201
|
Thermodynamics of protein folding: methodology, data analysis and interpretation of data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:305-316. [DOI: 10.1007/s00249-019-01362-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 01/17/2023]
|
202
|
Walker EJ, Bettinger JQ, Welle KA, Hryhorenko JR, Ghaemmaghami S. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Proc Natl Acad Sci U S A 2019; 116:6081-6090. [PMID: 30846556 PMCID: PMC6442572 DOI: 10.1073/pnas.1819851116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The stability of proteins influences their tendency to aggregate, undergo degradation, or become modified in cells. Despite their significance to understanding protein folding and function, quantitative analyses of thermodynamic stabilities have been mostly limited to soluble proteins in purified systems. We have used a highly multiplexed proteomics approach, based on analyses of methionine oxidation rates, to quantify stabilities of ∼10,000 unique regions within ∼3,000 proteins in human cell extracts. The data identify lysosomal and extracellular proteins as the most stable ontological subsets of the proteome. We show that the stability of proteins impacts their tendency to become oxidized and is globally altered by the osmolyte trimethylamine N-oxide (TMAO). We also show that most proteins designated as intrinsically disordered retain their unfolded structure in the complex environment of the cell. Together, the data provide a census of the stability of the human proteome and validate a methodology for global quantitation of folding thermodynamics.
Collapse
Affiliation(s)
- Ethan J Walker
- Department of Biology, University of Rochester, NY 14627
- Department of Biochemistry, University of Rochester Medical Center, NY 14627
| | | | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, NY 14627
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, NY 14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, NY 14627;
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, NY 14627
| |
Collapse
|
203
|
Ionic liquids and protein folding-old tricks for new solvents. Biophys Rev 2019; 11:209-225. [PMID: 30888574 DOI: 10.1007/s12551-019-00509-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
One important aspect of the green chemistry revolution has been the use of ionic liquids as the solvent in liquid-phase enzymatic catalysis. An essential requirement for protein enzyme function is the correct folding of the polypeptide chain into its functional "native" state. Quantitative assessment of protein structure may be carried out either empirically, or by using model-based characterization procedures, in which the parameters are defined in terms of a standard reference state. In this short note, we briefly outline the nature of the parameters associated with different empirical and model-based characterization procedures and point out factors which affect their interpretation when using a base solvent different from water. This review principally describes arguments developed by Wakayama et al., Protein Solubility and Amorphous Aggregation: From Academic Research to Applications in Drug Discovery and Bioindustry, 2019, edited by Y. Kuroda and F. Arisaka; CMC Publishing House. Sections of that work are translated from the original Japanese and republished here with the full permission of CMC Publishing Corporation.
Collapse
|
204
|
Networks of electrostatic and hydrophobic interactions modulate the complex folding free energy surface of a designed βα protein. Proc Natl Acad Sci U S A 2019; 116:6806-6811. [PMID: 30877249 DOI: 10.1073/pnas.1818744116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The successful de novo design of proteins can provide insights into the physical chemical basis of stability, the role of evolution in constraining amino acid sequences, and the production of customizable platforms for engineering applications. Previous guanidine hydrochloride (GdnHCl; an ionic denaturant) experiments of a designed, naturally occurring βα fold, Di-III_14, revealed a cooperative, two-state unfolding transition and a modest stability. Continuous-flow mixing experiments in our laboratory revealed a simple two-state reaction in the microsecond to millisecond time range and consistent with the thermodynamic results. In striking contrast, the protein remains folded up to 9.25 M in urea, a neutral denaturant, and hydrogen exchange (HDX) NMR analysis in water revealed the presence of numerous high-energy states that interconvert on a time scale greater than seconds. The complex protection pattern for HDX corresponds closely with a pair of electrostatic networks on the surface and an extensive network of hydrophobic side chains in the interior of the protein. Mutational analysis showed that electrostatic and hydrophobic networks contribute to the resistance to urea denaturation for the WT protein; remarkably, single charge reversals on the protein surface restore the expected urea sensitivity. The roughness of the energy surface reflects the densely packed hydrophobic core; the removal of only two methyl groups eliminates the high-energy states and creates a smooth surface. The design of a very stable βα fold containing electrostatic and hydrophobic networks has created a complex energy surface rarely observed in natural proteins.
Collapse
|
205
|
Visconti L, Malagrinò F, Toto A, Gianni S. The kinetics of folding of the NSH2 domain from p85. Sci Rep 2019; 9:4058. [PMID: 30858483 PMCID: PMC6411737 DOI: 10.1038/s41598-019-40480-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
SH2 domains are protein domains that mediate protein-protein interaction through the recognition and binding of specific sequences containing phosphorylated tyrosines. The p85 protein is the regulatory subunit of the heterodimeric enzyme PI3K, an important enzyme involved in several molecular pathways. In this work we characterize the folding kinetics of the NSH2 domain of p85. Our data clearly reveal peculiar folding kinetics, characterized by an apparent mismatch between the observed folding and unfolding kinetics. Taking advantage of double mixing stopped flow experiments and site directed mutagenesis we demonstrate that such behavior is due to the cis/trans isomerization of the peptide bond between D73 and P74, being in a cis conformation in the native protein. Our data are discussed in comparison with previous works on the folding of other SH2 domains.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
206
|
Thermal unfolding of calreticulin. Structural and thermodynamic characterization of the transition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:175-183. [DOI: 10.1016/j.bbapap.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
207
|
Bai N, Roder H, Dickson A, Karanicolas J. Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities. Sci Rep 2019; 9:2650. [PMID: 30804351 PMCID: PMC6389909 DOI: 10.1038/s41598-018-37072-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Differential scanning fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, has become a commonly-used approach for detecting protein-ligand interactions, particularly in the context of fragment screening. Upon binding to a folded protein, most ligands stabilize the protein; thus, observing an increase in the temperature at which the protein unfolds as a function of ligand concentration can serve as evidence of a direct interaction. While experimental protocols for this assay are well-developed, it is not straightforward to extract binding constants from the resulting data. Because of this, DSF is often used to probe for an interaction, but not to quantify the corresponding binding constant (Kd). Here, we propose a new approach for analyzing DSF data. Using unfolding curves at varying ligand concentrations, our "isothermal" approach collects from these the fraction of protein that is folded at a single temperature (chosen to be temperature near the unfolding transition). This greatly simplifies the subsequent analysis, because it circumvents the complicating temperature dependence of the binding constant; the resulting constant-temperature system can then be described as a pair of coupled equilibria (protein folding/unfolding and ligand binding/unbinding). The temperature at which the binding constants are determined can also be tuned, by adding chemical denaturants that shift the protein unfolding temperature. We demonstrate the application of this isothermal analysis using experimental data for maltose binding protein binding to maltose, and for two carbonic anhydrase isoforms binding to each of four inhibitors. To facilitate adoption of this new approach, we provide a free and easy-to-use Python program that analyzes thermal unfolding data and implements the isothermal approach described herein ( https://sourceforge.net/projects/dsf-fitting ).
