201
|
Reilly TH, Schmitt ME. The yeast, Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family. Mol Biol Rep 1996; 22:87-93. [PMID: 8901493 DOI: 10.1007/bf00988711] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5'-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5'-phosphate and 3'-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- T H Reilly
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center at Syracuse, NY 13210, USA
| | | |
Collapse
|
202
|
Abstract
RNase MRP is a ribonucleoprotein enzyme with a structure similar to RNase P. It is required for normal processing of precursor rRNA, cleaving it in the Internal Transcribed Spacer 1.
Collapse
Affiliation(s)
- L Lindahl
- Department of Biological Sciences, UMBC-University of Maryland Baltimore County 21228, USA
| | | |
Collapse
|
203
|
Abstract
Post-transcriptional processing of precursor-ribosomal RNA comprises a complex pathway of endonucleolytic cleavages, exonucleolytic digestion and covalent modifications. The general order of the various processing steps is well conserved in eukaryotic cells, but the underlying mechanisms are largely unknown. Recent analysis of pre-rRNA processing, mainly in the yeast Saccharomyces cerevisiae, has significantly improved our understanding of this important cellular activity. Here we will review the data that have led to our current picture of yeast pre-rRNA processing.
Collapse
Affiliation(s)
- J Venema
- European Molecular Biology Laboratory (EMBL), Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
204
|
Bashkirov VI, Solinger JA, Heyer WD. Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae. Chromosoma 1995; 104:215-22. [PMID: 8529461 DOI: 10.1007/bf00352186] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Sep1 (also known as Kem1, Xrn1, Rar5, DST2/Stpbeta) protein of Saccharomyces cerevisiae is an Mr 175,000 multifunctional exonuclease with suspected roles in RNA turnover and in the microtubular cytoskeleton as well as in DNA recombination and DNA replication. The most striking phenotype of SEP1 null mutations is quantitative arrest during meiotic prophase at the pachytene stage. We have constructed a set of N- and C-terminal as well as internal deletions of the large SEP1 gene. Analysis of these deletion mutations on plasmids in a host carrying a null allele (sep1 ) revealed that at least 270 amino acids from the C-terminus of the wild-type protein were dispensable for complementing the slow growth and benomyl hypersensitivity of a null mutant. In contrast, any deletion at the N-terminus abrogated complementing activity for these phenotypes. The sequences essential for function correspond remarkably well with the regions of Sep1 that are homologous to its Schizosaccharomyces pombe counterpart Exo2. In addition, these experiments showed that, despite the high intracellular levels of Sep1, over-expression of this protein above these levels is detrimental to the cell. We discuss the potential cellular roles of the Sep1 protein as a microtubule-nucleic acid interface protein linking its suspected function in the microtubular cytoskeleton with its role as a nucleic acid binding protein.
Collapse
Affiliation(s)
- V I Bashkirov
- Institute of General Microbiology, University of Bern, Baltzer-Strasse 4, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
205
|
Lafontaine D, Tollervey D. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem Cell Biol 1995; 73:803-12. [PMID: 8721996 DOI: 10.1139/o95-088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major intermediates in the pathway of pre-rRNA processing in yeast and other eukaryotes were originally identified by biochemical analyses. However, as a result of the analysis of the effects of mutations in trans-acting factors, the yeast pre-rRNA processing pathway is now characterized in far more detail than that of other eukaryotes. These analyses have led to the identification of processing sites and intermediates that were either too close in size or too short lived to detected by biochemical analyses alone. In addition, it was generally unclear whether pre-rRNA processing steps were endonucleolytic or exonucleolytic; analyses of trans-acting factors is now revealing a complex mixture of endonucleolytic and exonucleolytic processing steps. Many of the small nucleolar RNAs (snoRNAs) are excised from larger precursors. Analyses of trans-acting factors are also revealing details of pre-snoRNA processing in yeast. Interestingly, factors involved in pre-snoRNA processing turn out to be components that also function in pre-rRNA processing, suggesting a potential mechanism for the coregulation of rRNA and snoRNA synthesis. In general, very little is known about the regulation of pre-rRNA processing steps. The best candidate for a system regulating specific pre-rRNA processing reactions has recently been revealed by the analysis of a yeast pre-RNA methylase. Here we will review recent data on the trans-acting factors involved in yeast ribosome synthesis and discuss how these analyses have contributed to our current view of this complex process.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Postfach 10 22 09, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
206
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
207
|
van Nues RW, Venema J, Rientjes JM, Dirks-Mulder A, Raué HA. Processing of eukaryotic pre-rRNA: the role of the transcribed spacers. Biochem Cell Biol 1995; 73:789-801. [PMID: 8721995 DOI: 10.1139/o95-087] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 17-18S, 5.8S, and 25-28S rRNA species of eukaryotic cells are produced by a series of nucleolytic reactions that liberate the mature rRNAs from the large primary precursor transcript synthesized by RNA polymerase 1. Whereas the order of the cleavage reactions has long been established, until recently little information was available on their molecular details, such as the nature of the proteins, including the nucleolytic enzymes, involved and the signals directing the processing machinery to the correct sites. This situation is now rapidly changing, in particular where yeast is concerned. The use of recently developed systems for in vivo mutational analysis of yeast rDNA has considerably enhanced our knowledge of cis-acting structural features within the pre-rRNA, in particular the transcribed spacer sequences, that are critical for correct and efficient removal of these spacers. The same systems also allow a link to be forged between trans-acting processing factors and these cis-acting elements. In this paper, we will focus predominantly on the nature and role of the cis-acting processing elements as identified in the transcribed spacer regions of Saccharomyces cerevisiae pre-rRNA.
