201
|
Denning DW, Hope WW. Therapy for fungal diseases: opportunities and priorities. Trends Microbiol 2010; 18:195-204. [DOI: 10.1016/j.tim.2010.02.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 02/01/2023]
|
202
|
The transposon impala is activated by low temperatures: use of a controlled transposition system to identify genes critical for viability of Aspergillus fumigatus. EUKARYOTIC CELL 2010; 9:438-48. [PMID: 20097738 DOI: 10.1128/ec.00324-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genes that are essential for viability represent potential targets for the development of anti-infective agents. However, relatively few have been determined in the filamentous fungal pathogen Aspergillus fumigatus. A novel solution employing parasexual genetics coupled with transposon mutagenesis using the Fusarium oxysporum transposon impala had previously enabled the identification of 20 essential genes from A. fumigatus; however, further use of this system required a better understanding of the mode of action of the transposon itself. Examination of a range of conditions indicated that impala is activated by prolonged exposure to low temperatures. This newly identified property was then harnessed to identify 96 loci that are critical for viability in A. fumigatus, including genes required for RNA metabolism, organelle organization, protein transport, ribosome biogenesis, and transcription, as well as a number of noncoding RNAs. A number of these genes represent potential targets for much-needed novel antifungal drugs.
Collapse
|
203
|
Selvam S, Andrews ME, Mishra AK. A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates. J Pharm Sci 2010; 98:4153-60. [PMID: 19283765 DOI: 10.1002/jps.21718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amphotericin B (AmB) is a highly effective antifungal agent and finds utility against a broad spectrum of fungal species. Bile salts are biocompatible biosurfactants, widely used as drug delivery media for many hydrophobic drugs. AmB in the colloidal suspension of sodium deoxycholate (NaDC) is a well-known commercial formulation of AmB. In the present work, the association of AmB with three bile salts, namely sodium cholate, sodium taurodeoxycholate and sodium taurocholate is studied using the photophysical properties of AmB. Selective excitation of monomeric AmB (lambda(ex) 414 nm, lambda(em) 560 nm) and dimeric AmB (lambda(ex) 335 nm, lambda(em) 472 nm) reveal that with increasing concentration of bile salts, the higher aggregates in water disaggregate to form both monomeric and dimeric forms of AmB. This is seen to be a general trend in all the bile salts studied. Results of steady state fluorescence anisotropy and fluorescence lifetimes studies suggest that the interaction between AmB (hydrophobic heptaene face) and bile salts (hydrophobic steroidal face) is essentially hydrophobic.
Collapse
Affiliation(s)
- Susithra Selvam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, Tamilnadu, India
| | | | | |
Collapse
|
204
|
Li F, Yang R, Weng Y, Tang X. Preparation and evaluation of lyophilized liposome-encapsulated bufadienolides. Drug Dev Ind Pharm 2010; 35:1048-58. [PMID: 19365782 DOI: 10.1080/03639040902762987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to prepare bufadienolides-loaded liposome (BU-lipo). METHODS The BU-lipo was prepared by a thin-film hydration method involving sonication and lyophilization procedures. The lyophilized BU-lipo was characterized with regard to the appearance and particle size by scanning electron microscopy, transmission electron microscopy, and photon correlation spectroscopy. The entrapment efficiency (EE) of BU-lipo was evaluated by the microdialysis technique. RESULTS In the optimal formulation, Lipoid E-80 and the mass ratio of cholesterol to lipid were fixed at 1.25% and 0.05. The media diameters of BU-lipo before and after lyophilization were about 100 nm, and the EEs of bufalin (B), cinobufagin (C), and resibufogenin (R) were 86.5%, 90.0%, and 92.1%, respectively. In the EE study, the probe recoveries of B, C, and R were 21.53 +/- 1.14%, 19.49 +/- 1.34%, and 20.19 +/- 1.25%, respectively, at a flow rate of 4 microL/min by the gain method. The EE of BU-lipo evaluated by microdialysis and ultrafiltration were equivalent. CONCLUSION The lyophilized BU-lipo contained trehalose (10%) was stable up to 6 months in a desiccator under 2 degrees C-8 degrees C. The microdialysis technique has a wide application perspective in the investigation of the free-drug concentration of microcarrier systems.
