2401
|
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2008; 37:D98-104. [PMID: 18927107 PMCID: PMC2686559 DOI: 10.1093/nar/gkn714] [Citation(s) in RCA: 1073] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
‘miR2Disease’, a manually curated database, aims at providing a comprehensive resource of microRNA deregulation in various human diseases. The current version of miR2Disease documents 1939 curated relationships between 299 human microRNAs and 94 human diseases by reviewing more than 600 published papers. Around one-seventh of the microRNA–disease relationships represent the pathogenic roles of deregulated microRNA in human disease. Each entry in the miR2Disease contains detailed information on a microRNA–disease relationship, including a microRNA ID, the disease name, a brief description of the microRNA–disease relationship, an expression pattern of the microRNA, the detection method for microRNA expression, experimentally verified target gene(s) of the microRNA and a literature reference. miR2Disease provides a user-friendly interface for a convenient retrieval of each entry by microRNA ID, disease name, or target gene. In addition, miR2Disease offers a submission page that allows researchers to submit established microRNA–disease relationships that are not documented. Once approved by the submission review committee, the submitted records will be included in the database. miR2Disease is freely available at http://www.miR2Disease.org.
Collapse
Affiliation(s)
- Qinghua Jiang
- Center for Biomedical Informatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2402
|
Strietholt S, Maurer B, Peters MA, Pap T, Gay S. Epigenetic modifications in rheumatoid arthritis. Arthritis Res Ther 2008; 10:219. [PMID: 18947370 PMCID: PMC2592785 DOI: 10.1186/ar2500] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, genetic factors for rheumatoid diseases like the HLA haplotypes have been studied extensively. However, during the past years of research, it has become more and more evident that the influence of epigenetic processes on the development of rheumatic diseases is probably as strong as the genetic background of a patient. Epigenetic processes are heritable changes in gene expression without alteration of the nucleotide sequence. Such modifications include chromatin methylation and post-translational modification of histones or other chromatin-associated proteins. The latter comprise the addition of methyl, acetyl, and phosphoryl groups or even larger moieties such as binding of ubiquitin or small ubiquitin-like modifier. The combinatory nature of these processes forms a complex network of epigenetic modifications that regulate gene expression through activation or silencing of genes. This review provides insight into the role of epigenetic alterations in the pathogenesis of rheumatoid arthritis and points out how a better understanding of such mechanisms may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Simon Strietholt
- Institute of Experimental Musculoskeletal Medicine, University Hospital Munster, Domagkstrasse 3, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
2403
|
|
2404
|
AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 2008; 113:149-53. [PMID: 18836097 DOI: 10.1182/blood-2008-02-138560] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Resistance to apoptosis in CLL B cells is associated with overexpression of Bcl-2 family antiapoptotic proteins. Their expression is endogenous, but is also induced by signals from the microenvironment resulting in intrinsic and extrinsic drug resistance. Because AT-101 binds to the BH3 motif of all Bcl-2-family antiapoptotic proteins, we hypothesized that this molecule could overcome resistance. AT-101 treatment (20 microM for 24 hours) resulted in a median 72% apoptosis in CLL cells (patients; n = 32, P < .001). Stromal cells protected CLL B cells from spontaneous and fludarabine-induced apoptosis (P = .003) by increasing the Mcl-1 protein levels. However, AT-101 induced similar extent of down-regulation of Mcl-1 and apoptosis in CLL lymphocytes cultured in suspension or on stroma (P = .999). Stromal cells expressed undetectable levels of antiapoptotic but high levels of activated ERK and AKT proteins and had low or no apoptosis with AT-101. Collectively, these data demonstrate that AT-101 induces apoptosis in CLL B cells and overcomes microenvironment-mediated resistance while sparing normal stromal cells.
Collapse
|
2405
|
Chivukula RR, Mendell JT. Circular reasoning: microRNAs and cell-cycle control. Trends Biochem Sci 2008; 33:474-81. [PMID: 18774719 PMCID: PMC2824243 DOI: 10.1016/j.tibs.2008.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) have attracted considerable attention because of their important roles in development, normal physiology, and disease states including cancer. Recent studies have identified specific miRNAs that regulate the cell cycle and have documented that the loss or gain of miRNA-mediated cell-cycle control contributes to malignancy. miRNAs regulate classic cell-cycle control pathways by directly targeting proteins such as E2F transcription factors, cyclin-dependent kinases (Cdks), cyclins and Cdk inhibitors. Moreover, from recent findings, it has been suggested that miRNAs themselves might be subject to cell-cycle dependent regulation. Together, these observations indicate that the reciprocal control of RNA silencing and the metazoan cell cycle impacts cellular behavior and disease.
Collapse
Affiliation(s)
- Raghu R. Chivukula
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Joshua T. Mendell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| |
Collapse
|
2406
|
The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 2008; 113:505-16. [PMID: 18818396 DOI: 10.1182/blood-2008-01-136218] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor important for lineage commitment, proliferation, and differentiation. Given its critical functions, c-Myb regulatory factors are of great interest but remain incompletely defined. Herein we show that c-Myb expression is subject to posttranscriptional regulation by microRNA (miRNA)-15a. Using a luciferase reporter assay, we found that miR-15a directly binds the 3'-UTR of c-myb mRNA. By transfecting K562 myeloid leukemia cells with a miR-15a mimic, functionality of binding was shown. The mimic decreased c-Myb expression, and blocked the cells in the G(1) phase of cell cycle. Exogenous expression of c-myb mRNA lacking the 3'-UTR partially rescued the miR-15a induced cell-cycle block. Of interest, the miR-15a promoter contained several potential c-Myb protein binding sites. Occupancy of one canonical c-Myb binding site was demonstrated by chromatin immunoprecipitation analysis and shown to be required for miR-15a expression in K562 cells. Finally, in studies using normal human CD34(+) cells, we showed that c-Myb and miR-15a expression were inversely correlated in cells undergoing erythroid differentiation, and that overexpression of miR-15a blocked both erythroid and myeloid colony formation in vitro. In aggregate, these findings suggest the presence of a c-Myb-miR-15a autoregulatory feedback loop of potential importance in human hematopoiesis.
Collapse
|
2407
|
Gumireddy K, Young D, Xiong X, Hogenesch J, Huang Q, Deiters A. Small-Molecule Inhibitors of MicroRNA miR-21 Function. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2408
|
Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 2008; 41:87-95. [PMID: 18834952 DOI: 10.1016/j.biocel.2008.09.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/12/2022]
Abstract
Our current knowledge of the deregulation that occurs during the onset and progression of cancer and other diseases leads us to recognize both genetic and epigenetic alterations as being at the core of the pathological state. The epigenetic landscape includes a variety of covalent modifications that affect the methylation status of DNA but also the post-translational modifications of histones, and determines the structural features of chromatin that ultimately control the transcriptional outcome of the cell to accommodate developmental, proliferative or environmental requirements. MicroRNAs are small non-coding RNAs that regulate the expression of complementary messenger RNAs and function as key controllers in a myriad of cellular processes, including proliferation, differentiation and apoptosis. In the last few years, increasing evidence has indicated that a substantial number of microRNA genes are subjected to epigenetic alterations, resulting in aberrant patterns of expression upon the occurrence of cancer. In this review we discuss microRNA genes that are epigenetically modified in cancer cells, and the role that microRNAs themselves can have as chromatin modifiers.
