201
|
Schwarzenbach H, Pantel K, Kemper B, Beeger C, Otterbach F, Kimmig R, Kasimir-Bauer S. Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res 2010; 11:R71. [PMID: 19772563 PMCID: PMC2790848 DOI: 10.1186/bcr2404] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/24/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022] Open
Abstract
Introduction The origin and clinical relevance of circulating cell-free tumor DNA in the blood of cancer patients is still unclear. Here we investigated whether the detection of this DNA is related to bone marrow (BM) micrometastasis and tumor recurrence in breast cancer patients. Methods BM aspirates of 81 primary breast cancer patients were analyzed for the presence of disseminated tumor cells (DTC) by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. PCR-based fluorescence microsatellite analysis was performed for detection of loss of heterozygosity (LOH) at 6 polymorphic markers using cell-free serum DNA. The data were correlated with established risk factors, and patients were followed-up over 6-10 years. Results LOH was detected in 33.5% of blood samples. The occurrence of LOH at the entire microsatellite marker set correlated with histopathology (P = 0.05) and grading (P = 0.006) of the primary tumor. The genomic region characterized by marker D9S171 was only affected by LOH in patients with increased tumor stages (pT2-4, P < 0.05) and older age (≥ 55 years, P = 0.05). Kaplan-Meier analysis showed that LOH at D3S1255 (P = 0.009) and D9S171 (P = 0.001) were significantly associated with tumor relapse. In BM, DTC were detected in 39.5% of the patients, and this finding correlated with distant metastases (P < 0.05). Patients with DTC-positive BM had higher DNA yields in their blood than patients with DTC-negative BM (P < 0.05). However, no significant correlations were found between the presence of DTC in BM and the detection of marker-specific LOH on blood DNA. Conclusions The detection of LOH on cell-free tumor DNA in blood is unrelated to BM micrometastasis and provides independent information on breast cancer progression.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany.
| | | | | | | | | | | | | |
Collapse
|
202
|
Kuzelová K, Pluskalová M, Brodská B, Otevrelová P, Elknerová K, Grebenová D, Hrkal Z. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin. J Cell Biochem 2010; 109:184-95. [PMID: 19911379 DOI: 10.1002/jcb.22397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).
Collapse
Affiliation(s)
- Katerina Kuzelová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
203
|
Koch U, Krause M, Baumann M. Cancer stem cells at the crossroads of current cancer therapy failures--radiation oncology perspective. Semin Cancer Biol 2010; 20:116-24. [PMID: 20219680 DOI: 10.1016/j.semcancer.2010.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/19/2010] [Indexed: 12/18/2022]
Abstract
Despite continuous improvements in cancer management, locoregional recurrence or metastatic spread still occurs in a high proportion of patients after radiotherapy or combined treatments. One underlying reason might be a low efficacy of current treatments on eradication of cancer stem cells (CSCs). It has been recognised for a long time, that only the small subpopulation of CSCs can cause recurrences and that all CSCs need to be killed for permanent tumour cure. However, only recently novel technologies have allowed to enrich CSCs and to investigate their biology. An emerging experimental and clinical database provides first hints that cell populations accumulated by putative stem cell markers or tumours that highly express such markers may be more radioresistant than their marker-negative counterparts. Other data support a higher tolerance of CSCs to hypoxia and preferential location in specific microenvironmental niches. However, conflicting data, methodological problems of the assays and a generally small database on only few tumour types necessitate further large and well-designed prospective experimental and clinical investigations that specifically address this question to corroborate this hypothesis. If such investigations confirm biological differences between CSCs and non-CSCs, this would imply that novel treatment strategies need to be tested specifically for their effect on CSCs. Another implication is that also biomarkers for prediction of local tumour control after radiotherapy or combined treatments need to reflect the behaviour of CSCs and not of the bulk of all cancer cells. This review discusses the importance of CSCs for treatment failure and challenges occurring from the CSC concept for cancer diagnosis, treatment and prediction of outcome. It is concluded that CSC-based endpoints and biomarkers are eventually expected to considerably improve tumour cure rates in the clinics through individualised tailoring of treatment.