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Heinrich Roder
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alex Dickson
- Department of Biochemistry & Molecular Biology and Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
208
|
Faraj SE, Noguera ME, Delfino JM, Santos J. Global Implications of Local Unfolding Phenomena, Probed by Cysteine Reactivity in Human Frataxin. Sci Rep 2019; 9:1731. [PMID: 30742023 PMCID: PMC6370780 DOI: 10.1038/s41598-019-39429-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
Local events that affect specific regions of proteins are of utmost relevance for stability and function. The aim of this study is to quantitatively assess the importance of locally-focused dynamics by means of a simple chemical modification procedure. Taking human Frataxin as a working model, we investigated local fluctuations of the C-terminal region (the last 16 residues of the protein) by means of three L → C replacement mutants: L98C, L200C and L203C. The conformation and thermodynamic stability of each variant was assessed. All the variants exhibited native features and high stabilities: 9.1 (wild type), 8.1 (L198C), 7.0 (L200C) and 10.0 kcal mol-1 (L203C). In addition, kinetic rates of Cys chemical modification by DTNB and DTDPy were measured, conformational dynamics data were extracted and free energy for the local unfolding of the C-terminal region was estimated. The analysis of these results indicates that the conformation of the C-terminal region fluctuates with partial independence from global unfolding events. Additionally, numerical fittings of the kinetic model of the process suggest that the local transition occurs in the seconds to minutes timescale. In fact, standard free energy differences for local unfolding were found to be significantly lower than those of the global unfolding reaction, showing that chemical modification results may not be explained in terms of the global unfolding reaction alone. These results provide unequivocal experimental evidence of local phenomena with global effects and contribute to understanding how global and local stability are linked to protein dynamics.
Collapse
Affiliation(s)
- Santiago E Faraj
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - Martín E Noguera
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - José María Delfino
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - Javier Santos
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina. .,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biociencias, Biotecnología y Biomedicina (iB3). Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| |
Collapse
|
209
|
PFDB: A standardized protein folding database with temperature correction. Sci Rep 2019; 9:1588. [PMID: 30733462 PMCID: PMC6367381 DOI: 10.1038/s41598-018-36992-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/22/2018] [Indexed: 11/23/2022] Open
Abstract
We constructed a standardized protein folding kinetics database (PFDB) in which the logarithmic rate constants of all listed proteins are calculated at the standard temperature (25 °C). A temperature correction based on the Eyring–Kramers equation was introduced for proteins whose folding kinetics were originally measured at temperatures other than 25 °C. We verified the temperature correction by comparing the logarithmic rate constants predicted and experimentally observed at 25 °C for 14 different proteins, and the results demonstrated improvement of the quality of the database. PFDB consists of 141 (89 two-state and 52 non-two-state) single-domain globular proteins, which has the largest number among the currently available databases of protein folding kinetics. PFDB is thus intended to be used as a standard for developing and testing future predictive and theoretical studies of protein folding. PFDB can be accessed from the following link: http://lee.kias.re.kr/~bala/PFDB.
Collapse
|
210
|
Evans ED, Gates ZP, Sun ZYJ, Mijalis AJ, Pentelute BL. Conformational Stabilization and Rapid Labeling of a 29-Residue Peptide by a Small Molecule Reaction Partner. Biochemistry 2019; 58:1343-1353. [DOI: 10.1021/acs.biochem.8b00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ethan D. Evans
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zachary P. Gates
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Alexander J. Mijalis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
211
|
Konno S, Doi K, Ishimori K. Uncovering dehydration in cytochrome c refolding from urea- and guanidine hydrochloride-denatured unfolded state by high pressure spectroscopy. Biophys Physicobiol 2019; 16:18-27. [PMID: 30775200 PMCID: PMC6373425 DOI: 10.2142/biophysico.16.0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/16/2018] [Indexed: 12/01/2022] Open
Abstract
To investigate the dehydration associated with protein folding, the partial molar volume changes for protein unfolding (ΔVu) in cytochrome c (Cyt c) were determined using high pressure absorption spectroscopy. ΔVu values for the unfolding to urea- and guanidine hydrochloride (GdnHCl)-denatured Cyt c were estimated to be 56±5 and 29±1 mL mol−1, respectively. Considering that the volume change for hydration of hydrophobic groups is positive and that Cyt c has a covalently bonded heme, a positive ΔVu reflects the primary contribution of the hydration of heme. Because of the marked tendency of guanidium ions to interact with hydrophobic groups, a smaller number of water molecules were hydrated with hydrophobic groups in GdnHCl-denatured Cyt c than in urea-denatured Cyt c, resulting in the smaller positive ΔVu. On the other hand, urea is a relatively weak denaturant and urea-denatured Cyt c is not completely hydrated, which retains the partially folded structures. To unfold such partial structures, we introduced a mutation near the heme binding site, His26, to Gln, resulting in a negatively shifted ΔVu (4±2 mL mol−1) in urea-denatured Cyt c. The formation of the more solvated and less structured state in the urea-denatured mutant enhanced hydration to the hydrophilic groups in the unfolding process. Therefore, we confirmed the hydration of amino acid residues in the protein unfolding of Cyt c by estimating ΔVu, which allows us to discuss the hydrated structures in the denatured states of proteins.
Collapse
Affiliation(s)
- Shohei Konno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kentaro Doi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
212
|
Visconti L, Malagrinò F, Broggini L, De Luca CMG, Moda F, Gianni S, Ricagno S, Toto A. Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State. Int J Mol Sci 2019; 20:E396. [PMID: 30669253 PMCID: PMC6359115 DOI: 10.3390/ijms20020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/23/2022] Open
Abstract
Beta-2 microglobulin (β2m) is a protein responsible for a pathologic condition, known as dialysis-related amyloidosis (DRA), caused by its aggregation and subsequent amyloid formation. A naturally occurring mutation of β2m, D76N, presents a higher amyloidogenic propensity compared to the wild type counterpart. Since the three-dimensional structure of the protein is essentially unaffected by the mutation, the increased aggregation propensity of D76N has been generally ascribed to its lower thermodynamic stability and increased dynamics. In this study we compare the equilibrium unfolding and the aggregation propensity of wild type β2m and D76N variant at different experimental conditions. Our data revealed a surprising effect of the D76N mutation in the residual structure of the denatured state, which appears less compact than that of the wild type protein. A careful investigation of the structural malleability of the denatured state of wild type β2m and D76N pinpoint a clear role of the denatured state in triggering the amyloidogenic propensity of the protein. The experimental results are discussed in the light of the previous work on β2m and its role in disease.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Divisione di Neurologia 5-Neuropatologia, 20133 Milano, Italy.