Collapse
Affiliation(s)
- Sònia Guil
- Institut d'Investigacio Biomedica de Bellvitge, 08907 L'Hospitalet, Barcelona, Catalonia, Spain
| | | |
Collapse
|
2409
|
Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, McCue P, Pestell RG. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. ACTA ACUST UNITED AC 2008; 182:509-17. [PMID: 18695042 PMCID: PMC2500136 DOI: 10.1083/jcb.200801079] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Decreased expression of specific microRNAs (miRNAs) occurs in human tumors, which suggests a function for miRNAs in tumor suppression. Herein, levels of the miR-17-5p/miR-20a miRNA cluster were inversely correlated to cyclin D1 abundance in human breast tumors and cell lines. MiR-17/20 suppressed breast cancer cell proliferation and tumor colony formation by negatively regulating cyclin D1 translation via a conserved 3' untranslated region miRNA-binding site, thereby inhibiting serum-induced S phase entry. The cell cycle effect of miR-17/20 was abrogated by cyclin D1 siRNA and in cyclin D1-deficient breast cancer cells. Mammary epithelial cell-targeted cyclin D1 expression induced miR-17-5p and miR-20a expression in vivo, and cyclin D1 bound the miR-17/20 cluster promoter regulatory region. In summary, these studies identify a novel cyclin D1/miR-17/20 regulatory feedback loop through which cyclin D1 induces miR-17-5p/miR-20a. In turn, miR-17/20 limits the proliferative function of cyclin D1, thus linking expression of a specific miRNA cluster to the regulation of oncogenesis.
Collapse
Affiliation(s)
- Zuoren Yu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2410
|
Wei JS, Song YK, Durinck S, Chen QR, Cheuk ATC, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27:5204-13. [PMID: 18504438 PMCID: PMC2562938 DOI: 10.1038/onc.2008.154] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/18/2008] [Accepted: 04/04/2008] [Indexed: 01/07/2023]
Abstract
Loss of 1p36 heterozygosity commonly occurs with MYCN amplification in neuroblastoma tumors, and both are associated with an aggressive phenotype. Database searches identified five microRNAs that map to the commonly deleted region of 1p36 and we hypothesized that the loss of one or more of these microRNAs contributes to the malignant phenotype of MYCN-amplified tumors. By bioinformatic analysis, we identified that three out of the five microRNAs target MYCN and of these miR-34a caused the most significant suppression of cell growth through increased apoptosis and decreased DNA synthesis in neuroblastoma cell lines with MYCN amplification. Quantitative RT-PCR showed that neuroblastoma tumors with 1p36 loss expressed lower level of miR-34a than those with normal copies of 1p36. Furthermore, we demonstrated that MYCN is a direct target of miR-34a. Finally, using a series of mRNA expression profiling experiments, we identified other potential direct targets of miR-34a, and pathway analysis demonstrated that miR-34a suppresses cell-cycle genes and induces several neural-related genes. This study demonstrates one important regulatory role of miR-34a in cell growth and MYCN suppression in neuroblastoma.
Collapse
Affiliation(s)
- Jun Stephen Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Young Kook Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Steffen Durinck
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Qing-Rong Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Adam Tai Chi Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Patricia Tsang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Quangeng Zhang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Carol Jean Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew Slack
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Shohet
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| |
Collapse
|
2411
|
Lindsay MA. microRNAs and the immune response. Trends Immunol 2008; 29:343-51. [PMID: 18515182 DOI: 10.1016/j.it.2008.04.004] [Citation(s) in RCA: 445] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 12/13/2022]
Abstract
microRNA (miRNA)-mediated RNA interference has been identified as a novel mechanism that regulates protein expression at the translational level. Recent publications have provided compelling evidence that a range of miRNAs are involved in the regulation of immunity, including the development and differentiation of B and T cells, proliferation of monocytes and neutrophils, antibody switching and the release of inflammatory mediators. In this review, we examine what is presently known of the function and mechanism of action of these miRNAs in the regulation of the innate and acquired immune response.
Collapse
Affiliation(s)
- Mark A Lindsay
- Respiratory Research Group, Wythenshawe Hospital, School of Translational Sciences, University of Manchester M23 9LT, UK.
| |
Collapse
|
2412
|
Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 2008; 79:581-8. [PMID: 18550634 DOI: 10.1093/cvr/cvn156] [Citation(s) in RCA: 706] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the endothelial monolayer is fundamental for the homoeostasis of the vascular system. Functional endothelial cells are also required for the growth of new blood vessels during neovascularization. Although multiple growth factors have been shown to regulate angiogenesis and vascular development, little is known about the complex upstream regulation of gene expression and translation. MicroRNAs (miRNAs) are an emerging class of highly conserved, non-coding small RNAs that regulate gene expression on the post-transcriptional level by inhibiting the translation of protein from mRNA or by promoting the degradation of mRNA. More than 500 human miRNAs have been identified so far, and increasing evidence indicates that miRNAs have distinct expression profiles and play crucial roles in various physiological and pathological processes such as cardiogenesis, haematopoietic lineage differentiation, and oncogenesis. Meanwhile, a few specific miRNAs that regulate endothelial cell functions and angiogenesis have been described. Let7-f, miR-27b, and mir-130a were identified as pro-angiogenic miRNAs. In contrast, miR-221 and miR-222 inhibit endothelial cell migration, proliferation, and angiogenesis in vitro by targeting the stem cell factor receptor c-kit and indirectly regulating endothelial nitric oxide synthase expression. Moreover, some miRNAs are involved in tumour angiogenesis such as the miR-17-92 cluster and miR-378. Early studies also indicate the contribution of specific miRNAs (e.g. miR-155, miR-21, and miR-126) to vascular inflammation and diseases. Thus, the identification of miRNAs and their respective targets may offer new therapeutic strategies to treat vascular diseases such as atherosclerosis, to improve neovascularization after ischaemia, or to prevent tumour progression.