Collapse
Affiliation(s)
- Ulrike Koch
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | |
Collapse
|
204
|
Circulating tumor cells in metastatic colorectal cancer: efficacy and feasibility of different enrichment methods. Cancer Lett 2010; 293:117-23. [PMID: 20167419 DOI: 10.1016/j.canlet.2010.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/28/2009] [Accepted: 01/11/2010] [Indexed: 01/04/2023]
Abstract
Comprehensive in vitro and in vivo studies comparing EpCAM-based methods with other cytometric CTC enrichment technologies in metastatic colorectal cancer (mCRC) patients are lacking. We compare four manual cytometric methods to detect CTCs in vitro and in mCRC patients. The EpCAM-based technology, MACS HEA MicroBeads((R)), showed a significant better tumor cell recovery rate compared to other cytometric methods (p-value<0.0001). CTCs of 38 mCRC patients were enriched with MACS HEA MicroBeads(R). Progression-free survival did significantly differ between mCRC patients without detectable and with >or= 1 CTCs (p=0.007). CTC enrichment with EpCAM coupled antibodies is superior to other cytometric methods and is a feasible method for CTC detection in mCRC patients.
Collapse
|
205
|
Tralhão J, Hoti E, Serôdio M, Laranjeiro P, Paiva A, Abrantes A, Pais M, Botelho M, Castro Sousa F. Perioperative tumor cell dissemination in patients with primary or metastatic colorectal cancer. Eur J Surg Oncol 2010; 36:125-9. [DOI: 10.1016/j.ejso.2009.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/26/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022] Open
|
206
|
Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 2010; 126:589-98. [PMID: 19795462 DOI: 10.1002/ijc.24916] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent genetic analyses of paired samples from primary tumours and disseminated tumour cells have uncovered a bewildering genetic disparity. It was therefore proposed that ectopically residing tumour cells disseminate early and develop independently into metastases parallel to the primary tumour. Alternatively, these cells may represent an irrelevant cell population unable to spawn metastases whereas only cells that disseminated late in primary tumour development (which therefore are similar to the primary tumour) will form manifest metastasis. Here, we review comparative analyses of paired samples from primary tumours and disseminated tumour cells or primary tumours and metastases. The data demonstrate a striking disparity, questioning the use of primary tumours as surrogate for the genetics of systemic cancer. In the era of molecular therapies that build upon genetic defects of tumour cells, these data call for a direct diagnostic pathology of systemic cancer.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
207
|
Singer BB, Scheffrahn I, Kammerer R, Suttorp N, Ergun S, Slevogt H. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells. PLoS One 2010; 5:e8747. [PMID: 20090913 PMCID: PMC2807459 DOI: 10.1371/journal.pone.0008747] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/23/2009] [Indexed: 01/05/2023] Open
Abstract
CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.
Collapse
|
208
|
Riethdorf S, Pantel K. Clinical relevance and current challenges of research on disseminating tumor cells in cancer patients. Breast Cancer Res 2009; 11 Suppl 3:S10. [PMID: 20030861 PMCID: PMC2797690 DOI: 10.1186/bcr2429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | |
Collapse
|
209
|
Winter SC, Stephenson SA, Subramaniam SK, Paleri V, Ha K, Marnane C, Krishnan S, Rees G. Long term survival following the detection of circulating tumour cells in head and neck squamous cell carcinoma. BMC Cancer 2009; 9:424. [PMID: 19961621 PMCID: PMC3087340 DOI: 10.1186/1471-2407-9-424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 12/06/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Techniques for detecting circulating tumor cells in the peripheral blood of patients with head and neck cancers may identify individuals likely to benefit from early systemic treatment. METHODS Reconstruction experiments were used to optimise immunomagnetic enrichment and RT-PCR detection of circulating tumor cells using four markers (ELF3, CK19, EGFR and EphB4). This method was then tested in a pilot study using samples from 16 patients with advanced head and neck carcinomas. RESULTS Seven patients were positive for circulating tumour cells both prior to and after surgery, 4 patients were positive prior to but not after surgery, 3 patients were positive after but not prior to surgery and 2 patients were negative. Two patients tested positive for circulating cells but there was no other evidence of tumor spread. Given this patient cohort had mostly advanced disease, as expected the detection of circulating tumour cells was not associated with significant differences in overall or disease free survival. CONCLUSION For the first time, we show that almost all patients with advanced head and neck cancers have circulating cells at the time of surgery. The clinical application of techniques for detection of spreading disease, such as the immunomagnetic enrichment RT-PCR analysis used in this study, should be explored further.