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Divisione di Neurologia 5-Neuropatologia, 20133 Milano, Italy.
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
213
|
The insertion of bioactive peptides at the C-terminal end of an 11S globulin changes the structural stability and improves the antihypertensive activity. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
214
|
Roche J, Royer CA, Roumestand C. Exploring Protein Conformational Landscapes Using High-Pressure NMR. Methods Enzymol 2019; 614:293-320. [DOI: 10.1016/bs.mie.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
215
|
Floyd JA, Siska C, Clark RH, Kerwin BA, Shaver JM. Adapting the chemical unfolding assay for high-throughput protein screening using experimental and spectroscopic corrections. Anal Biochem 2018; 563:1-8. [PMID: 30236889 PMCID: PMC6226613 DOI: 10.1016/j.ab.2018.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
The chemical unfolding (denaturation) assay can be used to calculate the change in the Gibbs free energy of unfolding, ΔG, and inflection point of unfolding, to collectively inform on molecule stability. Here, we evaluated methods for calculating the ΔG across 23 monoclonal antibody sequence variants. These methods are based on how the measured output (intrinsic fluorescence intensity) is treated, including utilizing (a) a single wavelength, (b) a ratio of two wavelengths, (c) a ratio of a single wavelength to an area, and (d) a scatter correction plus a ratio of a single wavelength to an area. When applied to the variants, the three ratio methods showed comparable results, with a similar pooled standard deviation for the ΔG calculation, while the single-wavelength method is shown as inadequate for the data in this study. However, when light scattering is introduced to simulated data, only the scatter-correction area normalization method proves robust. Using this method, common plate-based spectrophotometers found in many laboratories can be used for high-throughput screening of mAb variants and formulation stability studies.
Collapse
Affiliation(s)
- J Alaina Floyd
- Just Biotherapeutics, Inc., 401 Terry Ave N., Seattle, WA, 98109, USA
| | - Christine Siska
- Just Biotherapeutics, Inc., 401 Terry Ave N., Seattle, WA, 98109, USA
| | - Rutilio H Clark
- Just Biotherapeutics, Inc., 401 Terry Ave N., Seattle, WA, 98109, USA
| | - Bruce A Kerwin
- Just Biotherapeutics, Inc., 401 Terry Ave N., Seattle, WA, 98109, USA
| | - Jeremy M Shaver
- Just Biotherapeutics, Inc., 401 Terry Ave N., Seattle, WA, 98109, USA.
| |
Collapse
|
216
|
Deshpande M, Sathe SK. Equilibrium unfolding and refolding of black gram ( Vignamungo) phaseolin. J Food Biochem 2018. [DOI: 10.1111/jfbc.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maithili Deshpande
- Department of Nutrition, Food & Exercise Sciences Florida State University Tallahassee Florida
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal India
| | - Shridhar K. Sathe
- Department of Nutrition, Food & Exercise Sciences Florida State University Tallahassee Florida
| |
Collapse
|
217
|
A small single-domain protein folds through the same pathway on and off the ribosome. Proc Natl Acad Sci U S A 2018; 115:12206-12211. [PMID: 30409803 DOI: 10.1073/pnas.1810517115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In vivo, proteins fold and function in a complex environment subject to many stresses that can modulate a protein's energy landscape. One aspect of the environment pertinent to protein folding is the ribosome, since proteins have the opportunity to fold while still bound to the ribosome during translation. We use a combination of force and chemical denaturant (chemomechanical unfolding), as well as point mutations, to characterize the folding mechanism of the src SH3 domain both as a stalled ribosome nascent chain and free in solution. Our results indicate that src SH3 folds through the same pathway on and off the ribosome. Molecular simulations also indicate that the ribosome does not affect the folding pathway for this small protein. Taken together, we conclude that the ribosome does not alter the folding mechanism of this small protein. These results, if general, suggest the ribosome may exert a bigger influence on the folding of multidomain proteins or protein domains that can partially fold before the entire domain sequence is outside the ribosome exit tunnel.
Collapse
|
218
|
Tomášková N, Varhač R, Lysáková V, Musatov A, Sedlák E. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1073-1083. [DOI: 10.1016/j.bbapap.2018.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
219
|
Hwang S, Nicholson EM. Thermodynamic characterization for the denatured state of bovine prion protein and the BSE Associated variant E211K. Prion 2018; 12:301-309. [PMID: 30354921 PMCID: PMC6277186 DOI: 10.1080/19336896.2018.1534485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propagation of transmissible spongiform encephalopathies involves the conversion of cellular prion protein, PrPC, into a misfolded oligomeric form, PrPSc. The most common hereditary prion disease is a genetic form of Creutzfeldt-Jakob disease in humans, in which a mutation in the prion gene results in a glutamic acid to lysine substitution at position 200 (E200K) in PrP. In cattle, the analogous amino acid substitution is found at residue 211 (E211K) and has been associated with a case of bovine spongiform encephalopathy. Here, we have compared the secondary structure of E211K to that of wild type using circular dichroism and completed a thermodynamic analysis of the folding of recombinant wild type and E211K variants of the bovine prion protein. The secondary structure of the E211K variant was essentially indistinguishable from that of wild type. The thermodynamic stability of E211K substitution showed a slight destabilization relative to the wild type consistent with results reported for recombinant human prion protein and its mutant E200K. In addition, the E211K variant exhibits a similarly compact denatured state to that of wild type based upon similar m-value and change in heat capacity of unfolding for the proteins. Together these results indicate that residual structure in the denatured state of bPrP is present in both the wild type protein and BSE associated variant E211K. Given this observation, as well as folding similarities reported for other disease associated variants of PrP it is worth consideration that functional aspects of PrP conformation may play a role in the misfolding process.
Collapse
Affiliation(s)
- Soyoun Hwang
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| | - Eric M Nicholson
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| |
Collapse
|
220
|
Bergsdorf C, Wright SK. A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays. Methods Enzymol 2018; 610:135-165. [PMID: 30390797 DOI: 10.1016/bs.mie.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 30 years, drug discovery has evolved from a pure phenotypic approach to an integrated target-based strategy. The implementation of high-throughput biochemical and cellular assays has enabled the screening of large compound libraries which has become an important and often times the main source of new chemical matter that serve as starting point for medicinal chemistry efforts. In addition, biophysical methods measuring the physical interaction (affinity) between a low molecular weight ligand and a target protein became an integral part of hit validation/optimization to rule out false positives due to assay artifacts. Recent advances in throughput, robustness, and sensitivity of biophysical affinity screening methods have broadened their application in hit identification and validation such that they can now complement classical functional readouts. As a result, new target classes can be accessed that have not been amenable to functional assays. In this chapter, two affinity screening methods, differential scanning fluorimetry and surface plasmon resonance, which are broadly utilized in both academia and pharmaceutical industry are discussed in respect to their use in hit identification and validation. These methods exemplify how assays which differ in complexity, throughput, and information content can support the hit identification/validation process. This chapter focuses on the practical aspects and caveats of these techniques in order to enable the reader to establish their own affinity-based screens in both formats.