Collapse
Affiliation(s)
- Carmen Urbich
- Department of Molecular Cardiology, Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
2413
|
Abstract
Ovarian cancer remains a leading cause of morbidity and mortality, with little change in survival rates over the past 30 years. Research in the molecular biology underlying the disease demonstrates frequent mutation in the p53/Rb/p16 tumor suppressor pathways and activation of c-myc, K-ras and Akt oncogenic signaling. Recently, miRNAs have been demonstrated to play an important role in controlling proliferation, apoptosis and many other processes altered in the cancer state. In this review we discuss a number of recent publications that implicate a role for microRNAs in ovarian cancer and assess how this new field may improve our fundamental understanding of the disease and provide improved diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- David C Corney
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
2414
|
Nuovo GJ, Schmittgen TD. Benign metastasizing leiomyoma of the lung: clinicopathologic, immunohistochemical, and micro-RNA analyses. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2008; 17:145-50. [PMID: 18382364 PMCID: PMC3038410 DOI: 10.1097/pdm.0b013e31815aca19] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Benign metastasizing leiomyomas are rare tumors, which are typically found in the lungs and, thus, might be confused with leiomyosarcomas. Further, it is not clear whether the term "benign metastasizing leiomyoma" is a misnomer and whether these lesions actually represent low-grade malignant tumors that have a low proliferation index. Micro-RNAs (miRNAs) are small noncoding RNAs, which repress translation. The altered expression of miRNAs has been strongly correlated with the malignant phenotype. In this study, the histologic features, Ki67 index, p53, bcl-2, and miRNA expression were studied in 15 leiomyosarcomas (11 primary lesions and 4 metastases), 8 leiomyomas, and 10 cases of benign metastasizing leiomyoma (9 pulmonary lesions and 1 primary uterine lesion). As expected, the Ki67 index for the benign metastasizing leiomyomas was equivalent to that for the leiomyomas and statistically less than that for the leiomyosarcomas. The mean index was 2.3% (range: 0.9% to 8.8%) for the leiomyomas and 3.4% (range: 0.7% to 8.1%) for the benign metastasizing leiomyomas compared with 28.6% (range: 14.4% to 62.0%) for the leiomyosarcomas (P<0.025). The miRNA, miR-221, which has been associated with a variety of cancers, was detected by in situ hybridization in 13/15 leiomyosarcomas, 0/8 leiomyomas, and 0/10 benign metastasizing leiomyomas. In conclusion, benign metastasizing leiomyomas are indeed most likely benign lesions, and up-regulation of miR-221 expression is an accurate way to differentiate leiomyosarcoma from benign metastasizing leiomyoma.
Collapse
Affiliation(s)
- Gerard J Nuovo
- Department of Pathology, The Ohio State University Medical Center, Room 081 Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
2415
|
Abstract
MicroRNA 34a (miR-34a) is a tumor suppressor gene, but how it regulates cell proliferation is not completely understood. We now show that the microRNA miR-34a regulates silent information regulator 1 (SIRT1) expression. MiR-34a inhibits SIRT1 expression through a miR-34a-binding site within the 3' UTR of SIRT1. MiR-34 inhibition of SIRT1 leads to an increase in acetylated p53 and expression of p21 and PUMA, transcriptional targets of p53 that regulate the cell cycle and apoptosis, respectively. Furthermore, miR-34 suppression of SIRT1 ultimately leads to apoptosis in WT human colon cancer cells but not in human colon cancer cells lacking p53. Finally, miR-34a itself is a transcriptional target of p53, suggesting a positive feedback loop between p53 and miR-34a. Thus, miR-34a functions as a tumor suppressor, in part, through a SIRT1-p53 pathway.
Collapse
|
2416
|
Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci U S A 2008; 105:13081-6. [PMID: 18723673 DOI: 10.1073/pnas.0801523105] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During the clonal expansion of cancer from an ancestral cell with an initiating oncogenic mutation to symptomatic neoplasm, the occurrence of somatic mutations (both driver and passenger) can be used to track the on-going evolution of the neoplasm. All subclones within a cancer are phylogenetically related, with the prevalence of each subclone determined by its evolutionary fitness and the timing of its origin relative to other subclones. Recently developed massively parallel sequencing platforms promise the ability to detect rare subclones of genetic variants without a priori knowledge of the mutations involved. We used ultra-deep pyrosequencing to investigate intraclonal diversification at the Ig heavy chain locus in 22 patients with B-cell chronic lymphocytic leukemia. Analysis of a non-polymorphic control locus revealed artifactual insertions and deletions resulting from sequencing errors and base substitutions caused by polymerase misincorporation during PCR amplification. We developed an algorithm to differentiate genuine haplotypes of somatic hypermutations from such artifacts. This proved capable of detecting multiple rare subclones with frequencies as low as 1 in 5000 copies and allowed the characterization of phylogenetic interrelationships among subclones within each patient. This study demonstrates the potential for ultra-deep resequencing to recapitulate the dynamics of clonal evolution in cancer cell populations.
Collapse
|
2417
|
Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol 2008; 9:76. [PMID: 18718003 PMCID: PMC2533012 DOI: 10.1186/1471-2199-9-76] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 08/21/2008] [Indexed: 12/15/2022] Open
Abstract
The discovery of microRNAs (miRNAs) added an extra level of intricacy to the already complex system regulating gene expression. These single-stranded RNA molecules, 18–25 nucleotides in length, negatively regulate gene expression through translational inhibition or mRNA cleavage. The discovery that aberrant expression of specific miRNAs contributes to human disease has fueled much interest in profiling the expression of these molecules. Real-time quantitative PCR (RQ-PCR) is a sensitive and reproducible gene expression quantitation technique which is now being used to profile miRNA expression in cells and tissues. To correct for systematic variables such as amount of starting template, RNA quality and enzymatic efficiencies, RQ-PCR data is commonly normalised to an endogenous control (EC) gene, which ideally, is stably-expressed across the test sample set. A universal endogenous control suitable for every tissue type, treatment and disease stage has not been identified and is unlikely to exist, so, to avoid introducing further error in the quantification of expression data it is necessary that candidate ECs be validated in the samples of interest. While ECs have been validated for quantification of mRNA expression in various experimental settings, to date there is no report of the validation of miRNA ECs for expression profiling in breast tissue. In this study, the expression of five miRNA genes (let-7a, miR-10b, miR-16, miR-21 and miR-26b) and three small nucleolar RNA genes (RNU19, RNU48 and Z30) was examined across malignant, benign and normal breast tissues to determine the most appropriate normalisation strategy. This is the first study to identify reliable ECs for analysis of miRNA by RQ-PCR in human breast tissue.
Collapse
Affiliation(s)
- Pamela A Davoren
- Department of Surgery, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
2418
|
Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY, Yang JR, Su H, Zhuang SM. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 2008; 29:2126-31. [PMID: 18711148 DOI: 10.1093/carcin/bgn195] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A G > C polymorphism (rs2910164) is located in the stem region opposite to the mature miR-146a sequence, which results in a change from G:U pair to C:U mismatch in the stem structure of miR-146a precursor. Here, we elucidated the biological significance of this polymorphism, based on cancer association study and cell model system. The cancer association study included 479 hepatocellular carcinoma (HCC) and 504 control subjects. We found that the genotype distribution of this polymorphism in HCC cases was significantly different from that in control subjects (P = 0.026). The association between the genotype and the risk of HCC was further analyzed using multivariate unconditional logistic regression, with adjustment for sex, age and hepatitis B virus status. The results revealed that male individuals with GG genotype were 2-fold more susceptible to HCC (odds ratio = 2.016, 95% confidence interval = 1.056-3.848, P = 0.034) compared with those with CC genotype. We next examined the influence of this polymorphism on the production of mature miR-146a and found that G-allelic miR-146a precursor displayed increased production of mature miR-146a compared with C-allelic one. Further investigations disclosed that miR-146a could obviously promote cell proliferation and colony formation in NIH/3T3, an immortalized but non-transformed cell line. These data suggest that the G > C polymorphism in miR-146a precursor may result in important phenotypic traits that have biomedical implications. Our findings warrant further investigations on the relation between microRNA polymorphism and human diseases.
