201
|
Kim MJ, Kim CW, Lim YJ, Heo SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A 2006; 79:1023-32. [PMID: 17034031 DOI: 10.1002/jbm.a.31040] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to define the surface properties of prepared titanium (Ti) disks, which served as a model system, and to contrast the biologic response of MG63 cells exposed to Ti disks with different levels of surface roughness. The surface properties interact with each other, resulting in a change of other surface qualities in addition to roughness due to the surface roughening procedure. The machined Ti disks were roughened by sandblasting and electric glow discharging. The surface properties of the Ti specimens were inspected through a comprehensive surface analysis. MG63 cell behaviors were compared along with cell number, alkaline phosphatase (ALP) activity, Runx2 gene expression, and type I collagen production. Statistics were evaluated, using analysis of variance (ANOVA). The sandblasted Ti disks demonstrated well-controlled surface roughness features and meaningful average roughness ranges, including the surface roughness of the "modern" microrough implant, used clinically. With increasing Ti surface roughness, the cell number decreased, while the ALP activity, type I collagen production, and Runx2 gene expression increased significantly. The rougher the Ti surface was, the sooner the Runx2 gene was expressed. Based on these results, we suggest that the microrough Ti surfaces of the 1-3 mum range may contribute effectively to osteogenic differentiation and proliferation in MG63 cells.
Collapse
Affiliation(s)
- Myung-Joo Kim
- Department of Prosthodontics, Graduate School, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
202
|
Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 2006; 313:22-37. [PMID: 17081517 PMCID: PMC1780174 DOI: 10.1016/j.yexcr.2006.09.013] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/08/2023]
Abstract
The intracellular signaling events controlling human mesenchymal stem cells (hMSC) differentiation into osteoblasts are not entirely understood. We recently demonstrated that contact with extracellular matrix (ECM) proteins is sufficient to induce osteogenic differentiation of hMSC through an ERK-dependent pathway. We hypothesized that FAK signaling pathways provide a link between activation of ERK1/2 by ECM, and stimulate subsequent phosphorylation of the Runx2/Cbfa-1 transcription factor that controls osteogenic gene expression. We plated hMSC on purified collagen I (COLL-I) and vitronectin (VN) in the presence or absence of FAK-specific siRNA, and assayed for phosphorylation of Runx2/Cbfa-1 as well as expression of established osteogenic differentiation markers (bone sialoprotein-2, osteocalcin, alkaline phosphatase, calcium deposition, and spectroscopically determined mineral:matrix ratio). We found that siRNA treatment reduced FAK mRNA levels by >40% and decreased ECM-mediated phosphorylation of FAK Y397 and ERK1/2. Serine phosphorylation of Runx2/Cbfa-1 was significantly reduced after 8 days in treated cells. Finally, FAK inhibition blocked osterix transcriptional activity and the osteogenic differentiation of hMSC, as assessed by lowered expression of osteogenic genes (RT-PCR), decreased alkaline phosphatase activity, greatly reduced calcium deposition, and a lower mineral:matrix ratio after 28 days in culture. These results suggest that FAK signaling plays an important role in regulating ECM-induced osteogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Roman M. Salasznyk
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
| | - Robert F. Klees
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
| | - William A. Williams
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
| | - Adele Boskey
- Hospital for Special Surgery, New York, NY 10021
| | - George E. Plopper
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
- Corresponding Author: George E. Plopper, Ph.D., Associate Professor, Department of Biology, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180-3596, (518) 276-8288 phone, (518) 276-2162 fax, , http://www.rpi.edu/~ploppg
| |
Collapse
|
203
|
Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition. Blood 2006; 108:3992-6. [PMID: 16917004 DOI: 10.1182/blood-2006-05-026112] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by a high capacity to induce osteolytic bone lesions. Bone destruction in MM results from increased osteoclast formation and activity that occur in close proximity to myeloma cells. However, histomorphometric studies have demonstrated that MM patients with osteolytic bone lesions have lower numbers of osteoblasts and decreased bone formation. This impaired bone formation plays a critical role in the bone-destructive process. Recently, the biologic mechanisms involved in the osteoblast inhibition induced by MM cells have begun to be elucidated. In this article, the pathophysiology underlying osteoblast inhibition in MM is reviewed.
Collapse
Affiliation(s)
- Nicola Giuliani
- Cattedra e Unità Operativa (UO) di Ematologia-Centro Trapianti Midollo Osseo (CTMO), Università Degli Studi di Parma, Italy.
| | | | | |
Collapse
|
204
|
Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. J Transl Med 2006; 86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53 into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Vladimir V Ternovoi
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
205
|
Bodine PVN, Billiard J, Moran RA, Ponce-de-Leon H, McLarney S, Mangine A, Scrimo MJ, Bhat RA, Stauffer B, Green J, Stein GS, Lian JB, Komm BS. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem 2006; 96:1212-30. [PMID: 16149051 DOI: 10.1002/jcb.20599] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these. Transient transfection of HOBs with sFRP-1 suppressed canonical Wnt signaling by 70% confirming its antagonistic function in these cells. Basal sFRP-1 mRNA levels increased 24-fold during HOB differentiation from pre-osteoblasts to pre-osteocytes, and then declined in mature osteocytes. This expression pattern correlated with levels of cellular viability such that the pre-osteocytes, which had the highest levels of sFRP-1 mRNA, also had the highest rate of cell death. Basal sFRP-1 mRNA levels also increased 29-fold when primary human mesenchymal stem cells were differentiated to osteoblasts supporting the developmental regulation of the gene. Expression of sFRP-1 mRNA was induced 38-fold following prostaglandin E2 (PGE2) treatment of pre-osteoblasts and mature osteoblasts that had low basal message levels. In contrast, sFRP-1 expression was down-regulated by as much as 80% following transforming growth factor (TGF)-beta1 treatment of pre-osteocytes that had high basal mRNA levels. Consistent with this, treatment of pre-osteoblasts and mature osteoblasts with PGE(2) increased apoptosis threefold, while treatment of pre-osteocytes with TGF-beta1 decreased cell death by 50%. Likewise, over-expression of sFRP-1 in HOBs accelerated the rate of cell death threefold. These results establish sFRP-1 as an important negative regulator of human osteoblast and osteocyte survival.
