201
|
Dudakovic A, Camilleri E, Riester SM, Lewallen EA, Kvasha S, Chen X, Radel DJ, Anderson JM, Nair AA, Evans JM, Krych AJ, Smith J, Deyle DR, Stein JL, Stein GS, Im HJ, Cool SM, Westendorf JJ, Kakar S, Dietz AB, van Wijnen AJ. High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. J Cell Biochem 2015; 115:1816-28. [PMID: 24905804 DOI: 10.1002/jcb.24852] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/23/2014] [Indexed: 12/24/2022]
Abstract
Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1, and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement, and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10-fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while upregulating WNT-related genes (WISP2, SFRP2, and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic, and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Culture of human cell lines by a pathogen-inactivated human platelet lysate. Cytotechnology 2015; 68:1185-95. [PMID: 25944665 DOI: 10.1007/s10616-015-9878-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/11/2015] [Indexed: 12/18/2022] Open
Abstract
Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.
Collapse
|
203
|
Copland IB, Qayed M, Garcia MA, Galipeau J, Waller EK. Bone Marrow Mesenchymal Stromal Cells from Patients with Acute and Chronic Graft-versus-Host Disease Deploy Normal Phenotype, Differentiation Plasticity, and Immune-Suppressive Activity. Biol Blood Marrow Transplant 2015; 21:934-40. [DOI: 10.1016/j.bbmt.2015.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/13/2015] [Indexed: 01/15/2023]
|
204
|
Paula ACC, Martins TMM, Zonari A, Frade SPPJ, Angelo PC, Gomes DA, Goes AM. Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Res Ther 2015; 6:76. [PMID: 25889298 PMCID: PMC4455683 DOI: 10.1186/s13287-015-0030-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/24/2015] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Human adipose tissue-derived stem cells (hASCs) are attractive cells for therapeutic applications and are currently being evaluated in multiple clinical trials. Prior to their clinical application, hASCs must be expanded ex vivo to obtain the required number of cells for transplantation. Fetal bovine serum is the supplement most widely used for cell culture, but it has disadvantages and it is not safe for cell therapy due to the risks of pathogen transmission and immune reaction. Furthermore, the cell expansion poses a risk of accumulating genetic abnormalities that could lead to malignant cell transformation. In this study, our aim was to evaluate the proliferation pattern as well as the resistance to spontaneous transformation of hASCs during expansion in a xeno-free culture condition. Methods hASCs were expanded in Dulbecco’s modified Eagle’s medium supplemented with pooled allogeneic human serum or fetal bovine serum to enable a side-by-side comparison. Cell viability and differentiation capacity toward the mesenchymal lineages were assessed, along with immunophenotype. Ki-67 expression and the proliferation kinetics were investigated. The expression of the transcription factors c-FOS and c-MYC was examined with Western blot, and MYC, CDKN2A, ERBB2 and TERT gene expression was assessed with quantitative PCR. Senescence was evaluated by β-gal staining. Karyotype analysis was performed and tumorigenesis assay in vivo was also evaluated. Results The hASCs expanded in medium with pooled allogeneic human serum did not show remarkable differences in morphology, viability, differentiation capacity or immunophenotype. The main difference observed was a significantly higher proliferative effect on hASCs cultured in pooled allogeneic human serum. There was no significant difference in C-FOS expression; however, C-MYC protein expression was enhanced in pooled allogeneic human serum cultures compared to fetal bovine serum cultures. No difference was observed in MYC and TERT mRNA levels. Moreover, the hASCs presented normal karyotype undergoing senescence, and did not form in vivo tumors, eliminating the possibility that spontaneous immortalization of hASCs had occurred with pooled allogeneic human serum. Conclusions This complete characterization of hASCs cultivated in pooled allogeneic human serum, a suitable xeno-free approach, shows that pooled allogeneic human serum provides a high proliferation rate, which can be attributed for the first time to C-MYC protein expression, and showed cell stability for safe clinical applications in compliance with good manufacturing practice.
Collapse
Affiliation(s)
- Ana C C Paula
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-910, Brazil.
| | - Thaís M M Martins
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-910, Brazil.
| | - Alessandra Zonari
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-910, Brazil.
| | - Soraia P P J Frade
- Instituto Hermes Pardini, Av. das Nações, 2448, Vespasiano, Minas Gerais, 33200-000, Brazil.
| | - Patrícia C Angelo
- Instituto Hermes Pardini, Av. das Nações, 2448, Vespasiano, Minas Gerais, 33200-000, Brazil.
| | - Dawidson A Gomes
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-910, Brazil.
| | - Alfredo M Goes
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-910, Brazil.
| |
Collapse
|
205
|
Moll G, Le Blanc K. Engineering more efficient multipotent mesenchymal stromal (stem) cells for systemic delivery as cellular therapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- G. Moll
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. Le Blanc
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
206
|
Mestres G, Espanol M, Xia W, Persson C, Ginebra MP, Ott MK. Inflammatory response to nano- and microstructured hydroxyapatite. PLoS One 2015; 10:e0120381. [PMID: 25837264 PMCID: PMC4383585 DOI: 10.1371/journal.pone.0120381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.
Collapse
Affiliation(s)
- Gemma Mestres
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering, Dpt. Materials Science and Metallurgy, Technical University of Catalonia, Barcelona, Spain
| | - Wei Xia
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia Persson
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering, Dpt. Materials Science and Metallurgy, Technical University of Catalonia, Barcelona, Spain
| | - Marjam Karlsson Ott
- Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
207
|
Yang HJ, Kim KJ, Kim MK, Lee SJ, Ryu YH, Seo BF, Oh DY, Ahn ST, Lee HY, Rhie JW. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs 2015; 199:373-83. [PMID: 25823468 DOI: 10.1159/000369969] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) from various sites are applied in tissue engineering and cell therapy. The condition of AT-MSCs depends on the donor's age, body mass index (BMI), and gender. AT-MSCs from 66 human donors were analyzed, and the cells were sorted according to donor age (10-19 years: n = 1; 20-29 years: n = 5; 30-39 years: n = 12; 40-49 years: n = 22; 50-59 years: n = 12; 60-69 years: n = 9, and 70 years or older: n = 5), BMI (under 25, 25-30, and over 30), and gender (19 males and 48 females). Additionally, AT-MSCs were compared to bone marrow MSCs and chorionic tissue-derived MSCs. We measured the MSC yield, growth rate, colony-forming units, multipotency, and surface antigens. AT-MSC proliferation was greater in cells isolated from individuals aged less than 30 years compared to the proliferation of AT-MSCs from those over 50 years old. BMI was correlated with osteogenic differentiation potency; increased BMI enhanced osteogenesis. Adipogenic differentiation was more strongly induced in cells isolated from donors aged less than 30 years compared to those isolated from other age groups. Also, a BMI above 30 was associated with enhanced adipogenic differentiation compared to cells isolated from individuals with a BMI below 25. Bone marrow MSCs were strongly induced to differentiate along both osteogenic and adipogenic lineages, whereas AT-MSCs predominantly differentiated into the chondrogenic lineage. Therefore, the type of regeneration required and variations among potential donors must be carefully considered when selecting MSCs for use in applied tissue engineering or cell therapy.