Collapse
Affiliation(s)
- Teng Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
2419
|
Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet 2008; 74:307-15. [PMID: 18713257 DOI: 10.1111/j.1399-0004.2008.01075.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) consist of a class of evolutionarily conserved small non-coding RNA that regulates target messenger RNAs by mechanisms such as incomplete base pairing and post-transcriptional gene silencing. Recent studies have shown that aberrant miRNA expression is a common feature of many human disorders including aging, heart diseases, cancer, autoimmune diseases and others. It seems likely that miRNA expression levels can be used as novel diagnostic markers. MiRNAs may also provide a new strategy for therapeutic interventions. In this review, we focus on recent advances in understanding how miRNA changes contribute to disease development and their potential as novel biomarkers and therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Y Wang
- Department of Dermatology; and Department of Epigenetic Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
2420
|
Abstract
Since the discovery of microRNAs (miRNAs) in Caenorhabditis elegans, mounting evidence illustrates the important regulatory roles for miRNAs in various developmental, differentiation, cell proliferation, and apoptosis pathways of diverse organisms. We are just beginning to elucidate novel aspects of RNA mediated gene regulation and to understand how heavily various molecular pathways rely on miRNAs for their normal function. miRNAs are small non-protein-coding transcripts that regulate gene expression post-transcriptionally by targeting messenger RNAs (mRNAs). While individual miRNAs have been specifically linked to critical developmental pathways, the deregulated expression of many miRNAs also has been shown to have functional significance for multiple human diseases, such as cancer. We continue to discover novel functional roles for miRNAs at a rapid pace. Here, we summarize some of the key recent findings on miRNAs, their mode of action, and their roles in both normal development and in human pathology. A better understanding of how miRNAs operate during the normal life of a cell as well as in the pathogenesis of disease when deregulated will provide new avenues for diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- A E Erson
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | | |
Collapse
|
2421
|
Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008; 68:4123-32. [PMID: 18519671 DOI: 10.1158/0008-5472.can-08-0325] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Altered expression of microRNA (miRNA) is strongly implicated in cancer, and recent studies have shown that, in cancer, expression of some miRNAs cells is silenced in association with CpG island hypermethylation. To identify epigenetically silenced miRNAs in colorectal cancer (CRC), we screened for miRNAs induced in CRC cells by 5-aza-2'-deoxycytidine (DAC) treatment or DNA methyltransferase knockout. We found that miRNA-34b (miR-34b) and miR-34c, two components of the p53 network, are epigenetically silenced in CRC; that this down-regulation of miR-34b/c is associated with hypermethylation of the neighboring CpG island; and that DAC treatment rapidly restores miR-34b/c expression. Methylation of the miR-34b/c CpG island was frequently observed in CRC cell lines (nine of nine, 100%) and in primary CRC tumors (101 of 111, 90%), but not in normal colonic mucosa. Transfection of precursor miR-34b or miR-34c into CRC cells induced dramatic changes in the gene expression profile, and there was significant overlap between the genes down-regulated by miR-34b/c and those down-regulated by DAC. We also found that the miR-34b/c CpG island is a bidirectional promoter which drives expression of both miR-34b/c and B-cell translocation gene 4 (BTG4); that methylation of the CpG island is also associated with transcriptional silencing of BTG4; and that ectopic expression of BTG4 suppresses colony formation by CRC cells. Our results suggest that miR-34b/c and BTG4 are novel tumor suppressors in CRC and that the miR-34b/c CpG island, which bidirectionally regulates miR-34b/c and BTG4, is a frequent target of epigenetic silencing in CRC.
Collapse
Affiliation(s)
- Minoru Toyota
- First Department of Internal Medicine, Cancer Research Institute, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
2422
|
Lotterman CD, Kent OA, Mendell JT. Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 2008; 7:2493-9. [PMID: 18719378 PMCID: PMC2654364 DOI: 10.4161/cc.7.16.6452] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A large body of evidence has documented abnormal microRNA (miRNA) expression patterns in diverse human malignancies. Given that miRNA expression is tightly regulated during development and cellular differentiation, aberrant miRNA expression in cancer cells is likely to be in part a consequence of the loss of normal cellular identity that accompanies malignant transformation. Nevertheless, it is now clear that miRNAs function as critical effectors of several canonical oncogenic and tumor suppressor pathways, including those controlled by Myc and p53. Gain- and loss-of-function of these factors in cancer cells contributes to miRNA dysregulation, directly influencing neoplastic phenotypes including cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Craig D. Lotterman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Oliver A. Kent
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Joshua T. Mendell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2423
|
Overexpression of TOSO in CLL is triggered by B-cell receptor signaling and associated with progressive disease. Blood 2008; 112:4213-9. [PMID: 18708628 DOI: 10.1182/blood-2008-05-157255] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resistance toward apoptotic stimuli mediated by overexpression of antiapoptotic factors or extracellular survival signals is considered to be responsible for accumulation of malignant B cells in chronic lymphocytic leukemia (CLL). TOSO was identified as overexpressed candidate gene in CLL, applying unit-transformation assays of publicly available microarray datasets. Based on CLL samples from 106 patients, TOSO was identified to exhibit elevated relative expression (RE) of 6.8 compared with healthy donor B cells using quantitative real-time polymerase chain reaction (PCR; P = .004). High levels of TOSO expression in CLL correlated with high leukocyte count, advanced Binet stage, previous need for chemotherapy, and unmutated IgV(H) status. CD38(+) CLL subsets harboring proliferative activity showed enhanced TOSO expression. We evaluated functional mechanisms of aberrant TOSO expression and identified TOSO expression significantly induced by B-cell receptor (BCR) stimulation compared with control cells (RE; 8.25 vs 4.86; P = .01). In contrast, CD40L signaling significantly reduced TOSO expression (RE, 2.60; P = .01). In summary, we show that the antiapoptotic factor TOSO is associated with progressive disease and enhanced in the proliferative CD38(+) CLL subset. Both association with unmutated IgV(H) and the specific induction of TOSO via the BCR suggest autoreactive BCR signaling as a key mediator of apoptosis resistance in CLL.
Collapse
|
2424
|
Affiliation(s)
- Stefan Fröhling
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
2425
|
Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 2008; 36:5391-404. [PMID: 18701644 PMCID: PMC2532718 DOI: 10.1093/nar/gkn522] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs that are thought to be involved in diverse biological processes by regulating gene expression. Numerous miRNAs have been identified in various species, and many more miRNAs remain to be detected. Generally, hundreds of mRNAs have been predicted to be potential targets of one miRNA, so it is a great challenge to identify the genuine miRNA targets. Here, we generated the cell lines depleted of Drosha protein and screened dozens of transcripts (including Cyclin D1) regulated potentially by miRNA-mediated RNA silencing pathway. On the basis of miRNA expressing library, we established a miRNA targets reverse screening method by using luciferase reporter assay. By this method, we found that the expression of Cyclin D1 (CCND1) was regulated by miR-16 family directly, and miR-16 induced G1 arrest in A549 cells partially by CCND1. Furthermore, several other cell cycle genes were revealed to be regulated by miR-16 family, including Cyclin D3 (CCND3), Cyclin E1 (CCNE1) and CDK6. Taken together, our data suggests that miR-16 family triggers an accumulation of cells in G0/G1 by silencing multiple cell cycle genes simultaneously, rather than the individual target.