Collapse
Affiliation(s)
- Stuart C Winter
- Department of Otolaryngology, Head and Neck Surgery, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Haeno H, Michor F. The evolution of tumor metastases during clonal expansion. J Theor Biol 2009; 263:30-44. [PMID: 19917298 DOI: 10.1016/j.jtbi.2009.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 10/02/2009] [Accepted: 11/05/2009] [Indexed: 01/28/2023]
Abstract
Cancer is a leading cause of morbidity and mortality in many countries. Solid tumors generally initiate at one particular site called the primary tumor, but eventually disseminate and form new colonies in other organs. The development of such metastases greatly diminishes the potential for a cure of patients and is thought to represent the final stage of the multi-stage progression of human cancer. The concept of early metastatic dissemination, however, postulates that cancer cell spread might arise early during the development of a tumor. It is important to know whether metastases are present at diagnosis since this determines treatment strategies and outcome. In this paper, we design a stochastic mathematical model of the evolution of tumor metastases in an expanding cancer cell population. We calculate the probability of metastasis at a given time during tumor evolution, the expected number of metastatic sites, and the total number of cancer cells as well as metastasized cells. Furthermore, we investigate the effect of drug administration and tumor resection on these quantities and predict the survival time of cancer patients. The model presented in this paper allows us to determine the probability and number of metastases at diagnosis and to identify the optimum treatment strategy to maximally prolong survival of cancer patients.
Collapse
Affiliation(s)
- Hiroshi Haeno
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
211
|
Vitolo MI, Weiss MB, Szmacinski M, Tahir K, Waldman T, Park BH, Martin SS, Weber DJ, Bachman KE. Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Res 2009; 69:8275-83. [PMID: 19843859 PMCID: PMC2783190 DOI: 10.1158/0008-5472.can-09-1067] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many cancers, including breast cancer, harbor loss-of-function mutations in the catalytic domain of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) or have reduced PTEN expression through loss of heterozygosity and/or epigenetic silencing mechanisms. However, specific phenotypic effects of PTEN inactivation in human cancer cells remain poorly defined without a direct causal connection between the loss of PTEN function and the development or progression of cancer. To evaluate the biological and clinical relevance of reduced or deleted PTEN expression, a novel in vitro model system was generated using human somatic cell knockout technologies. Targeted homologous recombination allowed for a single and double allelic deletion, which resulted in reduced and deleted PTEN expression, respectively. We determined that heterozygous loss of PTEN in the nontumorigenic human mammary epithelial cell line MCF-10A was sufficient for activation of the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase pathways, whereas the homozygous absence of PTEN expression led to a further increased activation of both pathways. The deletion of PTEN was able to confer growth factor-independent proliferation, which was confirmed by the resistance of the PTEN(-/-) MCF-10A cells to small-molecule inhibitors of the epidermal growth factor receptor. However, neither heterozygous nor homozygous loss of PTEN expression was sufficient to promote anchorage-independent growth, but the loss of PTEN did confer apoptotic resistance to cell rounding and matrix detachment. Finally, MCF-10A cells with the reduction or loss of PTEN showed increased susceptibility to the chemotherapeutic drug doxorubicin but not paclitaxel.