Collapse
Affiliation(s)
- Peter V N Bodine
- Women's Health Research Institute, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Nadiminty N, Lou W, Lee SO, Mehraein-Ghomi F, Kirk JS, Conroy JM, Zhang H, Gao AC. Prostate-specific antigen modulates genes involved in bone remodeling and induces osteoblast differentiation of human osteosarcoma cell line SaOS-2. Clin Cancer Res 2006; 12:1420-30. [PMID: 16533764 DOI: 10.1158/1078-0432.ccr-05-1849] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The high prevalence of osteoblastic bone metastases in prostate cancer involves the production of osteoblast-stimulating factors by prostate cancer cells. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serologic marker for prostate cancer. In this study, we examined the role of PSA in the induction of osteoblast differentiation. EXPERIMENTAL DESIGN Human cDNA containing a coding region for PSA was transfected into human osteosarcoma SaOS-2 cells. SaOS-2 cells were also treated with exogenously added PSA. We evaluated changes in global gene expression using cDNA arrays and Northern blot analysis resulting from expression of PSA in human osteosarcoma SaOS-2 cells. RESULTS SaOS-2 cells expressing PSA had markedly up-regulated expression of genes associated with osteoblast differentiation including runx-2 and osteocalcin compared with the controls. Consistent with these results, the stable clones expressing PSA showed increased mineralization and increased activity of alkaline phosphatase in vitro compared with controls, suggesting that these cells undergo osteoblast differentiation. We also found that osteoprotegerin expression was down-regulated and that the receptor activator of NF-kappaB ligand expression was up-regulated in cells expressing PSA compared with controls. CONCLUSIONS Modulation of the expression of osteogenic genes and alteration of the balance between osteoprotegerin-receptor activator of NF-kappaB ligand by PSA suggests that PSA produced by metastatic prostate cancer cells may participate in bone remodeling in favor of the development of osteoblastic metastases in the heterogeneous mixture of osteolytic and osteoblastic lesions. These findings provide a molecular basis for understanding the high prevalence of osteoblastic bone metastases in prostate cancer.
Collapse
|
207
|
Dong YF, Soung DY, Schwarz EM, O'Keefe RJ, Drissi H. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 2006; 208:77-86. [PMID: 16575901 DOI: 10.1002/jcp.20656] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the molecular mechanisms underlying canonical Wnt-mediated regulation of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent avian sarcoma (RCAS) viral over-expression of Wnt8c and Wnt9a, upregulated type X collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen (col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP-2)-induced expression of Runx2 and col10a1 while Wnt8c and Wnt9a inhibited TGF-beta-induced expression of Sox9 and col2a1. Over-expression of beta-catenin mimics the effect of Wnt8c and Wnt9a by upregulating Runx2, col10a1, and alkaline phosphatase (AP) mRNA levels while it inhibits col2a1 transcription. Western blot analysis shows that Wnt8c and beta-catenin also induces Runx2 protein levels in chondrocytes. Thus, our results indicate that activation of the canonical beta-catenin Wnt signaling pathway induces chondrocyte hypertrophy and maturation. We further investigated the effects of beta-catenin-TCF/Lef on Runx2 promoter. Co-transfection of lymphoid enhancer factor (Lef1) and beta-catenin in chicken upper sternal chondrocytes together with deletion constructs of the Runx2 promoter shows that the proximal region spanning the first 128 base pairs of this promoter is responsible for the Wnt-mediated induction of Runx2. Mutation of the TCF/Lef binding site in the -128 fragment of the Runx2 promoter resulted in loss of its responsiveness to beta-catenin. Additionally, gel-shift assay analyses determined the DNA/protein interaction of the TCF/Lef binding sites on the Runx2 promoter. Finally, our site-directed mutagenesis data demonstrated that the Runx2 site on type X collagen promoter is required for canonical Wnt induction of col10a1. Altogether we demonstrate that Wnt/beta-catenin signaling is regulated by TGF-beta and BMP-2 in chick upper sternal chondrocytes, and mediates chondrocyte hypertrophy at least partly through activation of Runx2 which in turn may induce col10a1 expression.
Collapse
Affiliation(s)
- Yu-Feng Dong
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
208
|
Kumamoto H, Ooya K. Expression of bone morphogenetic proteins and their associated molecules in ameloblastomas and adenomatoid odontogenic tumors. Oral Dis 2006; 12:163-70. [PMID: 16476038 DOI: 10.1111/j.1601-0825.2005.01177.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To further clarify the roles of regulators of embryonic development, bone morphogenetic protein (BMPs) and their associated molecules, in oncogenesis and cytodifferentiation of odontogenic tumors, the expression of these regulator molecules were analyzed in epithelial odontogenic tumors as well as in tooth germs. MATERIALS AND METHODS Tooth germs, ameloblastomas, adenomatoid odontogenic tumors, and malignant ameloblastomas were examined by RT-PCR and immunohistochemistry for detection of BMP-2, -4, -7, BMP receptors I and II (BMPR-I, BMPR-II), core-binding factor alpha1 (CBFA1), and osterix. RESULTS mRNA expression of BMPs, BMPRs, CBFA1, and osterix was detected in all odontogenic tissues. Immunohistochemical reactivity for BMPs, BMPRs, and CBFA1 was detected in both epithelial and mesenchymal cells of tooth germs and epithelial odontogenic tumors. BMPs and BMPRs were evidently expressed in odontogenic epithelial cells in tooth germs and epithelial odontogenic tumors. Acanthomatous ameloblastomas showed increased BMP-7 reactivity in keratinizing cells. Nuclear CBFA1 expression was detected scatteredly in odontogenic epithelial cells in normal and neoplastic odontogenic tissues, as well as in some mesenchymal cells in tooth germs and in some stromal cells in epithelial odontogenic tumors. Ameloblastic carcinomas showed low reactivity for BMPs, BMPRs, and CBFA1. CONCLUSION BMPs and their associated molecules might play a role in cytodifferentiation of normal and neoplastic odontogenic epithelium via epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- H Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
209
|
Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem 2006; 281:7118-28. [PMID: 16407259 DOI: 10.1074/jbc.m508162200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RUNX2 is a member of the runt family of DNA-binding transcription factors. RUNX2 mediates endothelial cell migration and invasion during tumor angiogenesis and is expressed in metastatic breast and prostate tumors. Our published studies showed that RUNX2 DNA-binding activity is low during growth arrest, but elevated in proliferating endothelial cells. To investigate its role in cell proliferation and cell cycle regulation, RUNX2 was depleted in human bone marrow endothelial cells using RNA interference. Specific RUNX2 depletion inhibited DNA-binding activity as measured by electrophoretic mobility shift assay resulting in inhibition of cell proliferation. Cells were synchronized at the G(1)/S boundary with excess thymidine or in mitosis (M phase) with nocodazole. Endogenous or ectopic RUNX2 activity was maximal at late G(2) and during M phase. Inhibition of RUNX2 expression by RNA interference delayed entry into and exit out of the G(2)/M phases of the cell cycle. RUNX2 was coimmunoprecipitated with cyclin B1 in mitotic cells, which further supported a role for RUNX2 in cell cycle progression. Moreover, in vitro kinase assays using recombinant cdc2 kinase showed that RUNX2 was phosphorylated at Ser(451). The cdc2 inhibitor roscovitine dose dependently inhibited in vivo RUNX2 DNA-binding activity during mitosis and the RUNX2 mutant S451A exhibited lower DNA-binding activity and reduced stimulation of anchorage-independent growth relative to wild type RUNX2. These results suggest for the first time that RUNX2 phosphorylation by cdc2 may facilitate cell cycle progression possibly through regulation of G(2) and M phases, thus promoting endothelial cell proliferation required for tumor angiogenesis.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
210
|
Abstract
The transcription factor Runx2 is essential for the formation of the skeleton. It has therefore primarily been considered as a specific regulator of bone genes. However, mice containing a LacZ insertion at the Runx2 locus also revealed expression in the nascent mammary epithelium. Reports of Runx2 expression in breast cancer cell lines, combined with the fact that breast cancers preferentially metastasise to bone, have also hinted at a potential role for Runx2 in the formation of bone metastasese. These initial observations have prompted further analysis of Runx2 function in mammary epithelial cells and recent findings have demonstrated that Runx2 does indeed contribute to the ability of metastatic breast cancer cell lines to form osteolytic bone lesions. In addition, evidence is accumulating that Runx2 has a role in the regulation of normal mammary gland gene expression and recent data demonstrate that it regulates transcription of the mammary gland-specific gene, beta-casein. In this article I discuss recent advances that link Runx2 with normal mammary epithelial cell function and the development of bone metastasese in breast cancer.