Collapse
Affiliation(s)
- Fang Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | | | | | | |
Collapse
|
205
|
Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2009; 2010:617521. [PMID: 19888437 PMCID: PMC2771279 DOI: 10.1155/2010/617521] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/10/2009] [Accepted: 08/30/2009] [Indexed: 11/17/2022] Open
Abstract
Visceral leishmaniasis remains a public health problem worldwide. This illness was included by the World Health Organization in the list of neglected tropical diseases targeted for elimination by 2015. The widespread emergence of resistance to pentavalent antimonials in India where half cases occur globally and the unavailability of a vaccine in clinical use constitute major obstacles in achieving of this goal. The last decade new antileishmanials became available, including the oral agent miltefosine. However, in poor endemic countries their wide use was curtailed because of the high costs, and also due to concerns of toxicity and emergence of resistance. Various mechanisms of antileishmanial resistance were identified recently in field isolates. Their elucidation will boost the design of new drugs and the molecular surveillance of resistance. Combination regimens should be evaluated in large trials. Overall, the development of antileishmanials has been generally slow; new drugs are needed. In order to control visceral leishmaniasis worldwide, treatment advances should become affordable in the poorest countries, where they are needed most.
Collapse
|
206
|
Amphotericin B: side effects and toxicity. Rev Iberoam Micol 2009; 26:223-7. [DOI: 10.1016/j.riam.2009.06.003] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/22/2009] [Indexed: 11/20/2022] Open
|
207
|
Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther 2009; 18:171-80. [PMID: 19738601 DOI: 10.1038/mt.2009.208] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite recent progress, systemic delivery remains the major hurdle for development of safe and effective small inhibitory RNA (siRNA)-based therapeutics. Encapsulation of siRNA into liposomes is a promising option to overcome obstacles such as low stability in serum and inefficient internalization by target cells. However, a major liability of liposomes is the potential to induce an acute inflammatory response, thereby increasing the risk of numerous adverse effects. In this study, we characterized a liposomal siRNA delivery vehicle, LNP201, which is capable of silencing an mRNA target in mouse liver by over 80%. The biodistribution profile, efficacy after single and multiple doses, mechanism of action, and inflammatory toxicity are characterized for LNP201. Furthermore, we demonstrate that the glucocorticoid receptor (GR) agonist dexamethasone (Dex) inhibits LNP201-induced cytokine release, inflammatory gene induction, and mitogen-activated protein kinase (MAPK) phosphorylation in multiple tissues. These data present a possible clinical strategy for increasing the safety profile of siRNA-based drugs while maintaining the potency of gene silencing.
Collapse
|
208
|
Adediran SA, Day TP, Sil D, Kimbrell MR, Warshakoon HJ, Malladi SS, David SA. Synthesis of a highly water-soluble derivative of amphotericin B with attenuated proinflammatory activity. Mol Pharm 2009; 6:1582-90. [PMID: 19663403 PMCID: PMC3709255 DOI: 10.1021/mp9001602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amphotericin B (AmB), a well-known polyene antifungal agent, displays a marked tendency to self-associate and, as a consequence, exhibits very poor solubility in water. The therapeutic index of AmB is low and is associated with significant dose-related nephrotoxicity, as well as acute, infusion-related febrile reactions. Reports in the literature indicate that the toxicity of AmB may be related to the physical state of the drug. Reaction of AmB in dimethylformamide with bis(dimethylaminopropyl)carbodiimide yielded an unexpected N-alkylguanidine/N-acylurea bis-adduct of AmB which was highly water-soluble. The absorption spectrum of the AmB derivative in water indicated excellent monomerization, and the antifungal activities of reference AmB and its water-soluble derivative against Candida albicans were found to be virtually identical. Furthermore, the water-soluble adduct is significantly less active in engaging TLR4, which would suggest that the adduct may be less proinflammatory.
Collapse
Affiliation(s)
| | | | - Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas
| | | | | | | | | |
Collapse
|
209
|
Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009; 66:2873-96. [PMID: 19499185 PMCID: PMC11115599 DOI: 10.1007/s00018-009-0053-z] [Citation(s) in RCA: 1058] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 11/28/2022]
Abstract
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.