Collapse
Affiliation(s)
| | - Michele B. Weiss
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,University of Maryland Graduate Program in Molecular Medicine, Baltimore, MD
| | | | - Khola Tahir
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Todd Waldman
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD
| | - Stuart S. Martin
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD
| | - David J. Weber
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,Department of Biochemistry and Molecular Biology, Baltimore, MD
| | - Kurtis E. Bachman
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,Department of Biochemistry and Molecular Biology, Baltimore, MD
| |
Collapse
|
212
|
Caspase-cleaved cytokeratin 18 fragment (M30) as marker of postoperative residual tumor load in colon cancer patients. Eur J Surg Oncol 2009; 35:1164-8. [DOI: 10.1016/j.ejso.2009.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/31/2009] [Accepted: 02/04/2009] [Indexed: 12/21/2022] Open
|
213
|
|
214
|
Circulating tumor cells in gastrointestinal cancer. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2009; 17:577-82. [PMID: 19812887 DOI: 10.1007/s00534-009-0193-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/01/2009] [Indexed: 12/11/2022]
Abstract
Since the first report in the nineteenth century, there have been numerous reports on the isolation and characterization of circulating tumor cells (CTCs) in peripheral blood in patients with various carcinomas. In general, CTCs have been observed in the peripheral blood of cancer patients at very low concentrations of 10(-7)-10(-8) of normal peripheral blood cells. The characterization is of considerable biomedical interest in order to understand how these cells can travel via the blood stream to anatomically distant sites and form metastatic disease. Recent progress in molecular oncology enables us to detect the CTCs in blood with highly sensitivity and specificity, and several studies have indicated the prognostic value of CTC detection in patients with gastrointestinal cancers. Detection and measurement of CTCs in patients with gastrointestinal cancers such as colorectal, gastric, and pancreatic cancers can be useful as a promising tool for judging tumor stage, predicting the distant metastasis and patient survival, and monitoring the response to cancer therapy. Standard procedures for CTC detection have to be established, and the clinical relevance should be verified in large-scale clinical trials. However, CTC detection is suggested to provide useful information for the tumor staging and anticancer treatments in clinical practices in the near future.
Collapse
|
215
|
Abstract
In recent years the importance of the tumor stroma for the development, promotion and invasion of cancer is becoming increasingly clear. Besides a malignantly transformed cancer cell, tumors also contains many other cell types, including endothelial cells, fibroblasts and cells of the immune system. These cells together with the cancer cells produce the sum extracellular matrix (ECM) of the tumor. The ECM and the non-malignant cells of the tumor are defined as the "tumor stroma". Just as the malignant cell itself can be the source of substances that can be used as biomarkers of cancer, the tumor stroma contains factors that potentially can be used as biomarkers when treating patients with cancer. In this review we will discuss the role of the tumor stroma as a source of new cancer biomarkers. This concept highlights a novel view of cancer and treats them as organized organs. Additionally, this further stresses the importance of including factors related to the tumor stroma into the diagnostic and therapeutic equation of cancer.
Collapse
Affiliation(s)
- Malin Sund
- Division for Matrix Biology CLS 11087, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
216
|
Ross JS, Slodkowska EA. Circulating and disseminated tumor cells in the management of breast cancer. Am J Clin Pathol 2009; 132:237-45. [PMID: 19605818 DOI: 10.1309/ajcpji7deolkcs6f] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the advances in early detection and treatment of cancer, patients continue to die of the disease even when they seek care at an early stage. For patients with breast cancer, it is now possible to detect circulating tumor cells (CTCs) in the bloodstream and disseminated tumor cells (DTCs) in the bone marrow by using immunocytochemical and molecular methods. CTCs and DTCs have been found to share similar genotypic and phenotypic characteristics with so-called breast cancer stem cells, a finding that could potentially explain the eventual relapse of disease in a patient previously considered to have been cured by primary therapy. In some studies, the presence of CTCs or DTCs at the time of diagnosis of breast cancer is an independent adverse prognostic variable. However, before CTC/DTC testing can achieve standard-of-care status, there must be improvement in the sensitivity, precision, and reproducibility of the detection methods.