Collapse
Affiliation(s)
- Hyun Jin Yang
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Effect of serum choice on replicative senescence in mesenchymal stromal cells. Cytotherapy 2015; 17:874-84. [PMID: 25800776 DOI: 10.1016/j.jcyt.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/18/2015] [Accepted: 02/11/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Multipotent mesenchymal stromal cells (MSCs) are promising candidates for innovative cell therapeutic applications. Before their use, however, they usually need to be expanded in vitro with serum-supplemented media. MSCs can undergo replicative senescence during in vitro expansion, but it is not yet clear how serum supplements influence this process. METHODS In the present study, we compared how media supplemented with fetal bovine serum (FBS) or calf serum (CS) affected morphology, proliferation, differentiation, senescence and other functional characteristics of human umbilical cord-derived MSCs (UC-MSCs). RESULTS UC-MSCs cultured in both FBS- and CS-containing media were able to differentiate along osteogenic and adipogenic lineages but ultimately reached proliferation arrest. However, senescence-associated characteristics, such as β-galactosidase activity, reactive oxygen species levels, proliferation rate and gene expression, demonstrate that UC-MSCs grown with FBS have better proliferation potential and differentiation capacity. In contrast, UC-MSCs grown with CS have a higher proportion of apoptotic cells and senescent characteristics. Possible mechanisms for the observed phenotypes include changes in gene expression (Bax, p16, p21 and p53) and cytokine production (interleukin-6 and interleukin-8). CONCLUSIONS This study demonstrates that FBS-supplemented media provides a better microenvironment for the expansion of UC-MSCs in vitro than CS-supplemented media. This work provides insight into MSCs generation practices for use in basic research and clinical therapies.
Collapse
|
209
|
Laitinen A, Oja S, Kilpinen L, Kaartinen T, Möller J, Laitinen S, Korhonen M, Nystedt J. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells. Cytotechnology 2015; 68:891-906. [PMID: 25777046 PMCID: PMC4960139 DOI: 10.1007/s10616-014-9841-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze–thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 109 ± 4.74 × 109 cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5–66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use.
Collapse
Affiliation(s)
- Anita Laitinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland.
| | - Sofia Oja
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Lotta Kilpinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Tanja Kaartinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Johanna Möller
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Saara Laitinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Matti Korhonen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Johanna Nystedt
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| |
Collapse
|
210
|
Díez JM, Bauman E, Gajardo R, Jorquera JI. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res Ther 2015; 6:28. [PMID: 25889980 PMCID: PMC4396121 DOI: 10.1186/s13287-015-0016-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/12/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. METHODS SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. RESULTS SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. CONCLUSIONS The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.
Collapse
Affiliation(s)
- José M Díez
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| | - Ewa Bauman
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| | - Rodrigo Gajardo
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| | - Juan I Jorquera
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| |
Collapse
|
211
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
212
|
Jiang MH, Li G, Liu J, Liu L, Wu B, Huang W, He W, Deng C, Wang D, Li C, Lahn BT, Shi C, Xiang AP. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials 2015; 50:56-66. [PMID: 25736496 DOI: 10.1016/j.biomaterials.2015.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
Abstract
Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.
Collapse
Affiliation(s)
- Mei Hua Jiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guilan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junfeng Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension & Kidney Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bruce T Lahn
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chenggang Shi
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Andy Peng Xiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
213
|
Vetsch JR, Paulsen SJ, Müller R, Hofmann S. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater 2015; 13:277-85. [PMID: 25463486 DOI: 10.1016/j.actbio.2014.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022]
Abstract
Fetal bovine serum (FBS) is a common media supplement used in tissue engineering (TE) cultures. The chemical composition of FBS is known to be highly variable between different brands, types or batches and can have a significant impact on cell function. This study investigated the influence of four different FBS types in osteogenic or control medium on mineralization of acellular and cell-seeded silk fibroin (SF) scaffolds. In bone TE, mineralized tissue is considered as the final product of a successful cell culture. Calcium assays and micro-computed tomography scans revealed spontaneous mineralization on SF scaffolds with certain FBS types, even without cells present. In contrast, cell-mediated mineralization was found under osteogenic conditions only. Fourier transform infrared spectroscopy analysis demonstrated a similar ion composition of the mineralization present in scaffolds, whether cell-mediated or spontaneous. These results were confirmed by scanning electron microscopy. This study shows clear evidence for the influence of FBS type on mineralization on SF scaffolds. The suitability of FBS medium supplementation in TE studies is highly questionable with regard to reproducibility of studies and comparability of obtained results. For future TE studies, alternatives to conventional FBS such as defined FBS or serum-free media should be considered, as suggested decades ago.