Collapse
Affiliation(s)
- Paul Shore
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
211
|
Takayanagi H, Sato K, Takaoka A, Taniguchi T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 2005; 208:181-93. [PMID: 16313349 DOI: 10.1111/j.0105-2896.2005.00337.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interferons (IFNs) play crucial roles in the regulation of a wide variety of innate and adaptive immune responses. Type I interferons (IFN-alpha/beta) are central to the host defense against pathogens such as viruses, whereas type II interferon (IFN-gamma) mainly contributes to the T-cell-mediated regulation of the immune responses. Studies of bone destruction associated with rheumatoid arthritis have highlighted the importance of the interaction between the immune and skeletal systems. Recently, a new research area, termed osteoimmunology, has been spawned by a series of studies focusing on the signaling networks between IFN and other cytokines in bone metabolisms. It has been revealed that IFN-gamma interferes with the osteoclast differentiation induced by receptor activator of nuclear factor-kappaB ligand (RANKL), and this mechanism is critical for the suppression of pathological bone resorption associated with inflammation. In addition, RANKL induces the IFN-beta gene in osteoclast precursor cells, and this induction constitutes a critical aspect of the negative feedback regulation mechanisms of RANKL signaling to suppress excessive osteoclastogenesis. Furthermore, a novel function of signal transducer and activator of transcription 1 (Stat1), the essential transcription factor for both type I and type II IFN responses, was revealed in the regulation of osteoblast differentiation. Collectively, these studies unveil novel aspects of the IFN system and indicate the operation of the intricate signaling network among IFN and other cytokine systems in bone remodeling, which might offer a molecular basis for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
212
|
Niu T, Rosen CJ. The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene 2005; 361:38-56. [PMID: 16183214 DOI: 10.1016/j.gene.2005.07.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/16/2005] [Accepted: 07/08/2005] [Indexed: 12/17/2022]
Abstract
Osteoporosis, a disorder of skeletal fragility, is common in the elderly, and its prevalence is increasing as more individuals with low bone mineral density (BMD), the strongest predictor of fracture risk, are detected. Previous basic and clinical studies imply there is a significant role for insulin-like growth factor-I (IGF-I) in determining BMD. Recently, polymorphisms upstream of the P1 promoter region of the human IGF-I gene have been found to be associated with serum levels of IGF-I, BMD and fracture risk in various ethnic groups. Multiple quantitative trait loci (QTLs) have been identified that underlie serum IGF-I in a mouse intercross between two inbred strains. The most promising QTL on mouse chromosome 6 has provided clues for unraveling the molecular mechanisms that regulate osteoblast differentiation. Genomic engineering resulting in IGF-I deficient mice, and mice with targeted over-expression of IGF-I reinforce the essential role of IGF-I in bone development at both the embryonic and postnatal stages. Thus, it is apparent that significant new insights into the role of the IGF-I gene in bone remodeling occur through several distinct mechanisms: (1) the skeletal IGF regulatory system; (2) the systemic growth hormone/IGF-I axis; (3) parathyroid hormone signaling; (4) sex steroids; and (5) the OPG/RANKL/RANK cytokine system. Molecular dissection of the IGF regulatory system and its signaling pathway in bone may reveal novel therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tianhua Niu
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
213
|
Wang Y, Belflower RM, Dong YF, Schwarz EM, O'Keefe RJ, Drissi H. Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. J Bone Miner Res 2005; 20:1624-36. [PMID: 16059634 DOI: 10.1359/jbmr.050516] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/04/2005] [Accepted: 05/20/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED Runx proteins mediate skeletal development. We studied the regulation of Runx1 during chondrocyte differentiation by real-time RT-PCR and its function during chondrogenesis using overexpression and RNA interference. Runx1 induces mesenchymal stem cell commitment to the early stages of chondrogenesis. INTRODUCTION Runx1 and Runx2 are co-expressed in limb bud cell condensations that undergo both cartilage and bone differentiation during murine development. However, the cooperative and/or compensatory effects these factors exert on skeletal formation have yet to be elucidated. MATERIALS AND METHODS Runx1/Cbfa2 and Runx2/Cbfa1 were examined at different stages of embryonic development by immunohistochemistry. In vitro studies used mouse embryonic limb bud cells and assessed Runx expressions by immunohistochemistry and real-time RT-PCR in the presence and absence of TGFbeta and BMP2. Runx1 was overexpressed in mesenchymal cell progenitors using retroviral infection. RESULTS Immunohistochemistry showed that Runx1 and Runx2 are co-expressed in undifferentiated mesenchyme, had similar levels in chondrocytes undergoing transition from proliferation to hypertrophy, and that there was primarily Runx2 expression in hypertrophic chondrocytes. Overall, the expression of Runx1 remained significantly higher than Runx2 mRNA levels during early limb bud cell maturation. Treatment of limb bud micromass cultures with BMP2 resulted in early induction of both Runx1 and Runx2. However, upregulation of Runx2 by BMP2 was sustained, whereas Runx1 decreased in later time-points when type X collagen was induced. Although TGFbeta potently inhibits Runx2 and type X collagen, it induces type II collagen mRNA and mildly but significantly inhibits Runx1 isoforms in the early stages of chondrogenesis. Virus-mediated overexpression of Runx1 in mouse embryonic mesenchymal cells resulted in a potent induction of the early chondrocyte differentiation markers but not the hypertrophy marker, type X collagen. Knockdown or Runx1 potently inhibits type II collagen, alkaline phosphatase, and Runx2 and has a late inhibitory effect on type X collagen. CONCLUSION These findings show a distinct and sustained role for Runx proteins in chondrogenesis and subsequent chondrocyte maturation. Runx1 is highly expressed during chondrogenesis in comparison with Runx2, and Runx1 gain of functions stimulated this process. Thus, the Runx genes are uniquely expressed and have distinct roles during skeletal development.