Collapse
|
217
|
Fortunato L, Mascaro A, Baldi A, Farina M, Cortese G, Ventrone MA, Amini M, Vitelli C. Positive bone marrow biopsy is associated with a decreased disease-free survival in patients with operable breast cancer. Ann Surg Oncol 2009; 16:3010-9. [PMID: 19641970 DOI: 10.1245/s10434-009-0619-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bone marrow (BM) biopsy has been suggested as an independent prognostic factor in patients with breast cancer. METHODS Patients operated for breast cancer from June 2000 to April 2008 were enrolled in this protocol after signing an informed consent. After primary surgery, BM aspirate from the iliac crest was obtained and 5-10 cc of blood collected. Since 2002 a peripheral blood (PB) sample was also obtained. Both carcinoembryonic antigen (CEA) and Mammaglobin-specific nested reverse-transcription polymerase chain reaction (RT-PCR) were used to examine BM and PB samples. Physicians and patients were blinded to results. RESULTS Two hundred seventy-three patients underwent BM and/or PB test. The median age of the patients was 63 years (31-80 years), and the median tumor diameter was 1.5 cm (0.1-6 cm). BM aspirates were unsuccessful in nine patients, and RT-PCR was not technically feasible in 18 women, leaving 246 patients available for analysis of results and follow-up. Among them, 110 patients (45%) had either a BM or a PB test positive for CEA or Mammaglobin (Test+). At median follow-up of 60 months, 31 events (deaths or relapse) occurred (13%). Disease-free survival (DFS) was significantly lower in the Test+ group (BP and/or PB) (P<0.001). This effect was independent of nodal status. At 5 years, event-free survival for Node-/Test- patients was 46/49 (94%) and for Node+/Test+ patients was 21/33 (64%), while patients with only one status positive (Node-/Test+ or Node+/Test-) had an intermediate disease-free survival (35/43, 81%) (P=0.005). In a subgroup analysis, RT-PCR results for BM and Mammaglobin retained statistical significance on DFS (P<0.001), while those for PB and CEA did not. CONCLUSIONS This study confirms that RT-PCR of the BM is an independent prognostic factor for disease-free survival of breast cancer patients, and may improve their staging, allowing better strategies for therapy and follow-up.
Collapse
Affiliation(s)
- Lucio Fortunato
- Department of Surgery, San Giovanni-Addolorata Hospital, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Schwarzenbach H, Alix-Panabières C, Müller I, Letang N, Vendrell JP, Rebillard X, Pantel K. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 2009; 15:1032-8. [PMID: 19188176 DOI: 10.1158/1078-0432.ccr-08-1910] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Circulating cell-free DNA in the blood of cancer patients harbors tumor-specific aberrations. Here, we investigated whether this DNA might also reflect the presence of circulating tumor cells (CTC). EXPERIMENTAL DESIGN To identify the source of cell-free DNA in blood, plasma derived from 81 patients with prostate cancer was examined for CTCs and cell-free DNA. An epithelial immunospot assay was applied for detection of CTCs, and a PCR-based fluorescence microsatellite analysis with a panel of 14 polymorphic markers was used for detection of allelic imbalances (AI). RESULTS The plasma DNA levels significantly correlated with the diagnosis subgroups of localized (stage M0, n = 69) and metastasized prostate cancer (stage M1, n = 12; P = 0.03) and with the tumor stage of these patients (P < 0.005). AI was found on cell-free DNA in plasma from 45.0% and 58.5% of M0 and M1 patients, respectively. Detection of CTCs showed that 71.0% or 92.0% of the M0 and M1 patients harbored 1 to 40 CTCs in their blood, respectively. The occurrence of CTCs correlated with tumor stage (P < 0.03) and increasing Gleason scores (P = 0.04). Notably, significant associations of the number of CTCs with the AI frequencies at the markers D8S137 (P = 0.03), D9S171 (P = 0.04), and D17S855 (P = 0.02) encoding the cytoskeletal protein dematin, the inhibitor of the cyclin-dependent kinase CDKN2/p16 and BRCA1, respectively, were observed. CONCLUSIONS These findings show, for the first time, a relationship between the occurrence of CTCs and circulating tumor-associated DNA in blood, which, therefore, might become a valuable new source for monitoring metastatic progression in cancer patients.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
219
|
Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69:4134-42. [PMID: 19435900 DOI: 10.1158/0008-5472.can-08-4698] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is a leading cause of mortality throughout the world and new treatments are urgently needed. Recent studies suggest that bone marrow-derived mesenchymal stem cells (MSC) home to and incorporate within tumor tissue. We hypothesized that MSCs engineered to produce and deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a transmembrane protein that causes selective apoptosis of tumor cells, would home to and kill cancer cells in a lung metastatic cancer model. Human MSCs were transduced with TRAIL and the IRES-eGFP reporter gene under the control of a tetracycline promoter using a lentiviral vector. Transduced and activated MSCs caused lung (A549), breast (MDAMB231), squamous (H357), and cervical (Hela) cancer cell apoptosis and death in coculture experiments. Subcutaneous xenograft experiments confirmed that directly delivered TRAIL-expressing MSCs were able to significantly reduce tumor growth [0.12 cm(3) (0.04-0.21) versus 0.66 cm(3) (0.21-1.11); P < 0.001]. We then found, using a pulmonary metastasis model, systemically delivered MSCs localized to lung metastases and the controlled local delivery of TRAIL completely cleared the metastatic disease in 38% of mice compared with 0% of controls (P < 0.05). This is the first study to show a significant reduction in metastatic tumor burden with frequent eradication of metastases using inducible TRAIL-expressing MSCs. This has a wide potential therapeutic role, which includes the treatment of both primary tumors and their metastases, possibly as an adjuvant therapy in clearing micrometastatic disease following primary tumor resection.
