201
|
Sebastián VP, Salazar GA, Coronado-Arrázola I, Schultz BM, Vallejos OP, Berkowitz L, Álvarez-Lobos MM, Riedel CA, Kalergis AM, Bueno SM. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol 2018; 9:1956. [PMID: 30258436 PMCID: PMC6143658 DOI: 10.3389/fimmu.2018.01956] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Heme Oxygenase 1 (HMOX1) is an enzyme that catalyzes the reaction that degrades the heme group contained in several important proteins, such as hemoglobin, myoglobin, and cytochrome p450. The enzymatic reaction catalyzed by HMOX1 generates Fe2+, biliverdin and CO. It has been shown that HMOX1 activity and the by-product CO can downmodulate the damaging immune response in several models of intestinal inflammation as a result of pharmacological induction of HMOX1 expression and the administration of non-toxic amounts of CO. Inflammatory Bowel Diseases, which includes Crohn's Disease (CD) and Ulcerative Colitis (UC), are one of the most studied ailments associated to HMOX1 effects. However, microbiota imbalances and infections are also important factors influencing the occurrence of acute and chronic intestinal inflammation, where HMOX1 activity may play a major role. As part of this article we discuss the immune modulatory capacity of HMOX1 during IBD, as well during the infections and interactions with the microbiota that contribute to this inflammatory disease.
Collapse
Affiliation(s)
- Valentina P. Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M. Álvarez-Lobos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
202
|
Levocetirizine Pretreatment Mitigates Lipopolysaccharide-Induced Lung Inflammation in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7019759. [PMID: 30186866 PMCID: PMC6110004 DOI: 10.1155/2018/7019759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
This research was conducted to investigate possible protective influences of levocetirizine, a nonsedating H1 antihistamine, against lipopolysaccharide (LPS)-induced lung injury in rats. Male Sprague Dawley rats received either levocetirizine (1 mg/kg/day, orally) or the vehicle of the drug (2 ml/kg/day, orally) for 1 week before a single IP injection of LPS (7.5 mg/kg). A group of normal rats served as control. The experiments were terminated 18 h after the LPS challenge. Serum C-reactive protein levels were determined. Moreover, total cell count, lactate dehydrogenase (LDH) activity, protein levels, and total NOx were evaluated in bronchoalveolar lavage fluid (BALF). Pulmonary edema was evaluated as the wet/dry lung weight ratio. Lung tissue homogenate was assessed for antioxidant/pro-oxidant status. BALF and lung tissue levels of tumor necrosis factor-α (TNF-α) were assessed. Lungs were examined for histological alterations. LPS-mediated lung injury was manifested by pulmonary edema, leukocyte infiltration, oxidative stress, and inflammation. Levocetirizine attenuated lung edema and mitigated the increases in BALF protein levels, LDH activity, and lung leukocyte recruitment in LPS-challenged rats. Additionally, TNF-α protein levels in BALF and lung tissue were diminished by levocetirizine administration. Levocetirizine also exhibited a potent antioxidant activity as indicated by a decrease in lung tissue levels of malondialdehyde and an enhancement of superoxide dismutase activity. Histological examination of lung tissues confirmed the beneficial effect of levocetirizine against LPS-induced histopathological alterations. In conclusion, levocetirizine may offer protection against lung tissue damage and inflammation in LPS-challenged rats.