Collapse
Affiliation(s)
- YongJun Wang
- Center for Musculoskeletal Research, Department of Orthopeadics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
214
|
Abstract
The Runx (runt-related protein) family of transcription factors plays important roles in different tissues and cell lineages. Runx1 determines commitment to the hematopoietic cell lineage and Runx2 determines commitment to the osteoblastic lineage. Cbfbeta is required for Runx1- and Runx2-dependent transcriptional regulation. Runx2 interacts with many other transcription factors and co-regulators in the transcriptional regulation of its target genes. Runx2 is essential for the commitment of multipotent mesenchymal cells into the osteoblastic lineage and inhibits adipocyte differentiation. Runx2 induces the gene expression of bone matrix proteins, while keeping the osteoblastic cells in an immature stage. Runx2 and Runx3 have redundant functions in chondrocytes, and they are essential for chondrocyte maturation. Runx2 directly induces Indian hedgehog (Ihh) expression and co-ordinates the proliferation and differentiation of chondrocytes. Therefore, elucidation of the signaling pathways through Runx2 and Runx3 will unravel the complex mechanism of skeletal development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Developmental and Reconstructive Medicine, Division of Oral Cytology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
215
|
Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, Grano M, Colucci S, Svaldi M, Rizzoli V. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106:2472-83. [PMID: 15933061 DOI: 10.1182/blood-2004-12-4986] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Decreased bone formation contributes to the development of bone lesions in multiple myeloma (MM) patients. In this study, we have investigated the effects of myeloma cells on osteoblast formation and differentiation and the potential role of the critical osteoblast transcription factor RUNX2/CBFA1 (Runt-related transcription factor 2/core-binding factor Runt domain alpha subunit 1) in the inhibition of osteoblastogenesis in MM. We found that human myeloma cells suppress the formation of human osteoblast progenitors in bone marrow (BM) cultures. Moreover, an inhibitory effect on osteocalcin, alkaline phosphatase, collagen I mRNA, protein expression, and RUNX2/CBFA1 activity by human preosteoblastic cells was observed in cocultures with myeloma cells. The inhibitory effect was more pronounced in the cell-to-cell contact conditions compared with those without the contact and involved the very late antigen 4 (VLA-4) integrin system. Among the soluble osteoblast inhibitors screened, we show the potential contribution of interleukin-7 (IL-7) in the inhibitory effect on osteoblast formation and RUNX2/CBFA1 activity by human myeloma cells in coculture. Finally, our in vitro results were supported in vivo by the finding of a significant reduction in the number of Runx2/Cbfa1-positive cells in the BM biopsies of patients with MM who had osteolytic lesions compared with those who did not have bone lesions, suggesting the critical involvement of RUNX2/CBFA1 in the decreased bone formation in MM.
Collapse
Affiliation(s)
- Nicola Giuliani
- Laboratory of Hematology, Hematology and Bone Marrow Transplantation (BMT) Center, Department of Internal Medicine and Biomedical Science, University of Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Inman CK, Li N, Shore P. Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Mol Cell Biol 2005; 25:3182-93. [PMID: 15798204 PMCID: PMC1069618 DOI: 10.1128/mcb.25.8.3182-3193.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transcription factor Runx2 is essential for the expression of a number of bone-specific genes and is primarily considered a master regulator of bone development. Runx2 is also expressed in mammary epithelial cells, but its role in the mammary gland has not been established. Here we show that Runx2 forms a novel complex with the ubiquitous transcription factor Oct-1 to regulate the expression of the mammary gland-specific gene beta-casein. The Runx2/Oct-1 complex forms on a Runx/octamer element which is highly conserved in casein promoters. Chromatin immunoprecipitation, RNA interference, promoter mutagenesis, and transient expression analyses were used to demonstrate that the Runx2/Oct-1 complex contributes to the transcriptional regulation of the beta-casein gene. Analysis of the complex revealed autoinhibitory domains for DNA binding in both the N-terminal and the C-terminal regions of Runx2. Oct-1 stimulates the recruitment of Runx2 to the beta-casein promoter by interacting with the C-terminal region of Runx2, suggesting that Oct-1 stimulates Runx2 recruitment by relieving the autoinhibition of Runx2 DNA binding. These findings demonstrate that Runx2 collaborates with Oct-1 and contributes to the expression of a mammary gland-specific gene.
Collapse
Affiliation(s)
- Claire K Inman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Rd., Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
217
|
Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD, Giuliani N. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 2005; 106:1407-14. [PMID: 15878977 DOI: 10.1182/blood-2005-03-1080] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bone destruction in multiple myeloma is characterized both by markedly increased osteoclastic bone destruction and severely impaired osteoblast activity. We reported that interleukin-3 (IL-3) levels are increased in bone marrow plasma of myeloma patients compared with healthy controls and that IL-3 stimulates osteoclast formation. However, the effects of IL-3 on osteoblasts are unknown. Therefore, to determine if IL-3 inhibits osteoblast growth and differentiation, we treated primary mouse and human marrow stromal cells with IL-3 and assessed osteoblast differentiation. IL-3 inhibited basal and bone morphogenic protein-2 (BMP-2)-stimulated osteoblast formation in a dose-dependent manner without affecting cell growth. Importantly, marrow plasma from patients with high IL-3 levels inhibited osteoblast differentiation, which could be blocked by anti-IL-3. However, IL-3 did not inhibit osteoblast differentiation of osteoblastlike cell lines. In contrast, IL-3 increased the number of CD45+ hematopoietic cells in stromal-cell cultures. Depletion of the CD45+ cells abolished the inhibitory effects of IL-3 on osteoblasts, and reconstitution of the cultures with CD45+ cells restored the capacity of IL-3 to inhibit osteoblast differentiation. These data suggest that IL-3 plays a dual role in the bone destructive process in myeloma by both stimulating osteoclasts and indirectly inhibiting osteoblast formation.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Schmidt K, Schinke T, Haberland M, Priemel M, Schilling AF, Mueldner C, Rueger JM, Sock E, Wegner M, Amling M. The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation. J Cell Biol 2005; 168:899-910. [PMID: 15753123 PMCID: PMC2171778 DOI: 10.1083/jcb.200408013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 01/24/2005] [Indexed: 12/22/2022] Open
Abstract
Bone remodeling is an important physiologic process that is required to maintain a constant bone mass. This is achieved through a balanced activity of bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, we identify the high mobility group transcription factor Sox8 as a physiologic regulator of bone formation. Sox8-deficient mice display a low bone mass phenotype that is caused by a precocious osteoblast differentiation. Accordingly, primary osteoblasts derived from these mice show an accelerated mineralization ex vivo and a premature expression of osteoblast differentiation markers. To confirm the function of Sox8 as a negative regulator of osteoblast differentiation we generated transgenic mice that express Sox8 under the control of an osteoblast-specific Col1a1 promoter fragment. These mice display a severely impaired bone formation that can be explained by a strongly reduced expression of runt-related transcription factor 2, a gene encoding a transcription factor required for osteoblast differentiation. Together, these data demonstrate a novel function of Sox8, whose tightly controlled expression is critical for bone formation.