Collapse
|
214
|
Windmolders S, Willems L, Daniëls A, Linsen L, Fanton Y, Hendrikx M, Koninckx R, Rummens JL, Hensen K. Clinical-scale in vitro expansion preserves biological characteristics of cardiac atrial appendage stem cells. Cell Prolif 2015; 48:175-86. [PMID: 25630660 DOI: 10.1111/cpr.12166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Cardiac atrial appendage stem cells (CASCs) have recently emerged as an attractive candidate for cardiac regeneration after myocardial infarction. As with other cardiac stem cells, CASCs have to be expanded ex vivo to obtain clinically relevant cell numbers. However, foetal calf serum (FCS), which is routinely used for cell culturing, is unsuitable for clinical purposes, and influence of long-term in vitro culture on CASC behaviour is unknown. MATERIALS AND METHODS We examined effects on CASC biology of prolonged expansion, and evaluated a culture protocol suitable for human use. RESULTS In FCS-supplemented medium, CASCs could be kept in culture for 55.75 ± 3.63 days, before reaching senescence. Despite a small reduction in numbers of proliferating CASCs (1.37 ± 0.52% per passage) and signs of progressive telomere shortening (0.04 ± 0.02 kb per passage), their immunophenotype and myocardial differentiation potential remained unaffected during the entire culture period. The cells were successfully expanded in human platelet plasma supernatant, while maintaining their biological properties. CONCLUSIONS We successfully developed a protocol for long-term culture, to obtain clinically relevant CASC numbers, while retaining their cardiogenic potential. These insights in CASC biology and optimization of a humanized platelet-based culture method are an important step towards clinical application of CASCs for cardiac regenerative medicine.
Collapse
Affiliation(s)
- S Windmolders
- Laboratory of Experimental Hematology, Jessa Hospital, 3500, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Bhattacharya N, Das SP, Sengupta DB, Chowdhury P, Chowdhury D, Das K, Das S, Maity N, Bhattacharya R, Sengupta D, Aikat A, Basu D, Chaudhuri S, Rakshit T, Bhattacharya A, Bhattacharya SK, Majumder U, Chakraborty B, Chaudhuri S, Law S, Tripathi SK, Basu N, Banerjee SK, Malakar D, Choudhuri S. Chronic Burn Ulceration of the Skin and the Potential of Amniotic Membrane-Based Therapy. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
216
|
Indumathi S, Mishra R, Harikrishnan R, Dhanasekaran M. Subcutaneous Adipose Tissue-Derived Stem Cells: Advancement and Applications in Regenerative Medicine. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
217
|
Van Pham P, Phan NK. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use. Methods Mol Biol 2015; 1283:73-85. [PMID: 25239529 DOI: 10.1007/7651_2014_125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam,
| | | |
Collapse
|
218
|
Klf2 contributes to the stemness and self-renewal of human bone marrow stromal cells. Cytotechnology 2014; 68:839-48. [PMID: 25550041 DOI: 10.1007/s10616-014-9837-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great therapeutic potential in clinical trials; however, loss of pluripotency due to culture senescence is a major factor limiting their application. Understanding the physiology of stem cell self-renewal and stemness, and identifying the molecules that regulate these processes, are critical to future advances in tissue and organ regeneration. The Krüppel-like factor (Klf) family are key transcription factors implicated in self-renewal of embryonic stem cells. Here we identify Klf2 as a crucial transcription factor in undifferentiated human bone marrow stromal cells (hBMSCs), as indicated by gene expression in three culture media. To investigate the role of Klf2 in detail, an overexpression study using a lentiviral system in hBMSCs was performed. After Klf2 overexpression, cell proliferation was increased. The expression of pluripotency-associated genes, including Oct4, Nanog, and Rex1, was also upregulated by Klf2 overexpression. In addition, quantitative RT-PCR indicated a lower level of expression of differentiation related genes in Klf2 overexpressing cells as compared to control cells. Our results identify a functionally conserved role for Klf2 in hBMSCs, in which its expression is biologically important for stemness and self-renewal. These results are the first to show a role for Klf2 in the proliferation and pluripotency of hBMSCs.
Collapse
|
219
|
Vianna LMM, Kallay L, Toyono T, Belfort R, Holiman JD, Jun AS. Use of human serum for human corneal endothelial cell culture. Br J Ophthalmol 2014; 99:267-71. [DOI: 10.1136/bjophthalmol-2014-306034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
220
|
García-Contreras M, Vera-Donoso CD, Hernández-Andreu JM, García-Verdugo JM, Oltra E. Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: a pilot study. PLoS One 2014; 9:e113288. [PMID: 25412325 PMCID: PMC4239050 DOI: 10.1371/journal.pone.0113288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells from adipose tissue (ADSCs) are an important source of cells for regenerative medicine. The therapeutic effect of culture-expanded adipose derived stem cells has been shown; however, optimal xeno-free culture conditions remain to be determined. Cancer patients, specifically those undergoing invasive surgery, constitute a subgroup of patients who could benefit from autologous stem cell transplantation. Although regenerative potential of their ADSCs could be affected by the disease and/or treatment, we are not aware of any study that has evaluated the therapeutic potential of ADSCs isolated from cancer patients in reference to that of ADSCs derived from healthy subjects. Here we report that ADSCs isolated from subabdominal adipose tissue of patients with urological neoplasms yielded similar growth kinetics, presented equivalent mesenchymal surface markers and showed similar differentiation potential into distinct mesodermal cell lineages: adipocytes, chondroblasts and osteoblasts than ADSCs isolated from adipose tissue of age-matched non-oncogenic participants, all under xeno-free growth culture conditions. Molecular karyotyping of patient expanded ADSCs genomes showed no disease-related alterations indicating their safety. In addition, vesicles <100 nm identified as exosomes (EXOs) which may be at least partly responsible for the attributed therapeutic paracrine effects of the ADSCs were effectively isolated from ADSCs and showed equivalent miRNA content regardless they were derived from cancer patients or non-oncogenic participants indicating that the repair capabilities of xeno-free expanded ADSCs are not compromised by patient condition and therefore their xeno-free culture expanded ADSCs should be suitable for autologous stem cell transplantation in a clinical setting.
Collapse
Affiliation(s)
- Marta García-Contreras
- Facultad de Medicina, Universidad Católica de Valencia “San Vicente Mártir”, Valencia, Spain
| | | | | | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED, Paterna, Valencia, Spain
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
221
|
Wen Y, Gu W, Cui J, Yu M, Zhang Y, Tang C, Yang P, Xu X. Platelet-rich plasma enhanced umbilical cord mesenchymal stem cells-based bone tissue regeneration. Arch Oral Biol 2014; 59:1146-54. [DOI: 10.1016/j.archoralbio.2014.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 04/30/2014] [Accepted: 07/03/2014] [Indexed: 01/05/2023]
|
222
|
Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 2014; 9:e111059. [PMID: 25357129 PMCID: PMC4214693 DOI: 10.1371/journal.pone.0111059] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.