Collapse
Affiliation(s)
- Qin Liu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
2426
|
Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm Genome 2008; 19:517-25. [PMID: 18688563 DOI: 10.1007/s00335-008-9133-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/09/2008] [Indexed: 12/26/2022]
Abstract
By virtue of having multiple targets, a microRNA (miRNA) can have variable effects on oncogenesis by acting as tumor suppressor or oncogene in a context-dependent manner. Genome-wide epigenetic changes that occur in various cancers affect the transcription of many genes. Since the transcriptional regulation of miRNAs remains an unexplored field, it is still unknown how epigenetic changes will affect the regulation of miRNAs. Many miRNAs are intron-bound within the body of a protein-coding gene. Any change to the transcription of the "host" gene affects the transcription and genesis of the resident miRNA. It is therefore reasonable to deduce that epigenetic changes brought on by transformation can potentially affect miRNA expression in both direct and indirect ways. We have reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and have speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.
Collapse
Affiliation(s)
- Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | |
Collapse
|
2427
|
Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Göransson H, Liljedahl U, Ralfkiaer U, Mansouri M, Buhl AM, Smedby KE, Hjalgrim H, Syvänen AC, Borg A, Isaksson A, Jurlander J, Juliusson G, Rosenquist R. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 2008; 47:697-711. [PMID: 18484635 DOI: 10.1002/gcc.20575] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Screening for gene copy-number alterations (CNAs) has improved by applying genome-wide microarrays, where SNP arrays also allow analysis of loss of heterozygozity (LOH). We here analyzed 10 chronic lymphocytic leukemia (CLL) samples using four different high-resolution platforms: BAC arrays (32K), oligonucleotide arrays (185K, Agilent), and two SNP arrays (250K, Affymetrix and 317K, Illumina). Cross-platform comparison revealed 29 concordantly detected CNAs, including known recurrent alterations, which confirmed that all platforms are powerful tools when screening for large aberrations. However, detection of 32 additional regions present in 2-3 platforms illustrated a discrepancy in detection of small CNAs, which often involved reported copy-number variations. LOH analysis using dChip revealed concordance of mainly large regions, but showed numerous, small nonoverlapping regions and LOH escaping detection. Evaluation of baseline variation and copy-number ratio response showed the best performance for the Agilent platform and confirmed the robustness of BAC arrays. Accordingly, these platforms demonstrated a higher degree of platform-specific CNAs. The SNP arrays displayed higher technical variation, although this was compensated by high density of elements. Affymetrix detected a higher degree of CNAs compared to Illumina, while the latter showed a lower noise level and higher detection rate in the LOH analysis. Large-scale studies of genomic aberrations are now feasible, but new tools for LOH analysis are requested.
Collapse
Affiliation(s)
- Rebeqa Gunnarsson
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Hematology and Transplantation, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2428
|
Selgrad M, Malfertheiner P, Fini L, Goel A, Boland CR, Ricciardiello L. The role of viral and bacterial pathogens in gastrointestinal cancer. J Cell Physiol 2008; 216:378-88. [PMID: 18338378 PMCID: PMC2855192 DOI: 10.1002/jcp.21427] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association of Helicobacter pylori (H. pylori) with gastric cancer is thus far the best understood model to comprehend the causal relationship between a microbial pathogen and cancer in the human gastrointestinal tract. Besides H. pylori, a variety of other pathogens are now being recognized as potential carcinogens in different settings of human cancer. In this context, viral causes of human cancers are central to the issue since these account for 10-20% of cancers worldwide. In the case of H. pylori and gastric cancer, as well as the human papillomavirus and anal cancer, the causal relationship between the infectious agent and the related cancer in the gastrointestinal tract has been clearly confirmed by epidemiological and experimental studies. Similarly, Epstein-Barr virus and the oncogenic JC virus are being suggested as possible causative agents for cancers in the upper and lower gastrointestinal tract. This review discusses various viral and microbial pathogens and their oncogenic properties in the evolution of gastrointestinal carcinogenesis and summarizes the available experimental data make a convincing agreement favoring the associations between infectious agents and specific human cancers.
Collapse
Affiliation(s)
- Michael Selgrad
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lucia Fini
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Ajay Goel
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - C. Richard Boland
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Luigi Ricciardiello
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
2429
|
Shih KK, Levine DA. Exosomal microRNAs step into the biomarker arena. Gynecol Oncol 2008; 110:1-2. [PMID: 18589207 DOI: 10.1016/j.ygyno.2008.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 05/28/2008] [Indexed: 12/26/2022]
|
2430
|
hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 2008; 1236:185-93. [PMID: 18710654 DOI: 10.1016/j.brainres.2008.07.085] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 07/20/2008] [Accepted: 07/22/2008] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. In mammal animals, their function mainly represses the target mRNAs transcripts via imperfectly complementary to the 3' UTR of target mRNAs. Several miRNAs have been recently reported to be involved in modulation of glioma development, especially some up-regulated miRNA, such as hsa-miR-21 and hsa-miR-221. However, here we reported that the down-regulated hsa-miR-181a and hsa-miR-181b of hsa-miR-181 family were also involved in oncogenesis of glioma. Our studies showed that hsa-miR-181a and hsa-miR-181b functioned as tumor suppressors which triggered growth inhibition, induced apoptosis and inhibited invasion in glioma cells. Furthermore, the tumor-suppressive effect of hsa-miR-181b in glioma cells was more apparent than the effect of hsa-miR-181a. These findings suggest aberrantly down-regulated hsa-miR-181a and hsa-miR-181b may be critical factors that contribute to malignant appearance in human gliomas.
Collapse
|
2431
|
MicroRNA expression in canine mammary cancer. Mamm Genome 2008; 19:561-9. [PMID: 18665421 DOI: 10.1007/s00335-008-9128-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 06/13/2008] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are 18-22-nt noncoding RNAs that are involved in post-transcriptional regulation of genes. Oncomirs, a subclass of miRNAs, include genes whose expression, or lack thereof, are associated with cancers. Until the last decade, the domestic dog was an underused model for the study of various human diseases that have genetic components. The dog exhibits marked genetic and physiologic similarity to the human, thereby making it an excellent model for study and treatment of various hereditary diseases. Furthermore, because the dog presents with distinct, spontaneously occurring mammary tumors, it may serve as a model for genetic analysis and treatments of humans with malignant breast tumors. Because miRNAs have been found to act as both tumor suppressors and oncogenes in several different cancers, expression patterns of ten miRNAs (miR-15a, miR-16, miR-17-5p, miR-21, miR-29b, miR-125b, miR-145, miR-155, miR-181b, let-7f) known to be associated with human breast cancers were compared to malignant canine mammary tumors (n = 6) and normal canine mammary tissue (n = 10). Resulting data revealed miR-29b and miR-21 to have a statistically significant (p < 0.05 by MANOVA analysis) upregulation in cancerous samples. The ten canine miRNAs follow the same pattern of expression as in the human, except for miR-145 which does not show a difference in expression between the normal and cancerous canine samples. In addition, when analyzed according to specific cancer phenotypes, miR-15a and miR-16 show a significant downregulation in canine ductal carcinomas while miRsR-181b, -21, -29b, and let-7f show a significant upregulation in canine tubular papillary carcinomas.