Collapse
Affiliation(s)
- Katy Schmidt
- Institute of Biochemistry, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen 91054, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Varghese S, Rydziel S, Canalis E. Bone morphogenetic protein-2 suppresses collagenase-3 promoter activity in osteoblasts through a runt domain factor 2 binding site. J Cell Physiol 2005; 202:391-9. [PMID: 15389594 DOI: 10.1002/jcp.20130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transforming growth factor-beta (TGFbeta) superfamily of growth factors, which include bone morphogenetic proteins (BMPs), have multiple effects in osteoblasts. In this study, we examined the regulation of collagenase-3 promoter activity by BMP-2 in osteoblast-enriched (Ob) cells from fetal rat calvariae. BMP-2 suppressed the activity of a -2 kb collagenase-3 promoter/luciferase recombinant in a time- and dose-dependent manner. The BMP-2 effect on the collagenase-3 promoter was further tested in several collagenase-3 promoter deletion constructs and it was narrowed down to a -148 to -94 nucleotide segment of the promoter containing a runt domain factor 2 (Runx2) site at nucleotide -132 to -126. The effect of BMP-2 was obliterated in a collagenase-3 promoter/luciferase construct containing a mutated Runx2 (mRunx2) sequence indicating that the Runx2 site mediates the BMP-2 response. Electrophoretic mobility shift assays, using nuclear extracts from control and BMP-2-treated Ob cells, indicated that the Runx2 protein is a component of the specific DNA-protein complex formed on the Runx2 site and that the BMP-2 effect may be associated with minor protein modifications rather than major changes in the composition of specific proteins interacting with the Runx2 site. We confirmed that other members of the TGFbeta family can down-regulate the collagenase-3 promoter by showing that TGFbeta1 also suppresses the promoter activity in a time- and dose-dependent manner. In conclusion, this study demonstrates that BMP-2 and TGFbeta1 suppress collagenase-3 promoter activity in osteoblasts and establishes a link between BMP-2 action and collagenase-3 expression via Runx2, a major regulator of osteoblast formation and function.
Collapse
Affiliation(s)
- Samuel Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
220
|
Smith N, Dong Y, Lian JB, Pratap J, Kingsley PD, van Wijnen AJ, Stein JL, Schwarz EM, O'Keefe RJ, Stein GS, Drissi MH. Overlapping expression of Runx1(Cbfa2) and Runx2(Cbfa1) transcription factors supports cooperative induction of skeletal development. J Cell Physiol 2005; 203:133-43. [PMID: 15389629 DOI: 10.1002/jcp.20210] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Identifying the genetic pathways that regulate skeletal development is necessary to correct a variety of cartilage and bone abnormalities. The Runx family of transcription factors play a fundamental role in organ development and cell differentiation. Initial studies have shown that both Runx1 and Runx2 are expressed in pre-chondrogenic mesenchyme of the developing embryo at E12.5. Abrogation of the Runx2 gene completely inhibits bone formation yet the cartilage anlagen in these mice is fully formed. In the present study, we hypothesized that Runx1 may compensate for the lack of Runx2 in vivo to induce the early stages of skeletal formation and development. Histologic beta-gal stained sections using the Runx1(+/-)-Lac-Z mice demonstrate Runx1 promoter activity in pre-chondrocytic cell populations. In situ hybridization using Runx1 and Runx2 specific probes indicate that both factors are expressed in mesenchymal stem cell progenitors during early embryonic development. During later stages of mouse skeletal formation, Runx1 is excluded from the hypertrophic cartilage while Runx2 is present in these matured chondrocyte populations. Quantification of Runx expression by real time RT-PCR and Western blot analyses reveals that Runx1 and Runx2 are differentially modulated during embryogenesis suggesting a temporal role for each of these transcriptional regulators during skeletal formation. We provide evidence that haploinsufficiency results in normal appearing embryo skeletons of heterozygote Runx2 and Runx1 mutant mouse models; however, a delay in bone formation was identified in the calvarium. In summary, our results support a function for Runx1 and Runx2 during skeletal development with a possible role for Runx1 in mediating early events of endochondral and intramembranous bone formation, while Runx2 is a potent inducer of late stages of chondrocyte and osteoblast differentiation.
Collapse
Affiliation(s)
- Nathan Smith
- The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Karreth F, Hoebertz A, Scheuch H, Eferl R, Wagner EF. The AP1 transcription factor Fra2 is required for efficient cartilage development. Development 2004; 131:5717-25. [PMID: 15509771 DOI: 10.1242/dev.01414] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Fos-related AP1 transcription factor Fra2 (encoded by Fosl2)is expressed in various epithelial cells as well as in cartilaginous structures. We studied the role of Fra2 in cartilage development. The absence of Fra2 in embryos and newborns leads to reduced zones of hypertrophic chondrocytes and impaired matrix deposition in femoral and tibial growth plates, probably owing to impaired differentiation into hypertrophic chondrocytes. In addition, hypertrophic differentiation and ossification of primordial arches of the developing vertebrae are delayed in Fra2-deficient embryos. Primary Fosl2–/– chondrocytes exhibit decreased hypertrophic differentiation and remain in a proliferative state longer than wild-type cells. As pups lacking Fra2 die shortly after birth, we generated mice carrying `floxed' Fosl2 alleles and crossed them to coll2a1-Cre mice, allowing investigation of postnatal cartilage development. The coll2a1-Cre, Fosl2f/f mice die between 10 and 25 days after birth, are growth retarded and display smaller growth plates similar to Fosl2–/– embryos. In addition, these mice suffer from a kyphosis-like phenotype, an abnormal bending of the spine. Hence, Fra2 is a novel transcription factor important for skeletogenesis by affecting chondrocyte differentiation.
