2251
|
Kusebauch U, Deutsch EW, Campbell DS, Sun Z, Farrah T, Moritz RL. Using PeptideAtlas, SRMAtlas, and PASSEL: Comprehensive Resources for Discovery and Targeted Proteomics. ACTA ACUST UNITED AC 2014; 46:13.25.1-13.25.28. [PMID: 24939129 DOI: 10.1002/0471250953.bi1325s46] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PeptideAtlas, SRMAtlas, and PASSEL are Web-accessible resources to support discovery and targeted proteomics research. PeptideAtlas is a multi-species compendium of shotgun proteomic data provided by the scientific community; SRMAtlas is a resource of high-quality, complete proteome SRM assays generated in a consistent manner for the targeted identification and quantification of proteins; and PASSEL is a repository that compiles and represents selected reaction monitoring data, all in an easy-to-use interface. The databases are generated from native mass spectrometry data files that are analyzed in a standardized manner including statistical validation of the results. Each resource offers search functionalities and can be queried by user-defined constraints; the query results are provided in tables or are graphically displayed. PeptideAtlas, SRMAtlas, and PASSEL are publicly available freely via the Web site http://www.peptideatlas.org. In this protocol, we describe the use of these resources, we highlight how to submit, search, collate and download data.
Collapse
|
2252
|
Shliaha PV, Jukes-Jones R, Christoforou A, Fox J, Hughes C, Langridge J, Cain K, Lilley KS. Additional Precursor Purification in Isobaric Mass Tagging Experiments by Traveling Wave Ion Mobility Separation (TWIMS). J Proteome Res 2014; 13:3360-9. [DOI: 10.1021/pr500220g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pavel V. Shliaha
- Cambridge
Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, U.K
| | | | - Andy Christoforou
- Cambridge
Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, U.K
| | - Jonathan Fox
- Waters Corporation,
HRMS, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, U.K
| | - Chris Hughes
- Waters Corporation,
HRMS, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, U.K
| | - James Langridge
- Waters Corporation,
HRMS, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, U.K
| | - Kelvin Cain
- MRC
Toxicology Unit, University of Leicester, Leicester, U.K
| | - Kathryn S. Lilley
- Cambridge
Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
2253
|
Pan J, Ye Z, Cheng Z, Peng X, Wen L, Zhao F. Systematic Analysis of the Lysine Acetylome in Vibrio parahemolyticus. J Proteome Res 2014; 13:3294-302. [DOI: 10.1021/pr500133t] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianyi Pan
- Institute
of Proteomics and Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhicang Ye
- Institute
of Proteomics and Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongyi Cheng
- Advanced
Institute of Translational Medicine, Tongji University, Shanghai 200092, China
| | - Xiaojun Peng
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Liangyou Wen
- Institute
of Proteomics and Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fukun Zhao
- Institute
of Proteomics and Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2254
|
Barco RA, Edwards KJ. Interactions of proteins with biogenic iron oxyhydroxides and a new culturing technique to increase biomass yields of neutrophilic, iron-oxidizing bacteria. Front Microbiol 2014; 5:259. [PMID: 24910632 PMCID: PMC4038746 DOI: 10.3389/fmicb.2014.00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 12/02/2022] Open
Abstract
Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed. Protein interactions with biogenic iron oxides were investigated confirming that such interactions are strong. Therefore, a protein extraction method is described to minimize binding of proteins to biogenic iron oxides. The combination of these two methods results in protein yields that are appropriate for activity assays in gels and for proteomic profiling.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
2255
|
Boutz DR, Horton AP, Wine Y, Lavinder JJ, Georgiou G, Marcotte EM. Proteomic identification of monoclonal antibodies from serum. Anal Chem 2014; 86:4758-66. [PMID: 24684310 PMCID: PMC4033631 DOI: 10.1021/ac4037679] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterizing the in vivo dynamics of the polyclonal antibody repertoire in serum, such as that which might arise in response to stimulation with an antigen, is difficult due to the presence of many highly similar immunoglobulin proteins, each specified by distinct B lymphocytes. These challenges have precluded the use of conventional mass spectrometry for antibody identification based on peptide mass spectral matches to a genomic reference database. Recently, progress has been made using bottom-up analysis of serum antibodies by nanoflow liquid chromatography/high-resolution tandem mass spectrometry combined with a sample-specific antibody sequence database generated by high-throughput sequencing of individual B cell immunoglobulin variable domains (V genes). Here, we describe how intrinsic features of antibody primary structure, most notably the interspersed segments of variable and conserved amino acid sequences, generate recurring patterns in the corresponding peptide mass spectra of V gene peptides, greatly complicating the assignment of correct sequences to mass spectral data. We show that the standard method of decoy-based error modeling fails to account for the error introduced by these highly similar sequences, leading to a significant underestimation of the false discovery rate. Because of these effects, antibody-derived peptide mass spectra require increased stringency in their interpretation. The use of filters based on the mean precursor ion mass accuracy of peptide-spectrum matches is shown to be particularly effective in distinguishing between "true" and "false" identifications. These findings highlight important caveats associated with the use of standard database search and error-modeling methods with nonstandard data sets and custom sequence databases.