Collapse
Affiliation(s)
- Michael R Loebinger
- Centre for Respiratory Research, Rayne Institute, and Flow Cytometry Facility, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
220
|
Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev 2009; 35:463-74. [PMID: 19410375 DOI: 10.1016/j.ctrv.2009.03.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/20/2009] [Accepted: 03/30/2009] [Indexed: 01/31/2023]
Abstract
The enumeration of circulating tumor cells has long been regarded as an attractive diagnostic tool, as circulating tumor cells are thought to reflect aggressiveness of the tumor and may assist in therapeutic decisions in patients with solid malignancies. However, implementation of this assay into clinical routine has been cumbersome, as a validated test was not available until recently. Circulating tumor cells are rare events which can be detected specifically only by using a combination of surface and intracellular markers, and only recently a number of technical advances have made their reliable detection possible. Most of these new techniques rely on a combination of an enrichment and a detection step. This review addresses the assays that have been described so far in the literature, including the enrichment and detection steps and the markers used in these assays. We have focused on breast cancer as most clinical studies on CTC detection so far have been done in these patients.
Collapse
Affiliation(s)
- Bianca Mostert
- Department of Medical Oncology, Erasmus Medical Center - Josephine Nefkens Institute and Cancer Genomics Centre, 3015 GE Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
221
|
Marian CO, Shay JW. Prostate tumor-initiating cells: A new target for telomerase inhibition therapy? Biochim Biophys Acta Mol Basis Dis 2009; 1792:289-96. [DOI: 10.1016/j.bbadis.2009.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
222
|
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9:265-73. [PMID: 19262571 DOI: 10.1038/nrc2620] [Citation(s) in RCA: 2547] [Impact Index Per Article: 159.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transitions between epithelial and mesenchymal states have crucial roles in embryonic development. Emerging data suggest a role for these processes in regulating cellular plasticity in normal adult tissues and in tumours, where they can generate multiple, distinct cellular subpopulations contributing to intratumoural heterogeneity. Some of these subpopulations may exhibit more differentiated features, whereas others have characteristics of stem cells. Owing to the importance of these tumour-associated phenotypes in metastasis and cancer-related mortality, targeting the products of such cellular plasticity is an attractive but challenging approach that is likely to lead to improved clinical management of cancer patients.