Collapse
|
223
|
Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2014; 2:50. [PMID: 25364757 PMCID: PMC4206995 DOI: 10.3389/fcell.2014.00050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions. Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
224
|
Hemeda H, Giebel B, Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 2014; 16:170-80. [PMID: 24438898 DOI: 10.1016/j.jcyt.2013.11.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/11/2022]
Abstract
Culture media for therapeutic cell preparations-such as mesenchymal stromal cells (MSCs)-usually comprise serum additives. Traditionally, fetal bovine serum is supplemented in basic research and in most clinical trials. Within the past years, many laboratories adapted their culture conditions to human platelet lysate (hPL), which further stimulates proliferation and expansion of MSCs. Particularly with regard to clinical application, human alternatives for fetal bovine serum are clearly to be preferred. hPL is generated from human platelet units by disruption of the platelet membrane, which is commonly performed by repeated freeze and thaw cycles. Such culture supplements are notoriously ill-defined, and many parameters contribute to batch-to-batch variation in hPL such as different amounts of plasma, a broad range of growth factors and donor-specific effects. The plasma components of hPL necessitate addition of anticoagulants such as heparins to prevent gelatinization of hPL medium, and their concentration must be standardized. Labels for description of hPL-such as "xenogen-free," "animal-free" and "serum free"-are not used consistently in the literature and may be misleading if not critically assessed. Further analysis of the precise composition of relevant growth factors, attachment factors, microRNAs and exosomes will pave the way for optimized and defined culture conditions. The use of hPL has several advantages and disadvantages: they must be taken into account because the choice of cell culture additive has major impact on cell preparations.
Collapse
Affiliation(s)
- Hatim Hemeda
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
225
|
Burnouf T, Goubran HA, Seghatchian J. Multifaceted regenerative lives of expired platelets in the second decade of the 21st century. Transfus Apher Sci 2014; 51:107-12. [PMID: 25189105 DOI: 10.1016/j.transci.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A traditional concept in transfusion medicine is the expiration of platelet concentrates 5-7 days after collection due to storage conditions that favor the risks of bacterial contamination and may lead to a gradual alteration of platelet hemostatic power. Newer findings are strongly suggesting that, after their supposed expiration date, platelet concentrates still contain multiple functional growth factors and cytokines and actually have unaltered power for application in regenerative medicine and cell therapy. Expired platelets can be a valuable source of growth factors to promote the healing of wounds, and can be used for ex vivo expansion of stem cells. There is also preliminary evidence that infusible platelet membrane (IPM) from outdated platelet concentrates and thrombosomes have potential clinical applications as hemostatic products. Experimental work is certainly needed to further validate and standardize the clinical potential of "expired" platelet blood products in human clinical medicine. However, strong evidence accumulates toward a potential for further manufacturing avenues of expired platelet concentrates into valuable therapeutic and clinically relevant products.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hadi Alphonse Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety and DDR Strategy, London, UK.
| |
Collapse
|
226
|
Atashi F, Jaconi MEE, Pittet-Cuénod B, Modarressi A. Autologous platelet-rich plasma: a biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Eng Part C Methods 2014; 21:253-62. [PMID: 25025830 DOI: 10.1089/ten.tec.2014.0206] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Currently the use of non-autologous cell culture media (e.g., animal-derived or allogeneic serum) for clinical applications of mesenchymal stem cells (MSCs) is criticized by regulatory agencies. Autologous platelet-rich plasma (PRP) is proposed as a safer alternative medium supplement for adipose-derived mesenchymal stem cells (AT-MSC) culture. To study its efficiency on cell proliferation, AT-MSCs were cultured for 10 days in media supplemented with different concentrations of autologous non-activated PRP (nPRP) or thrombin-activated PRP (tPRP) (1-60%). AT-MSC proliferation, cell phenotype, multipotency capacity, and chromosome stability were assessed and compared to AT-MSCs expanded in a classical medium supplemented with 10% of fetal bovine serum (FBS). Culture media supplemented with nPRP showed dose-dependent higher AT-MSC proliferation than did FBS or tPRP. Twenty percent nPRP was the most effective concentration to promote cell proliferation. This condition increased 13.9 times greater AT-MSC number in comparison to culture with FBS, without changing the AT-MSC phenotype, differentiation capacity, and chromosome status. We concluded that 20% autologous nPRP is a safe, efficient, and cost-effective supplement for AT-MSC expansion. It should be considered as an alternative to FBS or other nonautologous blood derivatives. It could serve as a potent substitute for the validation of future clinical protocols as it respects good manufacturing practices and regulatory agencies' standards.
Collapse
Affiliation(s)
- Fatemeh Atashi
- 1 Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva (HUG) , Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | | | | | |
Collapse
|
227
|
Human platelet lysate as a promising growth-stimulating additive for culturing of stem cells and other cell types. Bull Exp Biol Med 2014; 156:146-51. [PMID: 24319712 DOI: 10.1007/s10517-013-2298-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We compared the composition and biological activity of fetal calf serum and platelet lysate from donor platelet concentrate. In platelet lysate, the concentrations of alkaline phosphatase, lactate dehydrogenase, creatinine, and mineral metabolism parameters were lower, while parameters of lipid and protein metabolism were higher than in fetal calf serum. The concentrations of growth factors (platelet-derived (AA, AB, BB), vascular endothelial, insulin-like, and transforming growth factor β) in platelet lysate 1.7-148.7-fold surpassed the corresponding parameters in fetal calf serum. After replacement of fetal calf serum with platelet lysate in the culture medium (0, 25, 50, 75, and 100%), the count of multipotent mesenchymal stromal cells on day 7 (in comparison with day 1) increased by 154.8, 206.6, 228.2, 367.7, and 396.5%, respectively. Thus, platelet lysate can be an adequate non-xenogenic alternative for fetal calf serum.