Collapse
|
203
|
GANODERMA SPECIES EXTRACTS: ANTIOXIDANT ACTIVITY AND CHROMATOGRAPHY. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
204
|
Dkhil MA, Kassab RB, Al-Quraishy S, Abdel-Daim MM, Zrieq R, Abdel Moneim AE. Ziziphus spina-christi (L.) leaf extract alleviates myocardial and renal dysfunction associated with sepsis in mice. Biomed Pharmacother 2018; 102:64-75. [PMID: 29549730 DOI: 10.1016/j.biopha.2018.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, has been used by Egyptians (Bedouin and Nubian) to treat inflammatory symptoms and swellings, pain, and heat since long. We aimed to investigate whether Ziziphus spina-christi leaf extract (ZSCLE) exerted a myocardial and renal protective effect on mice in which sepsis had been induced with cecal ligation and puncture (CLP). Male C57BL/6 mice were divided randomly into six groups (n = 7): sham-operated group, sham-operated mice treated with ZSCLE (300 mg/kg), CLP-induced sepsis group, ZSCLE (100 mg/kg)-treated group, ZSCLE (200 mg/kg)-treated group, and ZSCLE (300 mg/kg)-treated group. Pretreatment with ZSCLE (100, 200, and 300 mg/kg) restored the normal heart rate (HR); decreased the elevated levels of malondialdehyde; the activity of myeloperoxidase, nitric oxide (NO), and inducible NO synthase; and the expression of nuclear factor kappa B (NF-κB), but increased the content of glutathione and antioxidant enzyme activities in mice with sepsis. Moreover, the results of biochemical analyses and qRT-PCR indicated that ZSCLE treatment lowered the level of cytokines, including tumor necrosis factor alpha and interleukin (IL)-1β. Additionally, ZSCLE reduced myocardial and renal apoptosis by inducing the downregulation of caspase-3 and Bax mRNA and upregulation of the expression of Bcl-2. Based on these results, we suggest that ZSCLE has a protective effect against multiple-organ impairment that follows sepsis. This effect may be attributed to the antioxidant, anti-inflammatory, and anti-apoptotic activities of ZSCLE.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| | - Rafat Zrieq
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
205
|
Tekeli İO, Ateşşahin A, Sakin F, Aslan A, Çeribaşı S, Yipel M. Protective effects of conventional and colon-targeted lycopene and linalool on ulcerative colitis induced by acetic acid in rats. Inflammopharmacology 2018; 27:10.1007/s10787-018-0485-x. [PMID: 29736689 DOI: 10.1007/s10787-018-0485-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To compare the potential protective effects of conventional and colon-targeted lycopene (TLC) and linalool (TLN) on acetic acid (AA)-induced ulcerative colitis (UC) in rats. METHODS Conventional and colon-targeted LC (10 mg/kg) and LN (200 mg/kg) were administered in vivo orally for 7 days and sulfasalazine (100 mg/kg) was also used as reference drug. Then, 4% AA was administered intrarectally to induce UC. Subsequently, the colon tissues were taken as samples for biochemical and histopathological analysis. RESULTS Malondialdehyde (MDA), interleukin 1β (IL-1β), IL-6, cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels were decreased (p < 0.05) in the targeted groups compared to the AA group, whereas nuclear factor-erythroid 2-related factor 2 (Nrf-2) level was increased (p < 0.05). Tumor necrosis factor α (TNF-α) level was also decreased (p < 0.05) and catalase activity (CAT) was increased (p < 0.05) in the TLC group compared to the AA group. IL-1β and IL-6 levels were lower in the TLC group compared to the conventional LC and sulfasalazine groups (p < 0.05). COX-2 and NF-κB levels were lower, while the Nrf-2 level was higher in the targeted groups compared to the conventional groups (p < 0.05). Furthermore, COX-2 level was lower and Nrf-2 level was higher in the targeted groups compared to the sulfasalazine group (p < 0.05). CONCLUSION As expected, sulfasalazine was effective on all parameters analyzed, but the colon-targeted pretreatments were more effective from sulfasalazine on some parameters. Therefore, colon-targeted plant-derived therapies might be alternative approaches to provide protection against UC, which deserves to be investigated further.