Collapse
Affiliation(s)
- Florian Karreth
- Research Institute of Molecular Pathology (I.M.P. Vienna, Austria
| | | | | | | | | |
Collapse
|
222
|
Young DW, Zaidi SK, Furcinitti PS, Javed A, van Wijnen AJ, Stein JL, Lian JB, Stein GS. Quantitative signature for architectural organization of regulatory factors using intranuclear informatics. J Cell Sci 2004; 117:4889-96. [PMID: 15367579 DOI: 10.1242/jcs.01229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory machinery for replication and gene expression is punctately organized in supramolecular complexes that are compartmentalized in nuclear microenvironments. Quantitative approaches are required to understand the assembly of regulatory machinery within the context of nuclear architecture and to provide a mechanistic link with biological control. We have developed 'intranuclear informatics' to quantify functionally relevant parameters of spatially organized nuclear domains. Using this informatics strategy we have characterized post-mitotic reestablishment of focal subnuclear organization of Runx (AML/Cbfa) transcription factors in progeny cells. By analyzing point mutations that abrogate fidelity of Runx intranuclear targeting, we establish molecular determinants for the spatial order of Runx domains. Our novel approach provides evidence that architectural organization of Runx factors may be fundamental to their tissue-specific regulatory function.
Collapse
Affiliation(s)
- Daniel W Young
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester 01655-0106, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. ACTA ACUST UNITED AC 2004; 166:85-95. [PMID: 15226309 PMCID: PMC2172136 DOI: 10.1083/jcb.200401138] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Runx2 and phosphatidylinositol 3-kinase (PI3K)–Akt signaling play important roles in osteoblast and chondrocyte differentiation. We investigated the relationship between Runx2 and PI3K-Akt signaling. Forced expression of Runx2 enhanced osteoblastic differentiation of C3H10T1/2 and MC3T3-E1 cells and enhanced chondrogenic differentiation of ATDC5 cells, whereas these effects were blocked by treatment with IGF-I antibody or LY294002 or adenoviral introduction of dominant-negative (dn)–Akt. Forced expression of Runx2 or dn-Runx2 enhanced or inhibited cell migration, respectively, whereas the enhancement by Runx2 was abolished by treatment with LY294002 or adenoviral introduction of dn-Akt. Runx2 up-regulated PI3K subunits (p85 and p110β) and Akt, and their expression patterns were similar to that of Runx2 in growth plates. Treatment with LY294002 or introduction of dn-Akt severely diminished DNA binding of Runx2 and Runx2-dependent transcription, whereas forced expression of myrAkt enhanced them. These findings demonstrate that Runx2 and PI3K-Akt signaling are mutually dependent on each other in the regulation of osteoblast and chondrocyte differentiation and their migration.
Collapse
Affiliation(s)
- Takashi Fujita
- Department of Pharmacology, Setsunan University, Hirakata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004; 23:4315-29. [PMID: 15156188 DOI: 10.1038/sj.onc.1207676] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene expression. We review recent findings that are consistent with an active role for Runx proteins as scaffolds for integration, organization and combinatorial assembly of nucleic acids and regulatory factors within the three-dimensional context of nuclear architecture.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center University of Massachusetts Medical School, Worcester, M 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Enomoto H, Furuichi T, Zanma A, Yamana K, Yoshida C, Sumitani S, Yamamoto H, Enomoto-Iwamoto M, Iwamoto M, Komori T. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 2004; 117:417-25. [PMID: 14702386 DOI: 10.1242/jcs.00866] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Runx2 (runt-related transcription factor 2) is an important transcription factor for chondrocyte differentiation as well as for osteoblast differentiation. To investigate the function of Runx2 in chondrocytes, we isolated chondrocytes from the rib cartilage of Runx2-deficient (Runx2-/-) mice and examined the effect of Runx2 deficiency on chondrocyte function and behavior in culture for up to 12 days. At the beginning of the culture, Runx2-/- chondrocytes actively proliferated, had a polygonal shape and expressed type II collagen; these are all characteristics of chondrocytes. However, they gradually accumulated lipid droplets that stained with oil red O and resembled adipocytes. Northern blot analysis revealed that the expression of adipocyte-related differentiation marker genes including PPAR gamma (peroxisome proliferator-activated receptor gamma), aP2 and Glut4 increased over time in culture, whereas expression of type II collagen decreased. Furthermore, the expression of Pref-1, an important inhibitory gene of adipogenesis, was remarkably decreased. Adenoviral introduction of Runx2 or treatment with transforming growth factor-beta, retinoic acid, interleukin-1 beta, basic fibroblast growth factor, platelet-derived growth factor or parathyroid hormone inhibited the adipogenic changes in Runx2-/- chondrocytes. Runx2 and transforming growth factor-beta synergistically upregulated interleukin-11 expression, and the addition of interleukin-11 to the culture medium reduced adipogenesis in Runx2-/- chondrocytes. These findings indicate that depletion of Runx2 resulted in the loss of the differentiated phenotype in chondrocytes and induced adipogenic differentiation in vitro, and show that Runx2 plays important roles in maintaining the chondrocyte phenotype and in inhibiting adipogenesis. Our findings suggest that these Runx2-dependent functions are mediated, at least in part, by interleukin-11.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue KI, Yamana K, Zanma A, Takada K, Ito Y, Komori T. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 2004; 18:952-63. [PMID: 15107406 PMCID: PMC395853 DOI: 10.1101/gad.1174704] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The differentiation of mesenchymal cells into chondrocytes and chondrocyte proliferation and maturation are fundamental steps in skeletal development. Runx2 is essential for osteoblast differentiation and is involved in chondrocyte maturation. Although chondrocyte maturation is delayed in Runx2-deficient (Runx2(-/-)) mice, terminal differentiation of chondrocytes does occur, indicating that additional factors are involved in chondrocyte maturation. We investigated the involvement of Runx3 in chondrocyte differentiation by generating Runx2-and-Runx3-deficient (Runx2(-/-)3(-/-)) mice. We found that chondrocyte differentiation was inhibited depending on the dosages of Runx2 and Runx3, and Runx2(-/-)3(-/-) mice showed a complete absence of chondrocyte maturation. Further, the length of the limbs was reduced depending on the dosages of Runx2 and Runx3, due to reduced and disorganized chondrocyte proliferation and reduced cell size in the diaphyses. Runx2(-/-)3(-/-) mice did not express Ihh, which regulates chondrocyte proliferation and maturation. Adenoviral introduction of Runx2 in Runx2(-/-) chondrocyte cultures strongly induced Ihh expression. Moreover, Runx2 directly bound to the promoter region of the Ihh gene and strongly induced expression of the reporter gene driven by the Ihh promoter. These findings demonstrate that Runx2 and Runx3 are essential for chondrocyte maturation and that Runx2 regulates limb growth by organizing chondrocyte maturation and proliferation through the induction of Ihh expression.