Collapse
|
228
|
Radtke S, Giebel B, Wagner W, Horn PA. Platelet lysates and their role in cell therapy. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/voxs.12072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- S. Radtke
- Institute for Transfusion Medicine; University Hospital Essen; Essen Germany
| | - B. Giebel
- Institute for Transfusion Medicine; University Hospital Essen; Essen Germany
| | - W. Wagner
- Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University Medical School; Aachen Germany
| | - P. A. Horn
- Institute for Transfusion Medicine; University Hospital Essen; Essen Germany
| |
Collapse
|
229
|
Nemeth K. Mesenchymal stem cell therapy for immune-modulation: the donor, the recipient, and the drugs in-between. Exp Dermatol 2014; 23:625-8. [PMID: 24863432 DOI: 10.1111/exd.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Adoptive transfer of cultured bone marrow stromal cells (mesenchymal stem cells also known as MSCs) is a promising new way to aid tissue regeneration and treat a wide variety of diseases where regulation of inflammatory responses is derailed. Although significant advances have been made in the field, pinpointing important mechanistic details about how MSCs function in vitro and in vivo, there are still many unanswered questions that need to be addressed before welcoming MSCs in the therapeutic arsenal of immune mediated diseases. In this viewpoint, we highlight and discuss a few factors that we believe are critical in terms of therapeutic success employing cultured MSCs. Selecting the right donor population, choosing the best culture conditions and picking the patient population that is most likely to give a favourable therapeutic response is just as important as considering interactions between MSCs and the combination of drugs in the recipient's body. Given the complexity of MSC-host interactions, it is also imperative to develop screening tools that account for as many variables as possible and predict precisely the in vivo response rates before MSCs enter the body. To achieve this, a multidisciplinary approach is required with comprehensive knowledge of basic MSC biology, immunology, pharmacology and good clinical practice.
Collapse
Affiliation(s)
- Krisztian Nemeth
- Department of Dermatology, Dermatooncology, and Venerology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
230
|
Jonsdottir-Buch SM, Sigurgrimsdottir H, Lieder R, Sigurjonsson OE. Expired and Pathogen-Inactivated Platelet Concentrates Support Differentiation and Immunomodulation of Mesenchymal Stromal Cells in Culture. Cell Transplant 2014; 24:1545-54. [PMID: 25198449 DOI: 10.3727/096368914x683043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Platelet lysates have been reported as suitable cell culture supplement for cultures of mesenchymal stromal cells (MSCs). The demand for safe and animal-free cultures of MSCs is linked to the potential application of MSCs in clinics. While the use of platelet lysates offers an alternative to animal serum in MSC cultures, obtaining supplies of fresh platelet concentrates for lysate production is challenging and raises concerns due to the already existing shortage of platelet donors. We have previously demonstrated that expired platelet concentrates may represent a good source of platelets for lysate production without competing with blood banks for platelet donors. The INTERCEPT Blood System™ treatment of platelet concentrates allows for prolonged storage up to 7 days, using highly specific technology based on amotosalen and UV-A light. The INTERCEPT system has therefore been implemented in blood processing facilities worldwide. In this study, we evaluated the suitability of INTERCEPT-treated, expired platelet concentrates, processed into platelet lysates, for the culture of MSCs compared to nontreated expired platelets. Bone marrow-derived MSCs were cultured in media supplemented with either platelet lysates from traditionally prepared expired platelet concentrates or in platelet lysates from expired and pathogen-inactivated platelet concentrates. The effects of pathogen inactivation on the ability of the platelets to support MSCs in culture were determined by evaluating MSC immunomodulation, immunophenotype, proliferation, and trilineage differentiation. Platelet lysates prepared from expired and pathogen-inactivated platelet concentrates supported MSC differentiation and immunosuppression better compared to traditionally prepared platelet lysates from expired platelet units. Pathogen inactivation of platelets with the INTERCEPT system prior to use in MSC culture had no negative effects on MSC immunophenotype or proliferation. In conclusion, the use of expired pathogen-inactivated platelet units from blood banks to prepare platelet lysates for the culture of MSCs is desirable and attainable.
Collapse
|
231
|
Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate. PLoS One 2014; 9:e99145. [PMID: 24945500 PMCID: PMC4063748 DOI: 10.1371/journal.pone.0099145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022] Open
Abstract
Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml) and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml) neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for exvivo expansion of corneal endothelium cells. These findings open a new paradigm for exvivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices and regulatory recommendations to limit the use of xenogenic materials.
Collapse
|
232
|
Bara JJ, Richards RG, Alini M, Stoddart MJ. Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells 2014; 32:1713-23. [DOI: 10.1002/stem.1649] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/12/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Mauro Alini
- AO Research Institute Davos; Davos Platz 7270 Davos Switzerland
| | | |
Collapse
|
233
|
Shih DTB, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N Biotechnol 2014; 32:199-211. [PMID: 24929129 PMCID: PMC7102808 DOI: 10.1016/j.nbt.2014.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
Most clinical applications of human multipotent mesenchymal stromal cells (MSCs) for cell therapy, tissue engineering, regenerative medicine, and treatment of immune and inflammatory diseases require a phase of isolation and ex vivo expansion allowing a clinically meaningful cell number to be reached. Conditions used for cell isolation and expansion should meet strict quality and safety requirements. This is particularly true for the growth medium used for MSC isolation and expansion. Basal growth media used for MSC expansion are supplemented with multiple nutrients and growth factors. Fetal bovine serum (FBS) has long been the gold standard medium supplement for laboratory-scale MSC culture. However, FBS has a poorly characterized composition and poses risk factors, as it may be a source of xenogenic antigens and zoonotic infections. FBS has therefore become undesirable as a growth medium supplement for isolating and expanding MSCs for human therapy protocols. In recent years, human blood materials, and most particularly lysates and releasates of platelet concentrates have emerged as efficient medium supplements for isolating and expanding MSCs from various origins. This review analyzes the advantages and limits of using human platelet materials as medium supplements for MSC isolation and expansion. We present the modes of production of allogeneic and autologous platelet concentrates, measures taken to ensure optimal pathogen safety profiles, and methods of preparing PLs for MSC expansion. We also discuss the supply of such blood preparations. Produced under optimal conditions of standardization and safety, human platelet materials can become the future 'gold standard' supplement for ex vivo production of MSCs for translational medicine and cell therapy applications.