Collapse
Affiliation(s)
| | - S Kirk Wright
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| |
Collapse
|
221
|
Roman J, Français O, Jarroux N, Patriarche G, Pelta J, Bacri L, Le Pioufle B. Solid-State Nanopore Easy Chip Integration in a Cheap and Reusable Microfluidic Device for Ion Transport and Polymer Conformation Sensing. ACS Sens 2018; 3:2129-2137. [PMID: 30284814 DOI: 10.1021/acssensors.8b00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solid-state nanopores have a huge potential in upcoming societal challenging applications in biotechnologies, environment, health, and energy. Nowadays, these sensors are often used within bulky fluidic devices that can cause cross-contaminations and risky nanopore chips manipulations, leading to a short experimental lifetime. We describe the easy, fast, and cheap innovative 3D-printer-helped protocol to manufacture a microfluidic device permitting the reversible integration of a silicon based chip containing a single nanopore. We show the relevance of the shape of the obtained channels thanks to finite elements simulations. We use this device to thoroughly investigate the ionic transport through the solid-state nanopore as a function of applied voltage, salt nature, and concentration. Furthermore, its reliability is proved through the characterization of a polymer-based model of protein-urea interactions on the nanometric scale thanks to a hairy nanopore.
Collapse
Affiliation(s)
- Jean Roman
- ENS Paris-Saclay, CNRS, Institut d’Alembert, SATIE, Université Paris-Saclay, Cachan F-94230, France
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Olivier Français
- ESIEE-Paris, ESYCOM, Université Paris Est, Noisy-Le-Grand F-93160, France
| | - Nathalie Jarroux
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Gilles Patriarche
- C2N, CNRS, Université Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, Marcoussis F-91460, France
| | - Juan Pelta
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Laurent Bacri
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Bruno Le Pioufle
- ENS Paris-Saclay, CNRS, Institut d’Alembert, SATIE, Université Paris-Saclay, Cachan F-94230, France
| |
Collapse
|
222
|
Kumirov VK, Dykstra EM, Hall BM, Anderson WJ, Szyszka TN, Cordes MHJ. Multistep mutational transformation of a protein fold through structural intermediates. Protein Sci 2018; 27:1767-1779. [PMID: 30051937 DOI: 10.1002/pro.3488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022]
Abstract
New protein folds may evolve from existing folds through metamorphic evolution involving a dramatic switch in structure. To mimic pathways by which amino acid sequence changes could induce a change in fold, we designed two folded hybrids of Xfaso 1 and Pfl 6, a pair of homologous Cro protein sequences with ~40% identity but different folds (all-α vs. α + β, respectively). Each hybrid, XPH1 or XPH2, is 85% identical in sequence to its parent, Xfaso 1 or Pfl 6, respectively; 55% identical to its noncognate parent; and ~70% identical to the other hybrid. XPH1 and XPH2 also feature a designed hybrid chameleon sequence corresponding to the C-terminal region, which switched from α-helical to β-sheet structure during Cro evolution. We report solution nuclear magnetic resonance (NMR) structures of XPH1 and XPH2 at 0.3 Å and 0.5 Å backbone root mean square deviation (RMSD), respectively. XPH1 retains a global fold generally similar to Xfaso 1, and XPH2 retains a fold similar to Pfl 6, as measured by TM-align scores (~0.7), DALI Z-scores (7-9), and backbone RMSD (2-3 Å RMSD for the most ordered regions). However, these scores also indicate significant deviations in structure. Most notably, XPH1 and XPH2 have different, and intermediate, secondary structure content relative to Xfaso 1 and Pfl 6. The multistep progression in sequence, from Xfaso 1 to XPH1 to XPH2 to Pfl 6, thus involves both abrupt and gradual changes in folding pattern. The plasticity of some protein folds may allow for "polymetamorphic" evolution through intermediate structures.
Collapse
Affiliation(s)
- Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Emily M Dykstra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Taylor N Szyszka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| |
Collapse
|
223
|
Effect of Chemical Oxidation on the Higher Order Structure, Stability, Aggregation, and Biological Function of Interferon Alpha-2a: Role of Local Structural Changes Detected by 2D NMR. Pharm Res 2018; 35:232. [PMID: 30324266 DOI: 10.1007/s11095-018-2518-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Oxidized interferons have been shown to aggregate and cause immunogenicity. In this study, the structural mechanisms underlying oxidation-induced interferon alpha-2a (IFNA2a) aggregation and loss of function were examined. METHODS IFNA2a was oxidized using 0.037% vol/vol hydrogen peroxide. Oxidized protein was probed using biophysical methods that include denaturant melts, particle counting, proteolysis-coupled mass spectrometry, and 2D NMR. RESULTS Oxidized IFNA2a did not show major changes in its secondary structure, but showed minor changes in tertiary structure when compared to the unoxidized protein. In addition, a significant loss of conformational stability was observed upon oxidation. Correspondingly, increased protein aggregation was observed resulting in the formation of sub-visible particles. Oxidized protein showed decreased biological function in terms of its anti-viral potency and cytopathic inhibition efficacy. Proteolysis-coupled mass spectrometry identified five methionine residues that were oxidized with no correlation between the extent of oxidation and their accessible surface area. 2D 15N-1H HSQC NMR identified residue-level local structural changes in the protein upon oxidation, which were not detectable by global probes such as far-UV circular dichroism and fluorescence. CONCLUSIONS Increased protein aggregation and decreased function of IFNA2a upon oxidation correlated with the site of modification identified by proteolysis-coupled mass spectrometry and local structural changes in the protein detected by 2D NMR.
Collapse
|
224
|
Stewart KL, Rathore D, Dodds ED, Cordes MHJ. Increased sequence hydrophobicity reduces conformational specificity: A mutational case study of the Arc repressor protein. Proteins 2018; 87:23-33. [PMID: 30315592 DOI: 10.1002/prot.25613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022]
Abstract
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.