Collapse
Affiliation(s)
- Hervé Hillaireau
- School of Engineering and Applied Sciences, Harvard University, 40 Oxford Street, Cambridge, MA 02138 USA
| | - Patrick Couvreur
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud 11, IFR 141, 5 rue J.B. Clément, 92296 Châtenay Malabry, France
| |
Collapse
|
210
|
Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 2009; 69:361-92. [PMID: 19275278 DOI: 10.2165/00003495-200969030-00010] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Liposomal amphotericin B (AmBisome) is a lipid-associated formulation of the broad-spectrum polyene antifungal agent amphotericin B. It is active against clinically relevant yeasts and moulds, including Candida spp., Aspergillus spp. and filamentous moulds such as Zygomycetes, and is approved for the treatment of invasive fungal infections in many countries worldwide. It was developed to improve the tolerability profile of amphotericin B deoxycholate, which was for many decades considered the gold standard of antifungal treatment, despite being associated with infusion-related events and nephrotoxicity. In well controlled trials, liposomal amphotericin B had similar efficacy to amphotericin B deoxycholate and amphotericin B lipid complex as empirical therapy in adult and paediatric patients with febrile neutropenia. In addition, caspofungin was noninferior to liposomal amphotericin B as empirical therapy in adult patients with febrile neutropenia. For the treatment of confirmed invasive fungal infections, liposomal amphotericin B was more effective than amphotericin B deoxycholate treatment in patients with disseminated histoplasmosis and AIDS, and was noninferior to amphotericin B deoxycholate in patients with acute cryptococcal meningitis and AIDS. In adults, micafungin was shown to be noninferior to liposomal amphotericin B for the treatment of candidaemia and invasive candidiasis. Data from animal studies suggested that higher dosages of liposomal amphotericin B might improve efficacy; however, in the AmBiLoad trial in patients with invasive mould infection, there was no statistical difference in efficacy between the standard dosage of liposomal amphotericin B 3 mg/kg/day and a higher 10 mg/kg/day dosage, although the standard dosage was better tolerated. Despite being associated with fewer infusion-related adverse events and less nephrotoxicity than amphotericin B deoxycholate and amphotericin B lipid complex, liposomal amphotericin B use is still limited to some extent by these adverse events. Both echinocandins were better tolerated than liposomal amphotericin B. The cost of liposomal amphotericin B therapy may also restrict its use, but further pharmacoeconomic studies are required to fully define its cost effectiveness compared with other antifungal agents. Based on comparative data from well controlled trials, extensive clinical experience and its broad spectrum of activity, liposomal amphotericin B remains a first-line option for empirical therapy in patients with febrile neutropenia and in those with disseminated histoplasmosis, and is an option for the treatment of AIDS-associated cryptococcal meningitis, and for invasive Candida spp. or Aspergillus spp. infections. Amphotericin B, a macrocyclic, polyene antifungal agent, is thought to act by binding to ergosterol, the principal sterol in fungal cell membranes and Leishmania cells. This results in a change in membrane permeability, causing metabolic disturbance, leakage of small molecules and, as a consequence, cell death. In vitro and in vivo studies have shown that liposomal amphotericin B remains closely associated with the liposomes in the circulation, thereby reducing the potential for nephrotoxicity and infusion-related toxicity associated with conventional amphotericin B. Amphotericin B shows very good in vitro activity against a broad spectrum of clinically relevant fungal isolates, including most strains of Candida spp. and Aspergillus spp., and other filamentous fungi such as Zygomycetes. Liposomal amphotericin B has proven effective in various animal models of fungal infections, including those for candidiasis, aspergillosis, fusariosis and zygomycosis. Liposomal amphotericin B also shows immunomodulatory effects, although the mechanisms involved are not fully understood, and differ from those of amphotericin B deoxycholate and amphotericin B colloidal dispersion. In adult patients with febrile neutropenia, intravenous liposomal amphotericin B has nonlinear pharmacokinetics, with higher than dose-proportional increases in exposure being consistent with reticuloendothelial saturation and redistribution of amphotericin B in the plasma compartment. Liposomal amphotericin B is rapidly and extensively distributed after single and multiple doses, with steady-state concentrations of amphotericin B attained within 4 days and no clinically relevant accumulation of the drug following multiple doses of 1-7.5 mg/kg/day. In autopsy tissue, the highest concentrations of the drug were found in the liver and spleen, followed by the kidney, lung, myocardium and brain tissue. Elimination of liposomal amphotericin B, like that of amphotericin B deoxycholate, is poorly understood; its route of metabolism is not known and its excretion has not been studied. The terminal elimination half-life is about 7 hours. No dosage adjustment is required based on age or renal impairment. In several randomized, double-blind trials (n = 73-1095) in