Collapse
Affiliation(s)
- Carolina A Yoshida
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Yoshizawa T, Takizawa F, Iizawa F, Ishibashi O, Kawashima H, Matsuda A, Endo N, Kawashima H. Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol Cell Biol 2004; 24:3460-72. [PMID: 15060165 PMCID: PMC381680 DOI: 10.1128/mcb.24.8.3460-3472.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligaments and tendons are comprised of tough yet flexible connective tissue. Little is known, however, about the precise characteristics of the cells in ligaments and tendons due to the absence of specific markers and cell lines. We recently reported a periodontal ligament cell line, PDL-L2, with suppressed Runx2/Osf2 transcriptional activity and an inability to form mineralized nodules. The present study demonstrates that the homeobox protein Msx2 is a key factor in suppressing those two functions. Msx2 colocalizes with Runx2/Osf2 and suppresses its activity cooperatively, acting with another corepressor, TLE1, as a complex to recruit histone deacetylase 1 activity. Reverse transcription-PCR and in situ hybridization demonstrated that Msx2 expression is higher in periodontal ligament and tendon cells than in osteoblasts. Stable reduction of Msx2 expression in PDL-L2 cells induces osteoblastic differentiation, thereby causing matrix mineralization. Conversely, stable, forced Msx2 expression in MC3T3-E1 cells prevented osteoblast differentiation and matrix mineralization. Msx2-induced suppression of osteoblast differentiation was repressed by bone morphogenetic protein 2. In addition, Msx2 was downregulated in a symptom- and calcification-dependent manner at the affected region in patients with ossification of the posterior longitudinal ligament. Our findings indicate that Msx2 plays a central role in preventing ligaments and tendons from mineralizing.
Collapse
Affiliation(s)
- Tatsuya Yoshizawa
- Divisions of Cell Biology and Molecular Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Swantek D, Gergen JP. Ftz modulates Runt-dependent activation and repression of segment-polarity gene transcription. Development 2004; 131:2281-90. [PMID: 15102703 DOI: 10.1242/dev.01109] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A crucial step in generating the segmented body plan in Drosophila is establishing stripes of expression of several key segment-polarity genes, one stripe for each parasegment, in the blastoderm stage embryo. It is well established that these patterns are generated in response to regulation by the transcription factors encoded by the pair-rule segmentation genes. However, the full set of positional cues that drive expression in either the odd- or even-numbered parasegments has not been defined for any of the segment-polarity genes. Among the complications for dissecting the pair-rule to segment-polarity transition are the regulatory interactions between the different pair-rule genes. We have used an ectopic expression system that allows for quantitative manipulation of expression levels to probe the role of the primary pair-rule transcription factor Runt in segment-polarity gene regulation. These experiments identify sloppy paired 1 (slp1) as a gene that is activated and repressed by Runt in a simple combinatorial parasegment-dependent manner. The combination of Runt and Odd-paired (Opa) is both necessary and sufficient for slp1 activation in all somatic blastoderm nuclei that do not express the Fushi tarazu (Ftz) transcription factor. By contrast, the specific combination of Runt + Ftz is sufficient for slp1 repression in all blastoderm nuclei. We furthermore find that Ftz modulates the Runt-dependent regulation of the segment-polarity genes wingless (wg) and engrailed (en). However, in the case of en the combination of Runt + Ftz gives activation. The contrasting responses of different downstream targets to Runt in the presence or absence of Ftz is thus central to the combinatorial logic of the pair-rule to segment-polarity transition. The unique and simple rules for slp1 regulation make this an attractive target for dissecting the molecular mechanisms of Runt-dependent regulation.
Collapse
Affiliation(s)
- Deborah Swantek
- Department of Biochemistry and Cell Biology and The Center for Developmental Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|
229
|
Fujita T, Fukuyama R, Enomoto H, Komori T. Dexamethasone inhibits insulin-induced chondrogenesis of ATDC5 cells by preventing PI3K-Akt signaling and DNA binding of Runx2. J Cell Biochem 2004; 93:374-83. [PMID: 15368363 DOI: 10.1002/jcb.20192] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucocorticoids play important roles in cell growth and differentiation. In this study, we investigated the effect of application of dexamethasone (DEX) at the early stage of chondrogenesis using the prechondrogenic cell line, ATDC5, which differentiates into chondrocytes in the presence of insulin. When ATDC5 cells were cultured in the presence of DEX and insulin, DEX inhibited insulin-induced cellular condensation and subsequent cartilaginous nodule formation, and reduced proteoglycan synthesis and type II collagen expression dose-dependently. Pretreatment with 10(-8) M DEX for 1 day inhibited insulin-induced Akt phosphorylation, but not ERK1/2 phosphorylation, in ATDC5 cells. Treatment of ATDC5 cells with insulin for more than 2 days upregulated the levels of phosphatidylinositol 3-kinase (PI3K) subunit proteins, p85 and p110, and Akt, whereas the upregulation was inhibited in the presence of 10(-8) M DEX. In electrophoresis mobility shift assays (EMSAs), treatment with 10(-8) M DEX inhibited DNA binding of Runx2 during culture of ATDC5 cells with insulin. Reporter assays using osteocalcin promoter showed that DEX inhibited Runx2-dependent transcription dose-dependently. Adenoviral introduction of dominant-negative (dn)-Akt or dn-Runx2 into ATDC5 cells inhibited cellular condensation and reduced proteoglycan synthesis upon incubation with insulin, whereas adenoviral introduction of Akt or Runx2 prevented the inhibition of chondrogenesis by DEX. These findings indicate that DEX inhibits chondrogenesis of ATDC5 cells at the early stage by downregulating Akt phosphorylation as well as the protein levels of PI3K subunits and Akt, thereby suppressing PI3K-Akt signaling, and by inhibiting DNA binding of Runx2 and Runx2-dependent transcription.
Collapse
Affiliation(s)
- Takashi Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, 573-0101, Japan
| | | | | | | |
Collapse
|
230
|
Sitcheran R, Cogswell PC, Baldwin AS. NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev 2003; 17:2368-73. [PMID: 14522944 PMCID: PMC218074 DOI: 10.1101/gad.1114503] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytokines, such as tumor necrosis factor-alpha (TNFalpha), potently inhibit the differentiation of mesenchymal cells and down-regulate the expression of Sox9 and MyoD, transcription factors required for chondrocyte and myocyte development. Previously, we demonstrated that NF-kappaB controls TNFalpha-mediated suppression of myogenesis through a mechanism involving MyoD mRNA down-regulation. Here, we show that NF-kappaB also suppresses chondrogenesis and destabilizes Sox9 mRNA levels. Multiple copies of an mRNA cis-regulatory motif (5'-ACUACAG-3') are necessary and sufficient for NF-kappaB-mediated Sox9 and MyoD down-regulation. Thus, in response to cytokine signaling, NF-kappaB modulates the differentiation of mesenchymal-derived cell lineages via RNA sequence-dependent, posttranscriptional down-regulation of key developmental regulators.