Collapse
Affiliation(s)
- Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
223
|
Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009; 14:320-68. [PMID: 19346299 DOI: 10.1634/theoncologist.2008-0230] [Citation(s) in RCA: 826] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human epidermal growth factor receptor (HER-2) oncogene encodes a transmembrane tyrosine kinase receptor that has evolved as a major classifier of invasive breast cancer and target of therapy for the disease. The validation of the general prognostic significance of HER-2 gene amplification and protein overexpression in the absence of anti-HER-2 targeted therapy is discussed in a study of 107 published studies involving 39,730 patients, which produced an overall HER-2-positive rate of 22.2% and a mean relative risk for overall survival (OS) of 2.74. The issue of HER-2 status in primary versus metastatic breast cancer is considered along with a section on the features of metastatic HER-2-positive disease. The major marketed slide-based HER-2 testing approaches, immunohistochemistry, fluorescence in situ hybridization, and chromogenic in situ hybridization, are presented and contrasted in detail against the background of the published American Society of Clinical Oncology-College of American Pathologists guidelines for HER-2 testing. Testing issues, such as the impact of chromosome 17 polysomy and local versus central HER-2 testing, are also discussed. Emerging novel HER-2 testing techniques, including mRNA-based testing by real-time polymerase chain reaction and DNA microarray methods, HER-2 receptor dimerization, phosphorylated HER-2 receptors, and HER-2 status in circulating tumor cells, are also considered. A series of biomarkers potentially associated with resistance to trastuzumab is discussed with emphasis on the phosphatase and tensin homologue deleted on chromosome ten/Akt and insulin-like growth factor receptor pathways. The efficacy results for the more recently approved small molecule HER-1/HER-2 kinase inhibitor lapatinib are also presented along with a more limited review of markers of resistance for this agent. Additional topics in this section include combinations of both anti-HER-2 targeted therapies together as well as with novel agents including bevacizumab, everolimus, and tenespimycin. A series of novel HER-2-targeting agents is also presented, including pertuzumab, ertumaxomab, HER-2 vaccines, and recently discovered tyrosine kinase inhibitors. Biomarkers predictive of HER-2 targeted therapy toxicity are included, and the review concludes with a consideration of HER-2 status in the prediction of response to non-HER-2 targeted treatments including hormonal therapy, anthracyclines, and taxanes.
Collapse
Affiliation(s)
- Jeffrey S Ross
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | | | |
Collapse
|
224
|
Abstract
Systemic cancer progression is accounted for in two basic models. The prevailing archetype places the engine of cancer progression within the primary tumour before metastatic dissemination of fully malignant cells. The second posits parallel, independent progression of metastases arising from early disseminated tumour cells. This Perspective draws together data from disease courses, tumour growth rates, autopsy studies, clinical trials and molecular genetic analyses of primary and disseminated tumour cells in support of the parallel progression model. Consideration of this model urges review of current diagnostic and therapeutic routines.
Collapse
Affiliation(s)
- Christoph A Klein
- Division of Oncogenomics, Department of Pathology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
225
|
Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 2008; 17:219-30. [PMID: 19066601 DOI: 10.1038/mt.2008.254] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) are defined by their ability to (i) fully recapitulate the tumor of origin when transplanted into immunodeficient mouse hosts, and (ii) self-renew, demonstrated by their ability to be serially transplanted. These properties suggest that CSCs are required for tumor maintenance and metastasis; thus, it has been predicted that CSC elimination is required for cure. This prediction has profoundly altered paradigms for cancer research, compelling investigators to prospectively isolate CSCs to characterize the molecular pathways regulating their behavior. Many potential strategies for CSC-directed therapy have been proposed, but few studies have rigorously demonstrated their efficacy using in vivo models. Herein, we highlight recent studies that demonstrate the utility of CSC-directed therapies and discuss the implications of the CSC hypothesis to experimental design and therapeutic strategies.
Collapse
|
226
|
Chambers AF, Goss PE. Putative growth characteristics of micrometastatic breast cancer. Breast Cancer Res 2008; 10:114. [PMID: 19090969 PMCID: PMC2656890 DOI: 10.1186/bcr2197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fate of cells that disseminate from a primary breast tumour remains poorly understood. Studies of the kinetics of recurrence in breast cancer patients are raising important questions about the biology of the metastatic process. Where do tumour cells reside once they leave the primary tumour, and what factors influence their dormancy and recurrent growth? Clinical data analyses are leading to hypotheses about the biology of metastasis, dormancy and recurrence. A combined clinical and experimental approach to testing these hypotheses will help to clarify this important issue in breast cancer biology and patient care.
Collapse
|
227
|
Tapon N, Ziebold U. Invasion and metastasis: stem cells, screens and survival. Conference on Invasion and Metastasis. EMBO Rep 2008; 9:1078-83. [PMID: 18846106 DOI: 10.1038/embor.2008.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/05/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nicolas Tapon
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|