Collapse
Affiliation(s)
- İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060, Hatay, Turkey.
| | - Ahmet Ateşşahin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazığ, Turkey
| | - Fatih Sakin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060, Hatay, Turkey
| | - Abdullah Aslan
- Department of Biology, Faculty of Science, Fırat University, 23119, Elazığ, Turkey
| | - Songül Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazığ, Turkey
| | - Mustafa Yipel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Namık Kemal University, 59030, Tekirdağ, Turkey
| |
Collapse
|
206
|
Liang D, Yong T, Chen S, Xie Y, Chen D, Zhou X, Li D, Li M, Su L, Zuo D. Hypouricemic Effect of 2,5-Dihydroxyacetophenone, a Computational Screened Bioactive Compound from Ganoderma applanatum, on Hyperuricemic Mice. Int J Mol Sci 2018; 19:ijms19051394. [PMID: 29735945 PMCID: PMC5983617 DOI: 10.3390/ijms19051394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Searching novel hypouricemic agents of high efficacy and safety has attracted a great attention. Previously, we reported the hypouricemic effect of Ganoderma applanatum, but its bioactives, was not referred. Herein, we report the hypouricemic effect of 2,5-dihydroxyacetophenone (DHAP), a compound screened from Ganoderma applanatum computationally. Serum parameters, such as uric acid (SUA), xanthine oxidase (XOD) activity, blood urea nitrogen (BUN), and creatinine were recorded. Real-time reverse transcription PCR (RT-PCR) and Western blot were exploited to assay RNA and protein expressions of organic anion transporter 1 (OAT1), glucose transporter 9 (GLUT9), uric acid transporter 1 (URAT1), and gastrointestinal concentrative nucleoside transporter 2 (CNT2). DHAP at 20, 40, and 80 mg/kg exerted excellent hypouricemic action on hyperuricemic mice, reducing SUA from hyperuricemic control (407 ± 31 μmol/L, p < 0.01) to 180 ± 29, 144 ± 13, and 139 ± 31 μmol/L, respectively. In contrast to the renal toxic allopurinol, DHAP showed some kidney-protective effects. Moreover, its suppression on XOD activity, in vivo and in vitro, suggested that XOD inhibition may be a mechanism for its hypouricemic effect. Given this, its binding mode to XOD was explored by molecular docking and revealed that three hydrogen bonds may play key roles in its binding and orientation. It upregulated OAT1 and downregulated GLUT9, URAT1, and CNT2 too. In summary, its hypouricemic effect may be mediated by regulation of XOD, OAT1, GLUT9, URAT1, and CNT2.
Collapse
Affiliation(s)
- Danling Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Tianqiao Yong
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Shaodan Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Diling Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Xinxin Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Lu Su
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Dan Zuo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
207
|
Aras A, Khalid S, Jabeen S, Farooqi AA, Xu B. Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food Chem Toxicol 2018; 119:206-214. [PMID: 29680270 DOI: 10.1016/j.fct.2018.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
Mushrooms represent a tremendous source of biologically useful and pharmacologically active molecules. Recent breakthroughs in cancer genetics, genomics, proteomics and translational research have helped us to develop a better understanding of the underlying mechanisms which are contributory in cancer development and progression. Different signaling pathways particularly, Wnt, SHH, TGF/SMAD and JAK/STAT have been shown to modulate cancer progression and development. Increasingly it is being realized that genetic/epigenetic mutations and loss of apoptosis also mandate a 'multi-molecular' perspective for the development of therapies to treat cancer. In this review we attempted to provide an overview of the regulation of different signaling pathways by mushrooms and their bioactive compounds. Regulation of Wnt and JAK-STAT pathways by mushrooms is deeply studied but we do not have comprehensive information about regulation of TGF/SMAD, Notch and TRAIL induced signaling pathways because of superficially available data. There are outstanding questions related to modulation of oncogenic and tumor suppressor microRNAs by mushrooms in different cancers. Therefore, detailed mechanistic insights related to targeting of multiple pathways by extracts or bioactive compounds from mushrooms will be helpful in bridging our current knowledge gaps and translation of medicinally precious bioactive molecules to clinically effective therapeutics.
Collapse
Affiliation(s)
- Aliye Aras
- Department of Botany, Faculty of Science, Istanbul University, Istanbul 34460, Turkey
| | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Saima Jabeen
- Department of Zoology, University of Gujrat, Sub-Campus, Rawalpindi, Pakistan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|