adult and/or paediatric patients, liposomal amphotericin B was effective as empirical therapy or as treatment for confirmed invasive fungal infections, including invasive candidiasis, candidaemia, invasive mould infection (mainly aspergillosis), histoplasmosis and cryptococcal meningitis. All agents were administered as an intravenous infusion; the typical dosage for liposomal amphotericin B was 3 mg/kg/day. Treatment was generally given for 1-2 weeks. Participants in trials evaluating empirical therapy had neutropenia and a persistent fever despite antibacterial treatment and had received chemotherapy or undergone haematopoietic stem cell transplantation. As empirical therapy in adult and paediatric patients, liposomal amphotericin B appeared to be as effective as amphotericin B deoxycholate (approximately 50% of patients in each group achieved treatment success) or amphotericin B lipid complex (approximately 40% of liposomal amphotericin B recipients experienced treatment success). Of note, in the first trial, results of the statistical test to determine equivalence between treatments were not reported. In the second trial, efficacy was assessed as an 'other' endpoint. In another trial, caspofungin was shown to be noninferior to liposomal amphotericin B, with approximately one-third of patients in each group experiencing treatment success. Liposomal amphotericin B was significantly more effective than amphotericin B deoxycholate for the treatment of moderate to severe disseminated histoplasmosis in patients with AIDS, with 88% and 64% of patients, respectively, having a successful response. Liposomal amphotericin B was noninferior to amphotericin B deoxycholate for the treatment of cryptococcal meningitis in terms of mycological success. Micafungin therapy was shown to be noninferior to liposomal amphotericin B for the treatment of adult patients with candidaemia or invasive candidiasis. In a substudy in paediatric patients, which was not powered to determine noninferiority, liposomal amphotericin B was as effective as micafungin for the treatment of candidaemia or invasive candidiasis. In this patient population, within each trial, 90% of adult patients and approximately three-quarters of paediatric patients in both treatment groups experienced a successful response. In patients with invasive mould infection (mainly aspergillosis), there was no difference in efficacy between a higher dosage of liposomal amphotericin B (10 mg/kg/day) and the standard dosage (3 mg/kg/day), with 46% and 50% of patients experiencing a favourable overall response. In well designed clinical trials, liposomal amphotericin B was generally at least as well tolerated as other lipid-associated formulations of amphotericin B and better tolerated than amphotericin B deoxycholate in adult and paediatric patients. Compared with other amphotericin B formulations, liposomal amphotericin B treatment was associated with a lower incidence of infusion-related adverse events and nephrotoxicity. A higher than recommended dosage of liposomal amphotericin B (10 mg/kg/day) was associated with an increased incidence of nephrotoxicity compared with the standard dosage (3 mg/kg/day), although the incidence of infusion-related reactions did not differ between treatment groups. In general, liposomal amphotericin B treatment was not as well tolerated as echinocandin therapy in well designed clinical trials. As empirical therapy or for the treatment of confirmed invasive fungal infections in adult patients, liposomal amphotericin B recipients experienced more infusion-related events and nephrotoxicity than caspofungin or micafungin recipients. There was no difference in the incidence of these adverse events between the liposomal amphotericin B and micafungin groups in a study in paediatric patients.
Collapse
Affiliation(s)
- Marit D Moen
- Wolters Kluwer Health
- Adis, Auckland, New Zealand.
| | | | | |
Collapse
|
211
|
Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy. Biophys Chem 2009; 143:95-101. [PMID: 19457605 DOI: 10.1016/j.bpc.2009.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/23/2022]
Abstract
Amphotericin B (AmB) is a life-saving polyene antibiotic used to treat deep-seated mycotic infections. Both the mode of therapeutic action as well as toxic side effects are directly dependent on molecular organization of the drug. Binding of AmB to lipid monolayers formed with dipalmitoylphosphatidylcholine, pure and containing 40 mol% cholesterol or ergosterol, the sterols of human and fungi respectively, has been examined by means of Fluorescence Lifetime Imaging Microscopy. AmB emits fluorescence with the characteristic lifetimes dependent on actual molecular organization: tau(M2) < or = 10 ps and tau(M1) = 0.35 ns in the monomeric state, the emission from the S(2) and the S(1) states respectively and tau(D) = 14 ns and tau(A) = 3.5 ns in the form of a dimer and associated dimers respectively. Analysis of the Langmuir-Blodgett films reveals that AmB binds to the lipid membranes and to the cholesterol-containing lipid membranes preferentially in the form of associated dimers. The same form of AmB appears in the membranes containing ergosterol but additionally the monomers and dimers of the drug can be observed, which can severely affect molecular organization of the lipid membrane. The results are discussed in terms of selectivity of AmB towards the ergosterol-containing biomembranes of fungi.