Collapse
Affiliation(s)
- Katie L Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Deepali Rathore
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| |
Collapse
|
225
|
Machado LESF, De Paula VS, Pustovalova Y, Bezsonova I, Valente AP, Korzhnev DM, Almeida FCL. Conformational Dynamics of a Cysteine-Stabilized Plant Defensin Reveals an Evolutionary Mechanism to Expose Hydrophobic Residues. Biochemistry 2018; 57:5797-5806. [PMID: 30207151 DOI: 10.1021/acs.biochem.8b00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sugar cane defensin 5 (Sd5) is a small antifungal protein, whose structure is held together by four conserved disulfide bridges. Sd5 and other proteins sharing a cysteine-stabilized α-β (CSαβ) fold lack a regular hydrophobic core. Instead, they are stabilized by tertiary contacts formed by surface-exposed hydrophilic and hydrophobic residues. Despite excessive cross-links, Sd5 exhibits complex millisecond conformational dynamics involving all secondary structure elements. We used Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) measurements performed at different temperatures and denaturant concentrations to probe brief excursions of Sd5 to a sparsely populated "excited" state. Temperature-dependent CPMG RD experiments reveal that the excited state is enthalpically unfavorable, suggesting a rearrangement of stabilizing contacts formed by surface-exposed side chains and/or secondary structure, while the experiments performed at different denaturant concentrations suggest a decrease in accessible surface area of Sd5 in the excited state. The measured backbone 15N chemical shift changes point to a global conformational rearrangement such as a potential α- to β-transition of the Sd5 α-helix or other major secondary structure reorganization and concomitant conformational changes in other parts of the protein. Overall, the emerging picture of Sd5 dynamics suggests this protein can populate two alternative well-ordered conformational states, with the excited conformer being more compact than the native state and having a distinct secondary structure and side-chain arrangements. The observation of an energetically unfavorable yet more compact excited state reveals a remarkable evolution of the CSαβ fold to expose and reorganize hydrophobic residues, which enables the creation of versatile binding sites.
Collapse
Affiliation(s)
- Luciana E S F Machado
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica e Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO) , Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-902 , Brazil
- Department of Molecular Biology and Biophysics , University of Connecticut Health Center , Farmington , Connecticut 06030 , United States
| | - Viviane S De Paula
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica e Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO) , Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-902 , Brazil
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics , University of Connecticut Health Center , Farmington , Connecticut 06030 , United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics , University of Connecticut Health Center , Farmington , Connecticut 06030 , United States
| | - Ana Paula Valente
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica e Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO) , Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-902 , Brazil
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics , University of Connecticut Health Center , Farmington , Connecticut 06030 , United States
| | - Fabio C L Almeida
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica e Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO) , Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-902 , Brazil
| |
Collapse
|
226
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
227
|
Rosemond SN, Hamadani KM, Cate JHD, Marqusee S. Modulating long-range energetics via helix stabilization: A case study using T4 lysozyme. Protein Sci 2018; 27:2084-2093. [PMID: 30284332 DOI: 10.1002/pro.3521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/07/2022]
Abstract
Cooperative protein folding requires distant regions of a protein to interact and provide mutual stabilization. The mechanism of this long-distance coupling remains poorly understood. Here, we use T4 lysozyme (T4L*) as a model to investigate long-range communications across two subdomains of a globular protein. T4L* is composed of two structurally distinct subdomains, although it behaves in a two-state manner at equilibrium. The subdomains of T4L* are connected via two topological connections: the N-terminal helix that is structurally part of the C-terminal subdomain (the A-helix) and a long helix that spans both subdomains (the C-helix). To understand the role that the C-helix plays in cooperative folding, we analyzed a circularly permuted version of T4L* (CP13*), whose subdomains are connected only by the C-helix. We demonstrate that when isolated as individual fragments, both subdomains of CP13* can fold autonomously into marginally stable conformations. The energetics of the N-terminal subdomain depend on the formation of a salt bridge known to be important for stability in the full-length protein. We show that the energetic contribution of the salt bridge to the stability of the N-terminal fragment increases when the C-helix is stabilized, such as occurs upon folding of the C-terminal subdomain. These results suggest a model where long-range energetic coupling is mediated by helix stabilization and not specific tertiary interactions.
Collapse
Affiliation(s)
- Sabriya N Rosemond
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720-3220
| | - Kambiz M Hamadani
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720.,California State University San Marcos, San Marcos, California, 92096
| | - Jamie H D Cate
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720-3220.,Department of Chemistry, University of California, Berkeley, California, 94720
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720-3220.,Department of Chemistry, University of California, Berkeley, California, 94720.,Chan Zuckerberg Biohub, San Francisco, CA, 94158
| |
Collapse
|
228
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
229
|
Patel MP, Hu L, Brown CA, Sun Z, Adamski CJ, Stojanoski V, Sankaran B, Prasad BVV, Palzkill T. Synergistic effects of functionally distinct substitutions in β-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem 2018; 293:17971-17984. [PMID: 30275013 DOI: 10.1074/jbc.ra118.003792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
The CTX-M β-lactamases have emerged as the most widespread extended-spectrum β-lactamases (ESBLs) in Gram-negative bacteria. These enzymes rapidly hydrolyze cefotaxime, but not the related cephalosporin, ceftazidime. ESBL variants have evolved, however, that provide enhanced ceftazidime resistance. We show here that a natural variant at a nonactive site, i.e. second-shell residue N106S, enhances enzyme stability but reduces catalytic efficiency for cefotaxime and ceftazidime and decreases resistance levels. However, when the N106S variant was combined with an active-site variant, D240G, that enhances enzyme catalytic efficiency, but decreases stability, the resultant double mutant exhibited higher resistance levels than predicted on the basis of the phenotypes of each variant. We found that this epistasis is due to compensatory effects, whereby increased stability provided by N106S overrides its cost of decreased catalytic activity. X-ray structures of the variant enzymes in complex with cefotaxime revealed conformational changes in the active-site loop spanning residues 103-106 that were caused by the N106S substitution and relieve steric strain to stabilize the enzyme, but also alter contacts with cefotaxime and thereby reduce catalytic activity. We noted that the 103-106 loop conformation in the N106S-containing variants is different from that of WT CTX-M but nearly identical to that of the non-ESBL, TEM-1 β-lactamase, having a serine at the 106 position. Therefore, residue 106 may serve as a "switch" that toggles the conformations of the 103-106 loop. When it is serine, the loop is in the non-ESBL, TEM-like conformation, and when it is asparagine, the loop is in a CTX-M-like, cefotaximase-favorable conformation.