Collapse
|
2432
|
Lin YC, Kuo MW, Yu J, Kuo HH, Lin RJ, Lo WL, Yu AL. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol 2008; 25:2189-98. [PMID: 18667440 DOI: 10.1093/molbev/msn165] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human c-Myb proto-oncogene is highly expressed in hematopoietic progenitors as well as leukemia and certain solid tumor. However, the regulatory mechanisms of its expression and biological functions remain largely unclear. Recently, c-Myb has been shown to be targeted by microRNA-150 (miR-150) which thereby controls B cell differentiation in mice. In this study, we demonstrated that c-Myb is an evolutionary conserved target of miR-150 in human and zebrafish, using reporter assays. Ectopic expression of miR-150 in breast cancer and leukemic cells repressed endogenous c-Myb at both messenger RNA (mRNA) and protein levels. Among several leukemia cell lines, primary leukemia cells, and normal lymphocytes, expression levels of miR-150 inversely correlated with c-Myb. The miR-150 overexpression or c-Myb silencing in zebrafish zygotes led to similar and serious phenotypic defects in zebrafish, and the phenotypic aberrations induced by miR-150 could be reversed by coinjection of c-Myb mRNA. Our findings suggest that c-Myb is an evolutionally conserved target of miR-150 and miR-150/c-Myb interaction is important for embryonic development and possibly oncogenesis.
Collapse
Affiliation(s)
- You-Chin Lin
- Genomics Research Center, Academia Sinica Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
2433
|
Caligaris-Cappio F, Ghia P. Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 2008; 26:4497-503. [PMID: 18662968 DOI: 10.1200/jco.2007.15.4393] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) has unique epidemiologic, biologic, and clinical features. The progressively emerging picture leads us to consider that the critical genes for malignant CLL cells are those regulated by a number of microRNAs revealed by refined cytogenetic and molecular studies, and that the key molecule is the B-cell receptor (BCR). The hypothesis that CLL cells might be selected by some sort of antigenic pressure is strengthened by numerous findings indicating that a BCR-mediated stimulation plays a relevant role in the natural history of the disease and that autoantigens, as well as molecular structures instrumental in eliminating and scavenging apoptotic cells and pathogenic bacteria, may be relevant in triggering and/or facilitating the evolution of CLL. An important question is whether the tiny monoclonal B-cell populations phenotypically similar to CLL (that occur in the peripheral blood of about 3.5% of healthy individuals and are termed monoclonal B lymphocytosis) might be a critical step in the development of CLL. All relevant events of CLL occur in tissues in which a number of cellular and molecular interactions shape a microenvironment conducive to the accumulation of malignant cells and favor the organization of proliferating cells in focal aggregates of variable size that form the pseudofollicular proliferation centers. Given the impact that understanding the pathogenesis of CLL might have on the development of new treatments, the purposes of this review are to discuss whether the novel insights in CLL are leading us closer to understanding the tenet of the disease; to define the emerging new, stimulating questions; and to unfold the major challenges that still need to be addressed.
Collapse
Affiliation(s)
- Federico Caligaris-Cappio
- Department of Oncology, Unit and Laboratory of Lymphoid Malignancies, Università Vita-Salute San Raffaele, Istituto Scientifico San Raffaele, Milano, Italy.
| | | |
Collapse
|
2434
|
Mirnezami AHF, Pickard K, Zhang L, Primrose JN, Packham G. MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol 2008; 35:339-47. [PMID: 18644693 DOI: 10.1016/j.ejso.2008.06.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/05/2008] [Accepted: 06/09/2008] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) represent a recently uncovered class of small and endogenous non-coding RNAs. MiRNA function is critical to normal cellular processes such as differentiation and apoptosis, and recent studies have demonstrated that deregulated miRNA expression contributes to the malignant phenotype. The purpose of this review is to summarise these findings in relation to the most common human malignancies, and to analyse the clinical and therapeutic opportunities they provide.
Collapse
Affiliation(s)
- A H F Mirnezami
- University Surgical Unit, Level F Centre Block, Southampton General Hospital, Southampton, UK.
| | | | | | | | | |
Collapse
|
2435
|
Rossi S, Sevignani C, Nnadi SC, Siracusa LD, Calin GA. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm Genome 2008; 19:526-40. [PMID: 18636290 DOI: 10.1007/s00335-008-9119-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 05/22/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code for proteins) that regulate the expression of target genes at the posttranscriptional or posttranslational level. Many miRNAs have conserved sequences between distantly related organisms, suggesting that these molecules participate in essential developmental and physiologic processes. miRNAs can act as tumor suppressor genes or oncogenes in human cancers. Mutations, deletions, or amplifications have been found in human cancers and shown to alter expression levels of mature and/or precursor miRNA transcripts. Moreover, a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Both miRNAs and UCRs are frequently located at fragile sites and genomic regions affected in various cancers, named cancer-associated genomic regions (CAGRs). Bioinformatics studies are emerging as important tools to identify associations and/or correlations between miRNAs/ncRNAs and CAGRs. ncRNA profiling has allowed the identification of specific signatures associated with diagnosis, prognosis, and response to treatment of human tumors. Several abnormalities could contribute to the alteration of miRNA expression profiles in each kind of tumor and in each kind of tissue. This review is focused on the miRNAs and ncRNAs as genes affecting cancer risk, and we provided an updated catalog of miRNAs and UCRs located at fragile sites or at cancer susceptibility loci. These types of studies are the first step toward discoveries leading to novel approaches for cancer therapies.
Collapse
Affiliation(s)
- Simona Rossi
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
2436
|
Mallardo M, Poltronieri P, D'Urso OF. Non-protein coding RNA biomarkers and differential expression in cancers: a review. J Exp Clin Cancer Res 2008; 27:19. [PMID: 18631387 PMCID: PMC2490676 DOI: 10.1186/1756-9966-27-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/16/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In these years a huge number of human transcripts has been found that do not code for proteins, named non-protein coding RNAs. In most cases, small (miRNAs, snoRNAs) and long RNAs (antisense RNA, dsRNA, and long RNA species) have many roles, functioning as regulators of other mRNAs, at transcriptional and post-transcriptional level, and controlling protein ubiquitination and degradation. Various species of npcRNAs have been found differentially expressed in different types of cancer. This review discusses the published data and new results on the expression of a subset of npcRNAs. CONCLUSION These results underscore the complexity of the RNA world and provide further evidence on the involvement of functional RNAs in cancer cell growth control.
Collapse
Affiliation(s)
- Massimo Mallardo
- University of Napoli Federico II, Department of Biochemistry and Medical Biotechnologies, Via S. Pansini 5, Napoli, Italy
| | - Palmiro Poltronieri
- National Research Council, Institute of Sciences of Food Productions, Ecotekne, via Lecce-Monteroni, Lecce, Italy
| | | |
Collapse
|
2437
|
Werbowetski-Ogilvie TE, Bhatia M. Pluripotent human stem cell lines: what we can learn about cancer initiation. Trends Mol Med 2008; 14:323-32. [PMID: 18635398 DOI: 10.1016/j.molmed.2008.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 12/30/2022]
Abstract
Although the cancer stem cell (CSC) hypothesis has become an attractive model to account for tumor recurrence, failure to define a cell of origin has created the need to explore alternative models for cancer initiation and maintenance. Recent studies have linked an embryonic stem cell (ESC)-like gene signature with poorly defined high-grade tumors. Here, we review advances in the ESC field with an emphasis on how human pluripotent stem cells (hPSCs) can be used to define early tumorigenic events, including potential miRNA and epigenetic targets, as well as proto-oncogene and tumor suppressor networks that might facilitate hierarchal transformation. These studies allow for investigation of cancer initiation in a manner that cannot be achieved using primary tumors, where only retrospective evaluation of CSC development is possible. By comparing transformed hPSCs with their normal counterparts, we hope to develop novel cell-specific therapies that selectively target CSCs.