Collapse
Affiliation(s)
- Daniel Tzu-Bi Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pediatrics Department, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
234
|
Mojica-Henshaw MP, Jacobson P, Morris J, Kelley L, Pierce J, Boyer M, Reems JA. Serum-converted platelet lysate can substitute for fetal bovine serum in human mesenchymal stromal cell cultures. Cytotherapy 2014; 15:1458-68. [PMID: 24199591 DOI: 10.1016/j.jcyt.2013.06.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/24/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Fetal bovine serum (FBS) is commonly used as a serum supplement for culturing human mesenchymal stromal cells (hMSCs). However, human cells grown in FBS, especially for extended periods, risk potential exposure to bovine immunogenic proteins and infectious agents. To address this issue, we investigated the ability of a novel human platelet serum supplement to substitute for FBS in hMSC cultures. METHODS Platelet lysate-serum (PL-serum) was converted from platelet lysate-plasma (PL-plasma) that was manufactured from pooled platelet-rich plasma (PRP) apheresis units. Growth factor levels and the number of residual intact platelets in PL-serum and PL-plasma were compared with enzyme-linked immunosorbent assays and flow cytometry, respectively. Proliferation responses of hMSCs cultured in PL-serum, PL-plasma, or FBS were assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the immunophenotype of harvested hMSCs was evaluated by flow cytometry and tri-lineage differentiation potential was evaluated by assessing adipogenic, osteogenic and chondrogenic development. RESULTS Selected growth factor levels in PL-serum were not significantly different from PL-plasma (P > 0.05). hMSC cultures supplemented with PL-serum had comparable growth kinetics to PL-plasma, and hMSC yields were consistently greater than with FBS. hMSCs harvested from cultures supplemented with PL-serum, PL-plasma or FBS had similar cell surface phenotypes and maintained tri-lineage differentiation potential. CONCLUSIONS PL-serum, similar to PL-plasma, can substitute for FBS in hMSC cultures. Use of PL-serum, in contrast to PL-plasma, has an added advantage of not requiring addition of a xenogeneic source of heparin, providing a completely xeno-free culture medium.
Collapse
|
235
|
Pacini S, Petrini I. Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells. Front Cell Dev Biol 2014; 2:20. [PMID: 25364727 PMCID: PMC4207020 DOI: 10.3389/fcell.2014.00020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023] Open
Abstract
Recent investigations have made considerable progress in the understanding of tissue regeneration driven by mesenchymal stromal cells (MSCs). Data indicate the anatomical location of MSC as residing in the “perivascular” space of blood vessels dispersed across the whole body. This histological localization suggests that MSCs contribute to the formation of new blood vessels in vivo. Indeed, MSCs can release angiogenic factors and protease to facilitate blood vessel formation and in vitro are able to promote/support angiogenesis. However, the direct differentiation of MCSs into endothelial cells is still matter of debate. Most of the conflicting data might arise from the presence of multiple subtypes of cells with heterogeneous morpho functional features within the MSC cultures. According to this scenario, we hypothesize that the presence of the recently described Mesodermal Progenitor Cells (MPCs) within the MSCs cultures is responsible for their variable angiogenic potential. Indeed, MPCs are Nestin-positive CD31-positive cells exhibiting angiogenic potential that differentiate in MSC upon proper stimuli. The ISCT criteria do not account for the presence of MPC within MSC culture generating confusion in the interpretation of MSC angiogenic potential. In conclusion, the discovery of MPC gives new insight in defining MSC ancestors in human bone marrow, and indicates the tunica intima as a further, and previously overlooked, possible additional source of MSC.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
236
|
Wuchter P, Bieback K, Schrezenmeier H, Bornhäuser M, Müller LP, Bönig H, Wagner W, Meisel R, Pavel P, Tonn T, Lang P, Müller I, Renner M, Malcherek G, Saffrich R, Buss EC, Horn P, Rojewski M, Schmitt A, Ho AD, Sanzenbacher R, Schmitt M. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 2014; 17:128-39. [PMID: 24856898 DOI: 10.1016/j.jcyt.2014.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/26/2014] [Accepted: 04/05/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND AIMS Human mesenchymal stem or stromal cells (MSCs) represent a potential resource not only for regenerative medicine but also for immunomodulatory cell therapies. The application of different MSC culture protocols has significantly hampered the comparability of experimental and clinical data from different laboratories and has posed a major obstacle for multicenter clinical trials. Manufacturing of cell products for clinical application in the European Community must be conducted in compliance with Good Manufacturing Practice and requires a manufacturing license. In Germany, the Paul-Ehrlich-Institut as the Federal Authority for Vaccines and Biomedicines is critically involved in the approval process. METHODS This report summarizes a consensus meeting between researchers, clinicians and regulatory experts on standard quality requirements for MSC production. RESULTS The strategy for quality control testing depends on the product's cell composition, the manufacturing process and the indication and target patient population. Important quality criteria in this sense are, among others, the immunophenotype of the cells, composition of the culture medium and the risk for malignant transformation, as well as aging and the immunosuppressive potential of the manufactured MSCs. CONCLUSIONS This position paper intends to provide relevant information to interested parties regarding these criteria to foster the development of scientifically valid and harmonized quality standards and to support approval of MSC-based investigational medicinal products.
Collapse
Affiliation(s)
- Patrick Wuchter
- Department of Medicine V, Heidelberg University, Heidelberg, Germany.
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University of Ulm, Ulm, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Lutz P Müller
- Department of Medicine IV, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt/Main and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt/Main, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Technology, Stem Cell Biology and Cellular Engineering, University of Aachen Medical School, Aachen, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Petra Pavel
- Stem Cell Laboratory, IKTZ Heidelberg GmbH, Heidelberg, Germany
| | - Torsten Tonn
- Institute of Transfusion Medicine, Red Cross Blood Transfusion Service Dresden, Dresden, Germany
| | - Peter Lang
- Department of Pediatrics, University Clinic Tübingen, Tübingen, Germany
| | - Ingo Müller
- Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Renner
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Georg Malcherek
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Rainer Saffrich
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Eike C Buss
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Patrick Horn
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University of Ulm, Ulm, Germany
| | - Anita Schmitt
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| | - Ralf Sanzenbacher
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Michael Schmitt
- Department of Medicine V, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
237
|
Harichandan A, Sivasubramaniyan K, Bühring HJ. Prospective isolation and characterization of human bone marrow-derived MSCs. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 129:1-17. [PMID: 22825720 DOI: 10.1007/10_2012_147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is an increasing interest in adult stem cells, especially mesenchymal stem/stromal cells (MSCs), in hematology and regenerative medicine because of the simplicity of isolation and ex vivo expansion of these cells. Conventionally, MSCs are functionally isolated from tissue based on their capacity to adhere to the surface of culture flasks. This isolation procedure is hampered by the unpredictable influence of secreted molecules and interactions with co-cultured hematopoietic and other unrelated cells, as well as by the arbitrarily selected removal time of non-adherent cells prior to the expansion of MSCs. Finally, functionally isolated cells do not provide biological information about the starting population. To circumvent these limitations, several strategies have been developed to facilitate the prospective isolation of MSCs based on the selective expression or absence of surface markers. The isolation and ex vivo expansion of these cells require an adequate quality control of the source and product. Here we summarize the most frequently used markers and introduce new targets for antibody-based isolation and characterization of bone marrow-derived MSCs.