Collapse
Affiliation(s)
- Meha P Patel
- From the Interdepartmental Graduate Program in Translational Biology and Molecular Medicine; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Cameron A Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Carolyn J Adamski
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Vlatko Stojanoski
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology.
| |
Collapse
|
230
|
Eckhardt D, Li-Blatter X, Schönfeld HJ, Heerklotz H, Seelig J. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation. Biophys Chem 2018; 240:42-49. [DOI: 10.1016/j.bpc.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
|
231
|
Rowe JB, Flynn RP, Wooten HR, Noufer HA, Cancel RA, Zhang J, Subramony JA, Pechenov S, Wang Y. Submicron Aggregation of Chemically Denatured Monoclonal Antibody. Mol Pharm 2018; 15:4710-4721. [DOI: 10.1021/acs.molpharmaceut.8b00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jacob B. Rowe
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Rhiannon P. Flynn
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Harrison R. Wooten
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hailey A. Noufer
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Rachel A. Cancel
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Jifeng Zhang
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - J. Anand Subramony
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Sergei Pechenov
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
232
|
Rathore U, Purwar M, Vignesh VS, Das R, Kumar AA, Bhattacharyya S, Arendt H, DeStefano J, Wilson A, Parks C, La Branche CC, Montefiori DC, Varadarajan R. Bacterially expressed HIV-1 gp120 outer-domain fragment immunogens with improved stability and affinity for CD4-binding site neutralizing antibodies. J Biol Chem 2018; 293:15002-15020. [PMID: 30093409 DOI: 10.1074/jbc.ra118.005006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein minimization is an attractive approach for designing vaccines against rapidly evolving pathogens such as human immunodeficiency virus, type 1 (HIV-1), because it can help in focusing the immune response toward conserved conformational epitopes present on complex targets. The outer domain (OD) of HIV-1 gp120 contains epitopes for a large number of neutralizing antibodies and therefore is a primary target for structure-based vaccine design. We have previously designed a bacterially expressed outer-domain immunogen (ODEC) that bound CD4-binding site (CD4bs) ligands with 3-12 μm affinity and elicited a modest neutralizing antibody response in rabbits. In this study, we have optimized ODEC using consensus sequence design, cyclic permutation, and structure-guided mutations to generate a number of variants with improved yields, biophysical properties, stabilities, and affinities (KD of 10-50 nm) for various CD4bs targeting broadly neutralizing antibodies, including the germline-reverted version of the broadly neutralizing antibody VRC01. In contrast to ODEC, the optimized immunogens elicited high anti-gp120 titers in rabbits as early as 6 weeks post-immunization, before any gp120 boost was given. Following two gp120 boosts, sera collected at week 22 showed cross-clade neutralization of tier 1 HIV-1 viruses. Using a number of different prime/boost combinations, we have identified a cyclically permuted OD fragment as the best priming immunogen, and a trimeric, cyclically permuted gp120 as the most suitable boosting molecule among the tested immunogens. This study also provides insights into some of the biophysical correlates of improved immunogenicity.
Collapse
Affiliation(s)
- Ujjwal Rathore
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Mansi Purwar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | | | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Aditya Arun Kumar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Sanchari Bhattacharyya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Heather Arendt
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Joanne DeStefano
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Aaron Wilson
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Christopher Parks
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Celia C La Branche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012,
| |
Collapse
|
233
|
Troilo F, Bonetti D, Camilloni C, Toto A, Longhi S, Brunori M, Gianni S. Folding Mechanism of the SH3 Domain from Grb2. J Phys Chem B 2018; 122:11166-11173. [DOI: 10.1021/acs.jpcb.8b06320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francesca Troilo
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milan, Italy
| | - Angelo Toto
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR, 7257 Marseille, France
| | - Maurizio Brunori
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
234
|
Quantitative measurements of protein-surface interaction thermodynamics. Proc Natl Acad Sci U S A 2018; 115:8352-8357. [PMID: 30061388 DOI: 10.1073/pnas.1800287115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Whereas proteins generally remain stable upon interaction with biological surfaces, they frequently unfold on and adhere to artificial surfaces. Understanding the physicochemical origins of this discrepancy would facilitate development of protein-based sensors and other technologies that require surfaces that do not compromise protein structure and function. To date, however, only a small number of such artificial surfaces have been reported, and the physics of why these surfaces support functional biomolecules while others do not has not been established. Thus motivated, we have developed an electrochemical approach to determining the folding free energy of proteins site-specifically attached to chemically well-defined, macroscopic surfaces. Comparison with the folding free energies seen in bulk solution then provides a quantitative measure of the extent to which surface interactions alter protein stability. As proof-of-principle, we have characterized the FynSH3 domain site-specifically attached to a hydroxyl-coated surface. Upon guanidinium chloride denaturation, the protein unfolds in a reversible, two-state manner with a free energy within 2 kJ/mol of the value seen in bulk solution. Assuming that excluded volume effects stabilize surface-attached proteins, this observation suggests there are countervening destabilizing interactions with the surface that, under these conditions, are similar in magnitude. Our technique constitutes an unprecedented experimental tool with which to answer long-standing questions regarding the molecular-scale origins of protein-surface interactions and to facilitate rational optimization of surface biocompatibility.
Collapse
|
235
|
Bonetti D, Troilo F, Toto A, Travaglini-Allocatelli C, Brunori M, Gianni S. Mechanism of Folding and Binding of the N-Terminal SH2 Domain from SHP2. J Phys Chem B 2018; 122:11108-11114. [DOI: 10.1021/acs.jpcb.8b05651] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Daniela Bonetti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Carlo Travaglini-Allocatelli
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Maurizio Brunori
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
236
|
Drewniak M, Węglarz-Tomczak E, Ożga K, Rudzińska-Szostak E, Macegoniuk K, Tomczak JM, Bejger M, Rypniewski W, Berlicki Ł. Helix-loop-helix peptide foldamers and their use in the construction of hydrolase mimetics. Bioorg Chem 2018; 81:356-361. [PMID: 30195249 DOI: 10.1016/j.bioorg.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023]
Abstract
De novo designed helix-loop-helix peptide foldamers containing cis-2-aminocyclopentanecarboxylic acid residues were evaluated for their conformational stability and possible use in enzyme mimetic development. The correlation between hydrogen bond network size and conformational stability was demonstrated through CD and NMR spectroscopies. Molecules incorporating a Cys/His/Glu triad exhibited enzyme-like hydrolytic activity.