Collapse
|
2438
|
Abstract
PURPOSE OF REVIEW The discovery of a novel class of gene regulators, named microRNAs, has changed the landscape of human genetics. In hematopoiesis, recent work has improved our understanding of the role of microRNAs in hematopoietic differentiation and leukemogenesis. RECENT FINDINGS Using animal models engineered to overexpress miR-150, miR-17 approximately 92 and miR-155 or to be deficient for miR-223, miR-155 and miR-17 approximately 92 expression, several groups have now shown that miRNAs are critical for B-lymphocyte development (miR-150 and miR-17 approximately 92), granulopoiesis (miR-223), immune function (miR-155) and B-lymphoproliferative disorders (miR-155 and miR-17 approximately 92). Distinctive miRNA signatures have been described in association with cytogenetics and outcome in acute myeloid leukemia. SUMMARY There is now strong evidence that miRNAs modulate not only hematopoietic differentiation and proliferation but also activity of hematopoietic cells, in particular those related to immune function. Extensive miRNA deregulation has been observed in leukemias and lymphomas and mechanistic studies support a role for miRNAs in the pathogenesis of these disorders.
Collapse
|
2439
|
Abstract
MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and has a role in tumorigenesis, in part through regulation of the tumor suppressor gene tropomyosin 1 (TPM1). Given that TPM1 has been implicated in cell migration, in this study we further investigated the role of mir-21 in cell invasion and tumor metastasis. We found that suppression of mir-21 in metastatic breast cancer MDA-MB-231 cells significantly reduced invasion and lung metastasis. Consistent with this, ectopic expression of TPM1 remarkably reduced cell invasion. Furthermore, we identified two additional direct mir-21 targets, programmed cell death 4 (PDCD4) and maspin, both of which have been implicated in invasion and metastasis. Like TPM1, PDCD4 and maspin also reduced invasiveness of MDA-MB-231 cells. Finally, the expression of PDCD4 and maspin inversely correlated with mir-21 expression in human breast tumor specimens, indicating the potential regulation of PDCD4 and maspin by mir-21 in these tumors. Taken together, the results suggest that, as an oncogenic miRNA, mir-21 has a role not only in tumor growth but also in invasion and tumor metastasis by targeting multiple tumor/metastasis suppressor genes. Therefore, suppression of mir-21 may provide a novel approach for the treatment of advanced cancers.
Collapse
|
2440
|
Gomes CC, Gomez RS. MicroRNA and oral cancer: future perspectives. Oral Oncol 2008; 44:910-4. [PMID: 18620891 DOI: 10.1016/j.oraloncology.2008.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing target messenger RNAs (mRNA). They are about 22 nucleotides in length and regulate mRNA translation by base pairing to partially complementary sites, predominantly in the 3' untranslated region (3' UTR) of mRNA. In this review, we discuss miRNA biogenesis and function, together with its possible involvement in oral cancer. Despite its great importance in normal cell development and diseases, a small number of studies have attempted to investigate miRNA in oral cancer. Overexpression of oncogenic miRNA may reduce protein products of tumor-suppressor genes. On the other hand, loss of tumor-suppressor miRNA expression may cause elevated levels of oncogenic protein. One or both of these alterations could represent new targets for cancer diagnosis and treatment in the future. Many researchers have focused on genetic and epigenetic alterations in oral squamous cell carcinoma cells. The emergence of miRNA knowledge, and its potential interactive action with such alterations, therefore creates a new understanding of cell transformation.
Collapse
Affiliation(s)
- Carolina C Gomes
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
2441
|
Abstract
Prostate cancer (CaP) is the most frequently diagnosed malignant tumour and the second leading cause of cancer deaths in American men. One of the most troubling aspects of this disease is that, after androgen ablation therapy, androgen-dependent cancer cells inevitably progress to an androgen-independent status, for which no effective treatment has yet been developed. To date, the mechanisms that underlie the occurrence and progression of CaP remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in human tumourigenesis. Some aberrantly expressed miRNAs have been discovered in CaP cell lines, xenografts and clinical tissues and these CaP-related miRNAs may play critical roles in the pathogenesis of CaP. This review provides an overview of current findings about aberrantly expressed miRNAs in CaP. Although a number of CaP-related miRNAs were discovered, to date, only five are characterized for their functionalities: three as oncogenes and two as tumour suppressors. To understand the mechanisms of miRNA action as oncogenes or tumour suppressors, mRNA targets of miRNAs were characterized. Oncogenic miRNAs down-regulate the expression of apoptosis-related genes, and tumour suppressor miRNAs target the proliferation-related genes. Importantly, there is evidence that CaP-related miRNAs are regulated through androgen signalling and that this regulation may contribute to the development of androgen independence. Due to the oncogenic or tumour-suppressive properties of CaP-related miRNAs, they are highly likely to be of clinical use first as biomarkers but more importantly as therapeutic targets for prostate cancer treatment in the near future.
Collapse
Affiliation(s)
- Xu-Bao Shi
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
2442
|
Abstract
microRNAs are a newly discovered class of short (∼22 nt) naturally occurring single-stranded RNA molecules that regulate the expression of target genes post-transcriptionally. Despite only being discovered 7 years ago, microRNAs have been implicated as key regulatory molecules in nearly every biological process examined so far and abnormal expression of microRNAs have been linked to many forms of disease including cancer where they can function as both tumour-suppressors and oncogenes. So why are microRNAs causing so much excitement? And will this excitement translate into new medical breakthroughs? This review attempts to answer these questions in the wider context of cancer, focusing on the role that microRNAs play in normal lymphoid development and malignancy.
Collapse
Affiliation(s)
- Charles Henderson Lawrie
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
2443
|
Ivan M, Harris AL, Martelli F, Kulshreshtha R. Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 2008; 12:1426-31. [PMID: 18624759 PMCID: PMC3918058 DOI: 10.1111/j.1582-4934.2008.00398.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are short non-coding transcripts involved in a wide variety of cellular processes. Several recent studies have established a link between hypoxia, a well-documented component of the tumour microenvironment, and specific miRs. One member of this class, miR-210, was identified as hypoxia inducible in all the cell types tested, and is overexpressed in most cancer types. Its hypoxic induction is dependent on a functional hypoxia-inducible factor (HIF), thus extending the transcriptional repertoire of the latter beyond ‘classic’ genes. From a clinical standpoint, miR-210 overexpression has been associated with adverse prognosis in breast tumours and been detected in serum of lymphoma patients and could serve as a tool to define hypoxic malignancies. We discuss the role of miR-210 and its emerging targets, as well as possible future directions for clinical applications in oncology and ischaemic disorders.