Collapse
Affiliation(s)
- R W van Nues
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
208
|
Lafontaine D, Vandenhaute J, Tollervey D. The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev 1995; 9:2470-81. [PMID: 7590228 DOI: 10.1101/gad.9.20.2470] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The m6(2)A1779m6(2)A1780 dimethylation at the 3' end of the small subunit rRNA has been conserved in evolution from bacteria to eukaryotes. The yeast 18S rRNA dimethylase gene DIM1 was cloned previously by complementation in Escherichia coli and shown to be essential for viability in yeast. A conditional GAL10::dim1 strain was constructed to allow the depletion of Dim1p from the cell. During depletion, dimethylation of the pre-rRNA is progressively inhibited and pre-rRNA processing at cleavage sites A1 and A2 is concomitantly lost. In consequence, the mature 18S rRNA and its 20S precursor drastically underaccumulate. This has the effect of preventing the synthesis of nonmethylated rRNA. To test whether the processing defect is a consequence of the absence of the dimethylated nucleotides or of the Dim1p dimethylase itself, a cis-acting mutation was created in which both dimethylated adenosines are replaced by guanosine residues. Methylation cannot occur on this mutant pre-rRNA, but no clear pre-rRNA processing defect is seen. Moreover, methylation of the wild-type pre-rRNA predominantly occurs after cleavage at sites A1 and A2. This shows that formation of the m6(2)A1779m6(2)A1780 dimethylation is not required for pre-rRNA processing. We propose that the binding of Dim1p to the pre-ribosomal particle is monitored to ensure that only dimethylated pre-rRNA molecules are processed to 18S rRNA.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | |
Collapse
|
209
|
Liang WQ, Fournier MJ. U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev 1995; 9:2433-43. [PMID: 7557394 DOI: 10.1101/gad.9.19.2433] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
U14 is a conserved small nucleolar RNA (snoRNA) required for processing of yeast 18S rRNA. The presence of two long sequences (13 and 14 nucleotides) with strong complementarity to 18S rRNA suggests that U14 base-pairs with pre-rRNA. Evidence of direct binding was developed by showing that mutations in these U14 elements mimic U14 depletion and that function can be rescued by a compensatory sequence change in 18S RNA. The U14 elements are functionally interdependent, indicating that both participate in binding. Folding models predict that binding might occur through both rRNA elements simultaneously. Potential roles of U14 in rRNA folding, maturation, and ribosome assembly are discussed. U14 is one of several snoRNAs with long complementarities to rRNA and the first snoRNA in this class shown to interact directly with rRNA.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Base Composition
- Cell Division
- DNA Primers
- Gene Expression Regulation, Fungal/genetics
- Hygromycin B/pharmacology
- Mutagenesis
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- W Q Liang
- Department of Biochemistry and Molecular Biology, Lederle Graduate Research Center, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
210
|
Stevens A, Poole TL. 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5'-exonuclease-1. J Biol Chem 1995; 270:16063-9. [PMID: 7608167 DOI: 10.1074/jbc.270.27.16063] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
5'-Exonuclease-2 has been purified 17,000-fold from whole cell extracts of Saccharomyces cerevisiae. A 116-kDa polypeptide parallels the enzyme activity when the purified protein is examined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Amino-terminal sequencing of the 116-kDa protein shows that the sequence agrees with that encoded by the HKE1 gene, previously reported to encode exonuclease-2. A 45-kDa polypeptide also parallels the enzyme activity upon purification, and Sephacryl S-200 molecular sieve chromatography of the purified enzyme shows a parallel elution of most of the 116- and 45-kDa polypeptides, suggesting a close association of the two. Enzyme instability has precluded a more detailed analysis of their associative properties. The enzyme hydrolyzes RNA substrates to 5'-mononucleotides in a processive manner. Measurements of its substrate specificity and mode of action are compared with 5'-exonuclease-1. Restriction cut single-stranded T7 DNA is hydrolyzed at approximately 5-7% of the rate of 18 S rRNA of yeast by both enzymes. That 5'-exonuclease-2 hydrolyzes in a processive manner and lacks endonuclease activity is shown by the finding that [5'-32P]GMP is the only product of its hydrolysis of [alpha-32P]GTP-labeled synthetic RNAs. That 5'-exonuclease-2 hydrolyzes by a 5'-->3' mode is shown by: 1) its poor hydrolysis of both 5'-capped and triphosphate-ended RNA substrates; 2) the products of its hydrolysis of [5'-32P,3H](pA)4; and 3) the accumulation of 3'-stall fragments when a strong artificial RNA secondary structure is present in synthetic RNAs. 5'-Exonuclease-1 hydrolyzes the synthetic RNAs and (pA)4 in an identical manner.