Collapse
Affiliation(s)
- A Harichandan
- Division of Haematology, Immunology, Oncology, Rheumatology, and Pulmonology, Department of Internal Medicine II, University Clinic of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
238
|
Skog M, Muhonen V, Nystedt J, Narcisi R, Kontturi LS, Urtti A, Korhonen M, van Osch GJVM, Kiviranta I. Xeno-free chondrogenesis of bone marrow mesenchymal stromal cells: towards clinical-grade chondrocyte production. Cytotechnology 2014; 67:905-19. [PMID: 24718835 DOI: 10.1007/s10616-014-9721-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/20/2014] [Indexed: 01/02/2023] Open
Abstract
Current cell-based cartilage therapies relay on articular cartilage-derived autologous chondrocytes as a cell source, which possesses disadvantages, such as, donor site morbidity and dedifferentiation of chondrocytes during in vitro expansion. Due to these and other limitations, novel cell sources and production strategies are needed. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a fascinating alternative, but they are not spontaneously capable of producing hyaline cartilage-like repair tissue in vivo. In vitro pre-differentiation of BM-MSCs could be used to produce chondrocytes for clinical applications. However, clinically compatible defined and xeno-free differentiation protocol is lacking. Hence, this study aimed to develop such chondrogenic differentiation medium for human BM-MSCs. We assessed the feasibility of the medium using three human BM-MSCs donors and validated the method by comparing BM-MSCs to three other cell types holding potential for articular cartilage repair. The effectiveness of the method was compared to conventional serum-free and commercially available chondrogenic differentiation media. The results show that the defined xeno-free differentiation medium is at least as efficient as conventionally used serum-free chondrogenic medium and performed significantly better on all cell types tested compared to the commercially available chondrogenic medium.
Collapse
Affiliation(s)
- Maria Skog
- Department of Surgery, Institute of Clinical Medicine, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Laverdet B, Micallef L, Lebreton C, Mollard J, Lataillade JJ, Coulomb B, Desmoulière A. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. ACTA ACUST UNITED AC 2014; 62:108-17. [DOI: 10.1016/j.patbio.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
|
240
|
Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials 2014; 35:2580-7. [DOI: 10.1016/j.biomaterials.2013.12.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/13/2013] [Indexed: 02/05/2023]
|
241
|
Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem Cells Int 2014; 2014:437521. [PMID: 24723956 PMCID: PMC3956412 DOI: 10.1155/2014/437521] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/16/2014] [Indexed: 02/04/2023] Open
Abstract
The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.
Collapse
|
242
|
Pham PV, Vu NB, Pham VM, Truong NH, Pham TLB, Dang LTT, Nguyen TT, Bui ANT, Phan NK. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med 2014; 12:56. [PMID: 24565047 PMCID: PMC3939935 DOI: 10.1186/1479-5876-12-56] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 12/26/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable UCB-MSCs and fetal bovine serum (FBS)-dependent expansion methods. Hence, this study aimed to establish a xenogenic and allogeneic supplement-free expansion protocol. Methods UCB was collected to prepare activated platelet-rich plasma (aPRP) and mononuclear cells (MNCs). aPRP was applied as a supplement in Iscove modified Dulbecco medium (IMDM) together with antibiotics. MNCs were cultured in complete IMDM with four concentrations of aPRP (2, 5, 7, or 10%) or 10% FBS as the control. The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion, the percentage of successfully isolated cells in the primary culture, surface marker expression, and in vitro differentiation potential following expansion. Results The results showed that primary cultures with complete medium containing 10% aPRP exhibited the highest success, whereas expansion in complete medium containing 5% aPRP was suitable. UCB-MSCs isolated using this protocol maintained their immunophenotypes, multilineage differentiation potential, and did not form tumors when injected at a high dose into athymic nude mice. Conclusion This technique provides a method to obtain UCB-MSCs compliant with good manufacturing practices for clinical application.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam.
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Gálvez P, Clares B, Bermejo M, Hmadcha A, Soria B. Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells Dev 2014; 23:1074-83. [PMID: 24417334 DOI: 10.1089/scd.2013.0625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The manufacturing of human mesenchymal stem cells (hMSCs) as cell-based products for clinical use should be performed with appropriate controls that ensure its safety and quality. The use of hMSCs in cell therapy has increased considerably in the past few years. In line with this, the assessment and management of contamination risks by microbial agents that could affect the quality of cells and the safety of patients have to be considered. It is necessary to implant a quality control program (QCP) covering the entire procedure of the ex vivo expansion, from the source of cells, starting materials, and reagents, such as intermediate products, to the final cellular medicine. We defined a QCP to detect microbiological contamination during manufacturing of autologous hMSCs for clinical application. The methods used include sterility test, Gram stain, detection of mycoplasma, endotoxin assay, and microbiological monitoring in process according to the European Pharmacopoeia (Ph. Eur.) and each analytical technique was validated in accordance with three different cell cultures. Results showed no microbiological contamination in any phases of the cultures, meeting all the acceptance criteria for sterility test, detection of mycoplasma and endotoxin, and environmental and staff monitoring. Each analytical technique was validated demonstrating the sensitivity, limit of detection, and robustness of the method. The quality and safety of MSCs must be controlled to ensure their final use in patients. The evaluation of the proposed QCP revealed satisfactory results in order to standardize this procedure for clinical use of cells.