Collapse
Affiliation(s)
- Mircea Ivan
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.
| | | | | | | |
Collapse
|
2444
|
Pérez-Galán P, Roué G, López-Guerra M, Nguyen M, Villamor N, Montserrat E, Shore GC, Campo E, Colomer D. BCL-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells. Leukemia 2008; 22:1712-20. [PMID: 18596739 DOI: 10.1038/leu.2008.175] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell lymphoid neoplasm with deregulated apoptosis and overexpression of several antiapoptotic BCL-2 proteins. GX15-070/Obatoclax is a small-molecule BH3 mimetic compound that has shown activity against several hematologic malignancies and solid tumors. In the present work, we report that GX15-070 led to the disruption of BCL-2/BIM and MCL-1/BAK complexes in CLL cells, followed by the activation of the mitochondrial apoptotic pathway. CLL cells showed lower sensitivity to GX15-070 than primary mantle cell lymphoma (MCL) ones, in correlation with higher levels of phosphorylated BCL-2 at serine 70 residue (pBCL-2(Ser70)) in CLL cells. Decrease in BCL-2 phosphorylation by extracellular signal-regulated kinase (ERK)1/2 inhibition increased CLL sensitivity to GX15-070, while blocking BCL-2 dephosphorylation using a PP2A antagonist reduced the activity of this BH3 mimetic. GX15-070 activity was increased by cotreatment with the proteasome inhibitor bortezomib. However, as proteasome inhibition led to the accumulation of phosphorylated BCL-2, the degree of interaction between GX15-070 and bortezomib was regulated by basal pBCL-2(Ser70) levels. These results support the role of BCL-2 phosphorylation as a mechanism of resistance to BH3 mimetic compounds, and demonstrate that combination approaches including ERK inhibitors could enhance BH3 mimetics activity both alone or in combination with proteasome inhibitors.
Collapse
Affiliation(s)
- P Pérez-Galán
- Department of Pathology, Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
2445
|
Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112:3807-17. [PMID: 18599795 DOI: 10.1182/blood-2008-05-157131] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bcl-2 family proteins play a critical role in the regulation of apoptosis in chronic lymphocytic leukemia (CLL). However, their association with established prognostic markers is unknown. In this study, we analyzed the expression of Bcl-2, Bax, and Mcl-1 in 185 CLL patients and evaluated their relationship with other prognostic markers, in vitro sensitivity to fludarabine, and clinical outcome. Mcl-1 expression was significantly correlated with stage of disease (P < .001), lymphocyte doubling time (P = .01), V(H) gene mutation status (P < .001), CD38 expression (P < .001), and ZAP-70 expression (P = .003). In addition, Mcl-1 and Mcl-1/Bax ratios showed strong correlations with in vitro resistance to fludarabine (P = .005 and P < .001, respectively). Furthermore, elevated Mcl-1 expression and Mcl-1/Bax ratios were predictive of time to first treatment in the whole cohort (P < .001 and P < .001, respectively) and in stage A patients only (P = .002 and P = .001, respectively). Taken together, our data show that Mcl-1 is a key controller of in vitro drug resistance and is an important regulator of disease progression and outcome in CLL. It therefore represents a promising therapeutic target in this incurable condition. The close correlation between Mcl-1 expression and V(H) gene mutation status, CD38 expression, and ZAP-70 expression offers a biologic explanation for their association with adverse prognosis.
Collapse
|
2446
|
Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008. [PMID: 18596939 DOI: 10.1271/journal.pone.0002557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in cancer development. By cloning and sequencing of a HPV16(+) CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c) which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis.
Collapse
|
2447
|
Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008; 3:e2557. [PMID: 18596939 PMCID: PMC2438475 DOI: 10.1371/journal.pone.0002557] [Citation(s) in RCA: 549] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/13/2008] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in cancer development. By cloning and sequencing of a HPV16(+) CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c) which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis.
Collapse
Affiliation(s)
- Xiaohong Wang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, Nation Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shuang Tang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, Nation Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shu-Yun Le
- Nanobiology Program, Center for Cancer Research, Nation Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Robert Lu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, Nation Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Craig Meyers
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, Nation Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
2448
|
Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 2008; 82:9065-74. [PMID: 18596100 DOI: 10.1128/jvi.00961-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human genome encodes over 500 microRNAs (miRNAs), small RNAs (19 to 26 nucleotides [nt]) that regulate the expressions of diverse cellular genes. Many cellular processes are altered through a variety of mechanisms by human cytomegalovirus (HCMV) infection. We asked whether HCMV infection leads to changes in the expression of cellular miRNAs and whether HCMV-regulated miRNAs are important for HCMV replication. Levels of most miRNAs did not change markedly during infection, but some were positively or negatively regulated. Patterns of miRNA expression were linked to the time course of infection. Some similarly reregulated miRNAs share identical or similar seed sequences, suggesting coordinated regulation of miRNA species that have shared targets. miRNAs miR-100 and miR-101 were chosen for further analyses based on their reproducible changes in expression after infection and on the basis of having predicted targets in the 3' untranslated regions (3'-UTR) of genes encoding components of the mammalian target of rapamycin (mTOR) pathway, which is important during HCMV infection. Reporter genes that contain the 3'-UTR of mTOR (predicted targets for miR-100 and miR-101) or raptor (a component of the mTOR pathway; predicted site for miR-100) were constructed. Mimics of miR-100 and miR-101 inhibited expression from the mTOR construct, while only miR-100 inhibited the raptor construct. Together, miR-100 and miR-101 reduced mTOR protein levels. While the miR-100 and miR-101 mimics individually modestly inhibited production of infectious progeny, much greater inhibition was achieved with a combination of both (33-fold). Our key finding is that HCMV selectively manipulates the expression of some cellular miRNAs to help its own replication.
Collapse
|
2449
|
Müller D, Katinger H, Grillari J. MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol 2008; 26:359-65. [DOI: 10.1016/j.tibtech.2008.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 01/10/2023]
|
2450
|
Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M. Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation. RNA (NEW YORK, N.Y.) 2008; 14:1433-1442. [PMID: 18492795 PMCID: PMC2441992 DOI: 10.1261/rna.810208] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
Maintenance of the intestinal epithelium is based on well-balanced molecular mechanisms that confer the stable and continuous supply of specialized epithelial cell lineages from multipotent progenitors. Lineage commitment decisions in the intestinal epithelium system involve multiple regulatory systems that interplay with each other to establish the cellular identities. Here, we demonstrate that the microRNA system could be involved in intestinal epithelial cell differentiation, and that microRNA-194 (miR-194) is highly induced during this process. To investigate this inducible expression mechanism, we identified the genomic structure of the miR-194-2, -192 gene, one of the inducible class of miR-194 parental genes. Furthermore, we identified its transcriptional regulatory region that contains a consensus-binding motif for hepatocyte nuclear factor-1alpha (HNF-1alpha), which is well known as a transcription factor to regulate gene expression in intestinal epithelial cells. By chromatin immunoprecipitation assay and luciferase reporter analysis, we revealed that pri-miR-194-2 expression is controlled by HNF-1alpha, and its consensus binding region is required for the transcription of pri-miR-194-2 in vivo in an intestinal epithelial cell line, Caco-2. Our observations indicate that microRNA genes could be targets of lineage-specific transcription factors and that microRNAs are regulated by a tissue-specific manner in the intestinal epithelium. Therefore, our work suggests that induced expression of these microRNAs have important roles in intestinal epithelium maturation.
Collapse
Affiliation(s)
- Kimihiro Hino
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|