Collapse
Affiliation(s)
- A Stevens
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8080, USA
| | | |
Collapse
|
211
|
Abou Elela S, Good L, Nazar RN. An efficiently expressed 5.8S rRNA 'tag' for in vivo studies of yeast rRNA biosynthesis and function. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1262:164-7. [PMID: 7599193 DOI: 10.1016/0167-4781(95)00074-q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inefficient expression or detrimental markers have limited mutational analyses of eukaryotic 5.8S rRNA and the associated rDNA transcribed spacers. We have found a neutral, 4-base insertion mutation that effectively tags the 5.8S rRNA for improved studies of rRNA expression, processing and function. Cells expressing the tagged rDNA plasmid contain 50-60% mutant 5.8S rRNA, but show a normal growth rate and polysomal profile and a constant distribution of tagged 5.8S rRNA. The high level of expression also demonstrates that plasmid-associated rDNA is preferentially transcribed over chromosomal copies.
Collapse
Affiliation(s)
- S Abou Elela
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
212
|
Abstract
Recent evidence corroborates the idea that the structure of the nucleolus need not be strictly maintained for proper function, suggesting that the organelle is composed of supramolecular assemblies formed during rRNA synthesis. More controversial is whether the nucleolus exists in the absence of rRNA synthesis and whether it interacts with the nuclear scaffold. The simultaneous and highly integrative nature of building a ribosome is reflected in the numerous observations showing that proteins involved in all aspects of ribosomal biogenesis affect pre-rRNA processing. The identification of several new nucleolar proteins without an obvious role in pre-rRNA metabolism may provide the field with long sought after assembly factors that might be key players in eukaryotic ribosome biogenesis.
Collapse
Affiliation(s)
- T Mélèse
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
213
|
Venema J, Dirks-Mulder A, Faber AW, Raué HA. Development and application of an in vivo system to study yeast ribosomal RNA biogenesis and function. Yeast 1995; 11:145-56. [PMID: 7732724 DOI: 10.1002/yea.320110206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have developed a system for mutational analysis of Saccharomyces cerevisiae ribosomal RNA in vivo in which yeast cells can be made completely dependent on mutant rRNA and ribosomes by a simple switch in carbon source. The system is based on a yeast strain defective in RNA polymerase I (Pol I) transcription [Nogi et al. (1991) Proc. Natl. Acad. Sci. USA 88, 3962-3966]. This normally inviable strain was rescued by integration of multiple copies of the complete 37S pre-rRNA operon under control of the inducible, Pol II-transcribed GAL7 promoter into the rDNA repeat on chromosome XII. The resulting YJV100 strain can only grow on medium containing galactose as the carbon source. A second, episomal vector was constructed in which the rDNA unit was placed under control of the constitutive PGK1 promoter. YJV100 cells transformed with this vector are now also able to grow on glucose-based medium making the cells completely dependent on plasmid-encoded rRNA. We show that the Pol II-transcribed pre-rRNA is processed and assembled similarly to authentic Pol I-synthesised pre-rRNA, making this 'in vivo Pol II system' suitable for the detailed analysis of rRNA mutations, even highly deleterious ones, affecting ribosome biogenesis or function. A clear demonstration of this is our finding that an insertion into variable region V8 in 17S rRNA, previously judged to be neutral with respect to processing of 17S rRNA, its assembly into 40S subunits and the polysomal distribution of these subunits [Musters et al. (1989), Mol. Cell. Biol. 9, 551-559], is in fact a lethal mutation.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry & Molecular Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
214
|
Schmitt ME, Clayton DA. Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. Genes Dev 1994; 8:2617-28. [PMID: 7958920 DOI: 10.1101/gad.8.21.2617] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to cleave mitochondrial primer RNA sequences from a variety of sources. Most of the RNase MRP activity is found in the nucleus where it plays a role in the processing of 5.8S rRNA. A temperature-conditional point mutation in the yeast RNA component of the enzyme has been identified. This mutation results in a loss of normal rRNA processing at the nonpermissive temperature while cellular levels of the RNA component of RNase MRP remain stable. High-copy suppressor analysis of this point mutation was employed to identify interacting proteins. A unique suppressor, termed SNM1 (suppressor of nuclear mitochondrial endoribonuclease 1), was identified repeatedly. The SNM1 gene was localized to the right arm of chromosome IV, directly adjacent to the SNF1 gene, and it contains an open reading frame encoding a protein of 198 amino acids. The protein contains a leucine zipper motif, a zinc-cluster motif, and a serine/lysine-rich tail. The gene was found to be essential for viability in a yeast cell, consistent with it being a protein component of the RNase MRP ribonucleoprotein complex. Recombinant SNM1 protein binds RNA in both gel retardation and Northwestern assays. Antibodies raised against bacterially expressed proteins identified four separate species in yeast whole cell extracts. Antibodies directed against the SNM1 protein immunoprecipitated RNase MRP RNA from whole-cell extracts without precipitating the structurally and functionally related RNase P RNA. We propose that the SNM1 protein is an essential and specific component of the RNase MRP ribonucleoprotein complex, the first unique protein of this complex to be identified.