Collapse
Affiliation(s)
- Raquel Sitcheran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
231
|
Inman CK, Shore P. The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 2003; 278:48684-9. [PMID: 14506237 DOI: 10.1074/jbc.m308001200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeted deletion of the Runx2 gene in mice has demonstrated that Runx2 is a master regulator of osteoblast differentiation. Runx2 has therefore largely been regarded as a bone-specific transcription factor. Runx2-/- mice die shortly after birth and therefore the role of Runx2 in later developing tissues remains unclear. Here we show that the Runx2 protein is expressed in several mammary epithelial cell lines and in primary mammary epithelial cells. In addition, we have also found that it has a functionally important role in gene regulation. Osteopontin (OPN) is expressed in mammary epithelial cells during pregnancy and lactation and has been shown to have a role in mammary gland differentiation. Here we show that a Runx2 site in the OPN promoter is required for activation of the promoter in mammary epithelial cells. Moreover, dominant-negative Runx proteins can inhibit both activation of an OPN promoter reporter in transient transfections and expression of the endogenous OPN gene in mammary epithelial cells. Our data suggest, for the first time, that the osteoblast transcription factor Runx2 has a role in the normal regulation of gene expression in mammary epithelial cells.
Collapse
Affiliation(s)
- Claire K Inman
- School of Biological Sciences, University of Manchester, 2.205, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
232
|
Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 2003; 17:1979-91. [PMID: 12923053 PMCID: PMC196253 DOI: 10.1101/gad.1119303] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 06/24/2003] [Indexed: 12/21/2022]
Abstract
Bone remodeling is central to maintaining the integrity of the skeletal system, wherein the developed bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption. In the present study, we demonstrate a novel function of the Stat1 transcription factor in the regulation of bone remodeling. In the bone of the Stat1-deficient mice, excessive osteoclastogenesis is observed, presumably caused by a loss of negative regulation of osteoclast differentiation by interferon (IFN)-beta. However, the bone mass is unexpectedly increased in these mice. This increase is caused by excessive osteoblast differentiation, wherein Stat1 function is independent of IFN signaling. Actually, Stat1 interacts with Runx2 in its latent form in the cytoplasm, thereby inhibiting the nuclear localization of Runx2, an essential transcription factor for osteoblast differentiation. The new function of Stat1 does not require the Tyr 701 that is phosphorylated when Stat1 becomes a transcriptional activator. Our study provides a unique example in which a latent transcription factor attenuates the activity of another transcription factor in the cytoplasm, and reveals a new regulatory mechanism in bone remodeling.
Collapse
Affiliation(s)
- Sunhwa Kim
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
234
|
Enomoto H, Shiojiri S, Hoshi K, Furuichi T, Fukuyama R, Yoshida CA, Kanatani N, Nakamura R, Mizuno A, Zanma A, Yano K, Yasuda H, Higashio K, Takada K, Komori T. Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem 2003; 278:23971-7. [PMID: 12697767 DOI: 10.1074/jbc.m302457200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG), and macrophage-colony stimulating factor play essential roles in the regulation of osteoclastogenesis. Runx2-deficient (Runx2-/-) mice showed a complete lack of bone formation because of maturational arrest of osteoblasts and disturbed chondrocyte maturation. Further, osteoclasts were absent in these mice, in which OPG and macrophage-colony stimulating factor were normally expressed, but RANKL expression was severely diminished. We investigated the function of Runx2 in osteoclast differentiation. A Runx2-/- calvaria-derived cell line (CA120-4), which expressed OPG strongly but RANKL barely, severely suppressed osteoclast differentiation from normal bone marrow cells in co-cultures. Adenoviral introduction of Runx2 into CA120-4 cells induced RANKL expression, suppressed OPG expression, and restored osteoclast differentiation from normal bone marrow cells, whereas the addition of OPG abolished the osteoclast differentiation induced by Runx2. Addition of soluble RANKL (sRANKL) also restored osteoclast differentiation in co-cultures. Forced expression of sRANKL in Runx2-/- livers increased the number and size of osteoclast-like cells around calcified cartilage, although vascular invasion into the cartilage was superficial because of incomplete osteoclast differentiation. These findings indicate that Runx2 promotes osteoclast differentiation by inducing RANKL and inhibiting OPG. As the introduction of sRANKL was insufficient for osteoclast differentiation in Runx2-/- mice, however, our findings also suggest that additional factor(s) or matrix protein(s), which are induced in terminally differentiated chondrocytes or osteoblasts by Runx2, are required for osteoclastogenesis in early skeletal development.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Kahler RA, Westendorf JJ. Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem 2003; 278:11937-44. [PMID: 12551949 DOI: 10.1074/jbc.m211443200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional control of the transcription factor Runx2 is crucial for normal bone formation. Runx2 is detectable throughout osteoblast development and maturation and temporally regulates several bone-specific genes. In this study, we identified a novel post-translational mechanism regulating Runx2-dependent activation of the osteocalcin promoter. A functional binding site for the high mobility group protein lymphoid enhancer-binding factor 1 (LEF1) was found adjacent to the proximal Runx2-binding site in the osteocalcin promoter. In transcription assays, LEF1 repressed Runx2-induced activation of the mouse osteocalcin 2 promoter in several osteoblast lineage cell lines. Mutations in the LEF1-binding site increased the basal activity of the osteocalcin promoter; however, the LEF1 recognition site in the osteocalcin promoter was surprisingly not required for LEF1 repression. A novel interaction between the DNA-binding domains of Runx2 and LEF1 was identified and found crucial for LEF1-mediated repression of Runx2. LEF1 is a nuclear effector of the Wnt/LRP5/beta-catenin signaling pathway, which is also essential for osteoblast proliferation and normal skeletal development. A constitutively active beta-catenin enhanced LEF1-dependent repression of Runx2. These data identify a novel mechanism of regulating Runx2 activity in osteoblasts and link Runx2 transcriptional activity to beta-catenin signaling.
Collapse
Affiliation(s)
- Rachel A Kahler
- University of Minnesota Cancer Center, Department of Orthopaedic Surgery and Graduate Program in Microbiology, Immunology and Cancer Biology, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|