Collapse
Affiliation(s)
- Magda Drewniak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Macegoniuk
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jakub M Tomczak
- Amsterdam Machine Learning Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
237
|
Fiorillo A, Petrosino M, Ilari A, Pasquo A, Cipollone A, Maggi M, Chiaraluce R, Consalvi V. The phosphoglycerate kinase 1 variants found in carcinoma cells display different catalytic activity and conformational stability compared to the native enzyme. PLoS One 2018; 13:e0199191. [PMID: 29995887 PMCID: PMC6040698 DOI: 10.1371/journal.pone.0199191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/02/2018] [Indexed: 01/18/2023] Open
Abstract
Cancer cells are able to survive in difficult conditions, reprogramming their metabolism according to their requirements. Under hypoxic conditions they shift from oxidative phosphorylation to aerobic glycolysis, a behavior known as Warburg effect. In the last years, glycolytic enzymes have been identified as potential targets for alternative anticancer therapies. Recently, phosphoglycerate kinase 1 (PGK1), an ubiquitous enzyme expressed in all somatic cells that catalyzes the seventh step of glycolysis which consists of the reversible phosphotransfer reaction from 1,3-bisphosphoglycerate to ADP, has been discovered to be overexpressed in many cancer types. Moreover, several somatic variants of PGK1 have been identified in tumors. In this study we analyzed the effect of the single nucleotide variants found in cancer tissues on the PGK1 structure and function. Our results clearly show that the variants display a decreased catalytic efficiency and/or thermodynamic stability and an altered local tertiary structure, as shown by the solved X-ray structures. The changes in the catalytic properties and in the stability of the PGK1 variants, mainly due to the local changes evidenced by the X-ray structures, suggest also changes in the functional role of PGK to support the biosynthetic need of the growing and proliferating tumour cells.
Collapse
Affiliation(s)
- Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology, Rome, Italy
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, Frascati, Italy
| | - Alessandra Cipollone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Maristella Maggi
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy
| | - Roberta Chiaraluce
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Valerio Consalvi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
238
|
Meng H, Ma R, Fitzgerald MC. Chemical Denaturation and Protein Precipitation Approach for Discovery and Quantitation of Protein–Drug Interactions. Anal Chem 2018; 90:9249-9255. [DOI: 10.1021/acs.analchem.8b01772] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- He Meng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Renze Ma
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
239
|
Carlsson ACC, Scholfield MR, Rowe RK, Ford MC, Alexander AT, Mehl RA, Ho PS. Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds. Biochemistry 2018; 57:4135-4147. [PMID: 29921126 PMCID: PMC6052408 DOI: 10.1021/acs.biochem.8b00603] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The construction of more stable proteins
is important in biomolecular
engineering, particularly in the design of biologics-based therapeutics.
We show here that replacing the tyrosine at position 18 (Y18) of T4
lysozyme with the unnatural amino acid m-chlorotyrosine
(mClY) increases both the thermal stability
(increasing the melting temperature by ∼1 °C and the melting
enthalpy by 3 kcal/mol) and the enzymatic activity at elevated temperatures
(15% higher than that of the parent enzyme at 40 °C) of this
classic enzyme. The chlorine of mClY forms
a halogen bond (XB) to the carbonyl oxygen of the peptide bond at
glycine 28 (G28) in a tight loop near the active site. In this case,
the XB potential of the typically weak XB donor Cl is shown from quantum
chemical calculations to be significantly enhanced by polarization
via an intramolecular hydrogen bond (HB) from the adjacent hydroxyl
substituent of the tyrosyl side chain, resulting in a distinctive
synergistic HB-enhanced XB (or HeX-B for short) interaction. The larger
halogens (bromine and iodine) are not well accommodated within this
same loop and, consequently, do not exhibit the effects on protein
stability or function associated with the HeX-B interaction. Thus,
we have for the first time demonstrated that an XB can be engineered
to stabilize and increase the activity of an enzyme, with the increased
stabilizing potential of the HeX-B further extending the application
of halogenated amino acids in the design of more stable protein therapeutics.
Collapse
Affiliation(s)
- Anna-Carin C Carlsson
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Matthew R Scholfield
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Rhianon K Rowe
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Melissa Coates Ford
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Austin T Alexander
- Department of Biochemistry & Biophysics , Oregon State University , Corvallis , Oregon 97333 , United States
| | - Ryan A Mehl
- Department of Biochemistry & Biophysics , Oregon State University , Corvallis , Oregon 97333 , United States
| | - P Shing Ho
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
240
|
Extreme stability in de novo-designed repeat arrays is determined by unusually stable short-range interactions. Proc Natl Acad Sci U S A 2018; 115:7539-7544. [PMID: 29959204 DOI: 10.1073/pnas.1800283115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Designed helical repeats (DHRs) are modular helix-loop-helix-loop protein structures that are tandemly repeated to form a superhelical array. Structures combining tandem DHRs demonstrate a wide range of molecular geometries, many of which are not observed in nature. Understanding cooperativity of DHR proteins provides insight into the molecular origins of Rosetta-based protein design hyperstability and facilitates comparison of energy distributions in artificial and naturally occurring protein folds. Here, we use a nearest-neighbor Ising model to quantify the intrinsic and interfacial free energies of four different DHRs. We measure the folding free energies of constructs with varying numbers of internal and terminal capping repeats for four different DHR folds, using guanidine-HCl and glycerol as destabilizing and solubilizing cosolvents. One-dimensional Ising analysis of these series reveals that, although interrepeat coupling energies are within the range seen for naturally occurring repeat proteins, the individual repeats of DHR proteins are intrinsically stable. This favorable intrinsic stability, which has not been observed for naturally occurring repeat proteins, adds to stabilizing interfaces, resulting in extraordinarily high stability. Stable repeats also impart a downhill shape to the energy landscape for DHR folding. These intrinsic stability differences suggest that part of the success of Rosetta-based design results from capturing favorable local interactions.
Collapse
|
241
|
Makabe K, Nakamura T, Dhar D, Ikura T, Koide S, Kuwajima K. An Overlapping Region between the Two Terminal Folding Units of the Outer Surface Protein A (OspA) Controls Its Folding Behavior. J Mol Biol 2018; 430:1799-1813. [PMID: 29709572 DOI: 10.1016/j.jmb.2018.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions.
Collapse
Affiliation(s)
- Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | - Takashi Nakamura
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Debanjan Dhar
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Teikichi Ikura
- Laboratory of Structural Biology, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, and Perlmutter Cancer Center at NYU Langone Health, New York, NY 10016, USA
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Physics, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Dongdaemun-gu, Seoul 130-722, Korea
| |
Collapse
|
242
|
Vargas C, Schönbeck C, Heimann I, Keller S. Extracavity Effect in Cyclodextrin/Surfactant Complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5781-5787. [PMID: 29683671 DOI: 10.1021/acs.langmuir.8b00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclodextrin (CD) complexation is a convenient method to sequester surfactants in a controllable way, for example, during membrane-protein reconstitution. Interestingly, the equilibrium stability of CD/surfactant inclusion complexes increases with the length of the nonpolar surfactant chain even beyond the point where all hydrophobic contacts within the canonical CD cavity are saturated. To rationalize this observation, we have dissected the inclusion complexation equilibria of a structurally well-defined CD, that is, heptakis(2,6-di- O-methyl)-β-CD (DIMEB), and a homologous series of surfactants, namely, n-alkyl- N, N-dimethyl-3-ammonio-1-propanesulfonates (SB3- x) with chain lengths ranging from x = 8 to 14. Thermodynamic parameters obtained by isothermal titration calorimetry and structural insights derived from nuclear magnetic resonance spectroscopy and molecular dynamics simulations revealed that, upon inclusion, long-chain surfactants with x = ≥10 extend beyond the canonical CD cavity. This enables the formation of hydrophobic contacts between long surfactant chains and the extracavity parts of DIMEB, which make additional favorable contributions to the stability of the inclusion complex. These results explain the finding that the stability of CD/surfactant inclusion complexes monotonously increases with the surfactant chain length even for long chains that completely fill the canonical CD cavity.