Collapse
Affiliation(s)
- M E Schmitt
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
215
|
Lygerou Z, Mitchell P, Petfalski E, Séraphin B, Tollervey D. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 1994; 8:1423-33. [PMID: 7926742 DOI: 10.1101/gad.8.12.1423] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two forms of the yeast 5.8S rRNA are generated from a large precursor by distinct processing pathways. Cleavage at site A3 is required for synthesis of the major, short form, designated 5.8S(S), but not for synthesis of the long form, 5.8S(L). To identify components required for A3 cleavage, a bank of temperature-sensitive lethal mutants was screened for those with a reduced ratio of 5.8S(S):5.8S(L). The pop1-1 mutation (for processing of precursor RNAs) shows this phenotype and also inhibits A3 cleavage. The pre-rRNA processing defect of pop1-1 strains is similar to that reported for mutations in the RNA component of RNase MRP; we show that a mutation in the RNase MRP RNA also inhibits cleavage at site A3. This is the first site shown to require RNase MRP for cleavage in vivo. The pop1-1 mutation also leads to a block in the processing of pre-tRNA that is identical to that reported for mutations in the RNA component of RNase P. The RNA components of both RNase MRP and RNase P are underaccumulated in pop1-1 strains at the nonpermissive temperature, and immunoprecipitation demonstrates that POP1p is a component of both ribonucleoproteins. The POP1 gene encodes a protein with a predicted molecular mass of 100.5 kD and is essential for viability. POP1p is the first protein component of the nuclear RNase P or RNase MRP for which the gene has been cloned.
Collapse
Affiliation(s)
- Z Lygerou
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | | | | |
Collapse
|
216
|
Eichler DC, Craig N. Processing of eukaryotic ribosomal RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:197-239. [PMID: 7863007 DOI: 10.1016/s0079-6603(08)60051-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In summary, it can be argued that the understanding of eukaryotic rRNA processing is no less important than the understanding of mRNA maturation, since the capacity of a cell to carry out protein synthesis is controlled, in part, by the abundance of ribosomes. Processing of pre-rRNA is highly regulated, involving many cellular components acting either alone or as part of a complex. Some of these components are directly involved in the modification and cleavage of the precursor rRNA, while others direct the packaging of the rRNA into ribosome subunits. As is the case for pre-mRNA processing, snoRNPs are clearly involved in eukaryotic rRNA processing, and have been proposed to assemble with other proteins into at least one complex called a "processosome" (17), which carries out the ordered processing of the pre-rRNA and its assembly into ribosomes. The formation of a processing complex clearly makes possible the regulation required to coordinate the abundance of ribosomes with the physiological and developmental changes of a cell. It may be that eukaryotic rRNA processing is even more complex than pre-mRNA maturation, since pre-rRNA undergoes extensive nucleotide modification and is assembled into a complex structure called the ribosome. Undoubtedly, features of the eukaryotic rRNA-processing pathway have been conserved evolutionarily, and the genetic approach available in yeast research (6) should provide considerable knowledge that will be useful for other investigators working with higher eukaryotic systems. Interestingly, it was originally hoped that the extensive work and understanding of bacterial ribosome formation would provide a useful paradigm for the process in eukaryotes. However, although general features of ribosome structure and function are highly conserved between bacterial and eukaryotic systems, the basic strategy in ribosome biogenesis seems to be, for the most part, distinctly different. Thus, the detailed molecular mechanisms for rRNA processing in each kingdom will have to be independently deciphered in order to elucidate the features and regulation of this important process for cell survival.
Collapse
Affiliation(s)
- D C Eichler
- Department of Biochemistry & Molecular Biology, University of South Florida College of Medicine, Tampa 33612
| | | |
Collapse
|