Collapse
|
212
|
Amphotericin B-induced renal tubular cell injury is mediated by Na+ Influx through ion-permeable pores and subsequent activation of mitogen-activated protein kinases and elevation of intracellular Ca2+ concentration. Antimicrob Agents Chemother 2009; 53:1420-6. [PMID: 19139282 DOI: 10.1128/aac.01137-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amphotericin B (AMB) is one of the most effective antifungal agents; however, its use is often limited by the occurrence of adverse events, especially nephrotoxicity. The present study was designed to determine the possible mechanisms underlying the nephrotoxic action of AMB. The exposure of a porcine proximal renal tubular cell line (LLC-PK1 cells) to AMB caused cell injury, as assessed by mitochondrial enzyme activity, the leakage of lactate dehydrogenase, and tissue ATP depletion. Propidium iodide uptake was enhanced, while terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was not affected by AMB, suggesting a lack of involvement of apoptosis in AMB-induced cell injury. The cell injury was inhibited by the depletion of membrane cholesterol with methyl-beta-cyclodextrin, which lowered the extracellular Na(+) concentration or the chelation of intracellular Ca(2+). The rise in the intracellular Ca(2+) concentration may be mediated through the activation of the ryanodine receptor (RyR) on the endoplasmic reticulum and the mitochondrial Na(+)-Ca(2+) exchanger, since cell injury was attenuated by dantrolene (an RyR antagonist) and CGP37157 (an Na(+)-Ca(2+) exchanger inhibitor). Moreover, AMB-induced cell injury was reversed by PD169316 (a p38 mitogen-activated protein [MAP] kinase inhibitor), c-Jun N-terminal kinase inhibitor II, and PD98059 (a MEK1/2 inhibitor). The phosphorylations of these MAP kinases were enhanced by AMB in a calcium-independent manner, suggesting the involvement of MAP kinases in AMB-induced cell injury. These findings suggest that Na(+) entry through membrane pores formed by the association of AMB with membrane cholesterol leads to the activation of MAP kinases and the elevation of the intracellular Ca(2+) concentration, leading to renal tubular cell injury.
Collapse
|
213
|
Zhang C, Moretti R, Jiang J, Thorson JS. The in vitro characterization of polyene glycosyltransferases AmphDI and NysDI. Chembiochem 2008; 9:2506-14. [PMID: 18798210 PMCID: PMC2947747 DOI: 10.1002/cbic.200800349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Indexed: 11/09/2022]
Abstract
The overproduction, purification, and in vitro characterization of the polyene glycosyltransferases (GTs) AmphDI and NysDI are reported. A novel nucleotidyltransferase mutant (RmlA Q83D) for the chemoenzymatic synthesis of unnatural GDP-sugar donors in conjunction with polyene GT-catalyzed sugar exchange/reverse reactions allowed the donor and acceptor specificities of these novel enzymes to be probed. The evaluation of polyene GT aglycon and GDP-sugar donor specificity revealed some tolerance to aglycon structural diversity, but stringent sugar specificity, and culminated in new polyene analogues in which L-gulose or D-mannose replace the native sugar D-mycosamine.
Collapse
Affiliation(s)
- Changsheng Zhang
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Rocco Moretti
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Jiqing Jiang
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Jon S. Thorson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| |
Collapse
|
214
|
Espada R, Valdespina S, Alfonso C, Rivas G, Ballesteros MP, Torrado JJ. Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm 2008; 361:64-9. [DOI: 10.1016/j.ijpharm.2008.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 11/16/2022]
|
215
|
Gagoś M, Hereć M, Arczewska M, Czernel G, Dalla Serra M, Gruszecki WI. Anomalously high aggregation level of the polyene antibiotic amphotericin B in acidic medium: Implications for the biological action. Biophys Chem 2008; 136:44-9. [DOI: 10.1016/j.bpc.2008.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/30/2022]
|