Collapse
Affiliation(s)
- Carolyn Vargas
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Christian Schönbeck
- Department of Science and Environment , Roskilde University , Universitetsvej 1 , 4000 Roskilde , Denmark
| | - Ina Heimann
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Sandro Keller
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| |
Collapse
|
243
|
Lindström I, Dogan J. Dynamics, Conformational Entropy, and Frustration in Protein-Protein Interactions Involving an Intrinsically Disordered Protein Domain. ACS Chem Biol 2018; 13:1218-1227. [PMID: 29614221 DOI: 10.1021/acschembio.7b01105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.
Collapse
Affiliation(s)
- Ida Lindström
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
244
|
Wu QY, Ma MM, Fu L, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Li F, Wang XY, Xu KL. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms. Int J Biol Macromol 2018; 116:1064-1073. [PMID: 29782975 DOI: 10.1016/j.ijbiomac.2018.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
245
|
Del Poggetto E, Toto A, Aloise C, Di Piro F, Gori L, Malatesta F, Gianni S, Chiti F, Bemporad F. Stability of an aggregation-prone partially folded state of human profilin-1 correlates with aggregation propensity. J Biol Chem 2018; 293:10303-10313. [PMID: 29760185 DOI: 10.1074/jbc.ra118.002087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig's disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclusions of the mutant proteins and correlates with the mutation-induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed profilin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluorescence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this conformational state as an aggregation-prone folding intermediate. In conclusion, our findings indicate that mutation-induced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the pathogenicity of the mutations.
Collapse
Affiliation(s)
- Edoardo Del Poggetto
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Angelo Toto
- the Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza University of Rome, 00185 Rome, Italy, and
| | - Chiara Aloise
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Francesco Di Piro
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Ludovica Gori
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Francesco Malatesta
- the Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza University of Rome, 00185 Rome, Italy, and
| | - Stefano Gianni
- the Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza University of Rome, 00185 Rome, Italy, and.,the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, 00185 Rome, Italy
| | - Fabrizio Chiti
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Francesco Bemporad
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy,
| |
Collapse
|
246
|
Denaturation and Aggregation of Interferon-τ in Aqueous Solution. Pharm Res 2018; 35:137. [DOI: 10.1007/s11095-018-2418-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/22/2018] [Indexed: 10/16/2022]
|
247
|
Velázquez-López I, Valdés-García G, Romero Romero S, Maya Martínez R, Leal-Cervantes AI, Costas M, Sánchez-López R, Amero C, Pastor N, Fernández Velasco DA. Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein. Biochim Biophys Acta Gen Subj 2018; 1862:1656-1666. [PMID: 29669263 DOI: 10.1016/j.bbagen.2018.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/04/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0-8.0 pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0-8.0 pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors.
Collapse
Affiliation(s)
- Isabel Velázquez-López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Gilberto Valdés-García
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Sergio Romero Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Roberto Maya Martínez
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Ana I Leal-Cervantes
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, México.
| | - D Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
248
|
Heidrich J, Junglas B, Grytsyk N, Hellmann N, Rusitzka K, Gebauer W, Markl J, Hellwig P, Schneider D. Mg 2+ binding triggers rearrangement of the IM30 ring structure, resulting in augmented exposure of hydrophobic surfaces competent for membrane binding. J Biol Chem 2018; 293:8230-8241. [PMID: 29618510 DOI: 10.1074/jbc.ra117.000991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
The "inner membrane-associated protein of 30 kDa" (IM30), also known as "vesicle-inducing protein in plastids 1" (Vipp1), is found in the majority of photosynthetic organisms that use oxygen as an energy source, and its occurrence appears to be coupled to the existence of thylakoid membranes in cyanobacteria and chloroplasts. IM30 is most likely involved in thylakoid membrane biogenesis and/or maintenance, and has recently been shown to function as a membrane fusion protein in presence of Mg2+ However, the precise role of Mg2+ in this process and its impact on the structure and function of IM30 remains unknown. Here, we show that Mg2+ binds directly to IM30 with a binding affinity of ∼1 mm Mg2+ binding compacts the IM30 structure coupled with an increase in the thermodynamic stability of the proteins' secondary, tertiary, and quaternary structures. Furthermore, the structural alterations trigger IM30 double ring formation in vitro because of increased exposure of hydrophobic surface regions. However, in vivo Mg2+-triggered exposure of hydrophobic surface regions most likely modulates membrane binding and induces membrane fusion.
Collapse
Affiliation(s)
- Jennifer Heidrich
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Benedikt Junglas
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Natalia Grytsyk
- Laboratoire de bioelectrochimie et spectroscopie, UMR 7140, CNRS Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, Germany
| | - Nadja Hellmann
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Kristiane Rusitzka
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Wolfgang Gebauer
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Jürgen Markl
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Petra Hellwig
- Laboratoire de bioelectrochimie et spectroscopie, UMR 7140, CNRS Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany.
| |
Collapse
|
249
|
van 't Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 2018; 46:2705-2731. [PMID: 28280815 DOI: 10.1039/c6cs00663a] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
250
|
Malgieri G, D'Abrosca G, Pirone L, Toto A, Palmieri M, Russo L, Sciacca MFM, Tatè R, Sivo V, Baglivo I, Majewska R, Coletta M, Pedone PV, Isernia C, De Stefano M, Gianni S, Pedone EM, Milardi D, Fattorusso R. Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chem Sci 2018; 9:3290-3298. [PMID: 29780459 PMCID: PMC5933289 DOI: 10.1039/c8sc00166a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular determinants of fibrillogenesis by studying the aggregation propensities of high homologous proteins with different folding pathways.
Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153–149 and zinc-lacking Ml452–151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153–149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452–151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452–151 and Ml153–149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153–149 has formed only amorphous aggregates and Ml452–151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Angelo Toto
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | | | - Rosarita Tatè
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" , CNR , Via P. Castellino 111 , 80131 Napoli , Italy
| | - Valeria Sivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Roksana Majewska
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine , University of Rome "Tor Vergata" , Via Montpellier 1 , 00133 , Roma , Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Mario De Stefano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Stefano Gianni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging , CNR , Viale A. Doria 6 , 95125 Catania , Italy .
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| |
Collapse
|