Collapse
Affiliation(s)
- Daniel R Boutz
- Center for Systems & Synthetic Biology, †Institute for Cellular and Molecular Biology, ⊥Department of Biomedical Engineering, §Department of Chemical Engineering, and ∥Department of Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
2256
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 DOI: 10.1186/preaccept-3895766441330481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
|
2257
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 PMCID: PMC4269173 DOI: 10.1186/s13059-014-0548-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
Affiliation(s)
- Yuying Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Weihao Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Jianghua Cai
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Yanrui Zhang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Guozheng Qin
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Shiping Tian
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| |
Collapse
|
2258
|
Clarkson SM, Hamilton-Brehm SD, Giannone RJ, Engle NL, Tschaplinski TJ, Hettich RL, Elkins JG. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:165. [PMID: 25506391 PMCID: PMC4265447 DOI: 10.1186/s13068-014-0165-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/07/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes, such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria are important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains, such as Thermoanaerobacter spp., may also enable improvements in candidate CBP microorganisms. RESULTS Thermoanaerobacter pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30 mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated versus 73 downregulated. Only 87 proteins exhibited a twofold or greater change in abundance in either direction. Of these, 54 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least twofold by furfural and were targeted for further investigation. Teth39_1597 encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. Overexpressed BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. Cell extracts with AKR also showed activity with NADPH, but only with four-carbon butyraldehyde and isobutyraldehyde. CONCLUSIONS T. pseudethanolicus 39E displays intrinsic tolerance to the common pretreatment inhibitors furfural and 5-HMF. Multidimensional proteomic analysis was used as an effective tool to identify putative mechanisms for detoxification of furfural and 5-HMF. T. pseudethanolicus was found to upregulate an NADPH-dependent alcohol dehydrogenase 6.8-fold in response to furfural. In vitro enzyme assays confirmed the reduction of furfural and 5-HMF to their respective alcohols.
Collapse
Affiliation(s)
- Sonya M Clarkson
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Scott D Hamilton-Brehm
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Current address: Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, NV USA
| | - Richard J Giannone
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Nancy L Engle
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Timothy J Tschaplinski
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Robert L Hettich
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - James G Elkins
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| |
Collapse
|
2259
|
Lassowskat I, Böttcher C, Eschen-Lippold L, Scheel D, Lee J. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:554. [PMID: 25368622 PMCID: PMC4202796 DOI: 10.3389/fpls.2014.00554] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/27/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3, and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses) is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phospho)proteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g., WRKY transcription factors and proteins encoded by the genes from the "PEN" pathway required for penetration resistance to filamentous pathogens). Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org).
Collapse
Affiliation(s)
- Ines Lassowskat
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Christoph Böttcher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn InstituteBerlin, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
- *Correspondence: Justin Lee, Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany e-mail:
| |
Collapse
|
2260
|
Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 2014; 6:1693-701. [DOI: 10.1039/c4mt00141a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The first evidence of the existence of gene-encoded Zn-binding peptides that sequester a substantial portion of intracellular Zn in ectomycorrhizal fungi under natural conditions.
Collapse
Affiliation(s)
- Tereza Leonhardt
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Jan Sácký
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Pavel Šimek
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Jiří Šantrůček
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Pavel Kotrba
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| |
Collapse
|
2261
|
Farrah T, Deutsch EW, Omenn GS, Sun Z, Watts JD, Yamamoto T, Shteynberg D, Harris MM, Moritz RL. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven Human Proteome Project. J Proteome Res 2013; 13:60-75. [PMID: 24261998 DOI: 10.1021/pr4010037] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste products are filtered from the plasma by the kidney and excreted via the urine, while kidney proteins may be secreted into the circulation or released into the urine. Shotgun proteomics data sets derived from human kidney, urine, and plasma samples were collated and processed using a uniform software pipeline, and relative protein abundances were estimated by spectral counting. The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR for the kidney, urine, and plasma proteomes, respectively - for kidney and plasma, the largest high-confidence protein sets to date. The same pipeline applied to all available human data yielded a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one peptide for each of ∼14,000 Swiss-Prot entries, an increase over 2012 of ∼7.5% of the predicted human proteome. We demonstrate that abundances are correlated between plasma and urine, examine the most abundant urine proteins not derived from either plasma or kidney, and consider the biomarker potential of proteins associated with renal decline. This analysis forms part of the Biology and Disease-driven Human Proteome Project (B/D-HPP) and is a contribution to the Chromosome-centric Human Proteome Project (C-HPP) special issue.
Collapse
|