Collapse
Affiliation(s)
- Patricia Gálvez
- 1 Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) , Seville, Spain
| | | | | | | | | |
Collapse
|
244
|
Andia I, Abate M. Knee osteoarthritis: hyaluronic acid, platelet-rich plasma or both in association? Expert Opin Biol Ther 2014; 14:635-49. [PMID: 24533435 DOI: 10.1517/14712598.2014.889677] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Bidirectional interactions between cells and fluidic surroundings regulate cellular functions and maintain tissue or organ architecture. Accordingly, the synovial fluid is the primary source of environmental signals and determines to a great extent the molecular interactions within the joint capsule, both in homeostasis and pathology. AREAS COVERED We provided an update on hyaluronic acid (HA) and platelet-rich plasma (PRP) concepts necessary to build the rationale for creating a combined treatment. The information is based on a PubMed search using the terms 'platelet-rich plasma', 'hyaluronic acid', 'knee pathology', 'knee osteoarthritis' (OA). EXPERT OPINION In OA, a deleterious fluidic microenvironment is established, with presence of HA fragments, catabolic enzymes and inflammatory molecules. The central concept underlying intra-articular injection is to modify deleterious fluidic microenvironments. PRP administration has shown pain remission and function improvement, but less than half of the patients showed clinically significant improvement. PRP exceeds HA, the comparator used in PRP clinical trials, albeit both HA and PRP alleviate symptoms in mild-to-moderate OA patients. Combining PRP and HA may benefit from their dissimilar biological mechanisms and help in controlling delivery and presentation of signaling molecules. Three armed randomized studies, using both HA and PRP as comparators, will provide information about the impact of this approach.
Collapse
Affiliation(s)
- Isabel Andia
- Cruces University Hospital, BioCruces Health Research Institute, Regenerative Medicine Laboratory , 48903 Barakaldo , Spain
| | | |
Collapse
|
245
|
Fekete N, Rojewski MT, Lotfi R, Schrezenmeier H. Essential Components for Ex Vivo Proliferation of Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2014; 20:129-39. [DOI: 10.1089/ten.tec.2013.0061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Natalie Fekete
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
246
|
Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells. J Transl Med 2014; 12:28. [PMID: 24467837 PMCID: PMC3918216 DOI: 10.1186/1479-5876-12-28] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. METHODS PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. RESULTS PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. CONCLUSION The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.
Collapse
|
247
|
Chimenti I, Gaetani R, Forte E, Angelini F, De Falco E, Zoccai GB, Messina E, Frati G, Giacomello A. Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. J Cell Mol Med 2014; 18:624-34. [PMID: 24444305 PMCID: PMC4000114 DOI: 10.1111/jcmm.12210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/15/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiac progenitor cells (CPCs) isolated as cardiospheres (CSs) and CS-derived cells (CDCs) are a promising tool for cardiac cell therapy in heart failure patients, having CDCs already been used in a phase I/II clinical trial. Culture standardization according to Good Manufacturing Practices (GMPs) is a mandatory step for clinical translation. One of the main issues raised is the use of xenogenic additives (e.g. FBS, foetal bovine serum) in cell culture media, which carries the risk of contamination with infectious viral/prion agents, and the possible induction of immunizing effects in the final recipient. In this study, B27 supplement and sera requirements to comply with European GMPs were investigated in CSs and CDCs cultures, in terms of process yield/efficiency and final cell product gene expression levels, as well as phenotype. B27− free CS cultures produced a significantly reduced yield and a 10-fold drop in c-kit expression levels versus B27+ media. Moreover, autologous human serum (aHS) and two different commercially available GMP AB HSs were compared with standard research-grade FBS. CPCs from all HSs explants had reduced growth rate, assumed a senescent-like morphology with time in culture, and/or displayed a significant shift towards the endothelial phenotype. Among three different GMP gamma-irradiated FBSs (giFBSs) tested, two provided unsatisfactory cell yields, while one performed optimally, in terms of CPCs yield/phenotype. In conclusion, the use of HSs for the isolation and expansion of CSs/CDCs has to be excluded because of altered proliferation and/or commitment, while media supplemented with B27 and the selected giFBS allows successful EU GMP-complying CPCs culture.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "Sapienza" University of Rome, Latina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Moll G, Hult A, von Bahr L, Alm JJ, Heldring N, Hamad OA, Stenbeck-Funke L, Larsson S, Teramura Y, Roelofs H, Nilsson B, Fibbe WE, Olsson ML, Le Blanc K. Do ABO blood group antigens hamper the therapeutic efficacy of mesenchymal stromal cells? PLoS One 2014; 9:e85040. [PMID: 24454787 PMCID: PMC3890285 DOI: 10.1371/journal.pone.0085040] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022] Open
Abstract
Investigation into predictors for treatment outcome is essential to improve the clinical efficacy of therapeutic multipotent mesenchymal stromal cells (MSCs). We therefore studied the possible harmful impact of immunogenic ABO blood groups antigens – genetically governed antigenic determinants – at all given steps of MSC-therapy, from cell isolation and preparation for clinical use, to final recipient outcome. We found that clinical MSCs do not inherently express or upregulate ABO blood group antigens after inflammatory challenge or in vitro differentiation. Although antigen adsorption from standard culture supplements was minimal, MSCs adsorbed small quantities of ABO antigen from fresh human AB plasma (ABP), dependent on antigen concentration and adsorption time. Compared to cells washed in non-immunogenic human serum albumin (HSA), MSCs washed with ABP elicited stronger blood responses after exposure to blood from healthy O donors in vitro, containing high titers of ABO antibodies. Clinical evaluation of hematopoietic stem cell transplant (HSCT) recipients found only very low titers of anti-A/B agglutination in these strongly immunocompromised patients at the time of MSC treatment. Patient analysis revealed a trend for lower clinical response in blood group O recipients treated with ABP-exposed MSC products, but not with HSA-exposed products. We conclude, that clinical grade MSCs are ABO-neutral, but the ABP used for washing and infusion of MSCs can contaminate the cells with immunogenic ABO substance and should therefore be substituted by non-immunogenic HSA, particularly when cells are given to immunocompentent individuals.
Collapse
Affiliation(s)
- Guido Moll
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Annika Hult
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lena von Bahr
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jessica J. Alm
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Heldring
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Osama A. Hamad
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Lillemor Stenbeck-Funke
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Stella Larsson
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuji Teramura
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Bo Nilsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Willem E. Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin L. Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
249
|
Newell LF, Deans RJ, Maziarz RT. Adult adherent stromal cells in the management of graft-versus-host disease. Expert Opin Biol Ther 2014; 14:231-46. [DOI: 10.1517/14712598.2014.866648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
250
|
Wuchter P, Leinweber C, