes bring it closer for patients with pancreas cancer?
Collapse
Affiliation(s)
- Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2167
|
|
2168
|
Podcast: Diagnosing cancer early, and Antarctica’s surprising biodiversity. Nature 2015. [DOI: 10.1038/nature.2015.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2169
|
Affiliation(s)
- Clotilde Théry
- Exosomes and Tumor Growth team, Immunity and Cancer Unit, Institut Curie, 75249 Paris Cedex O5, France
| |
Collapse
|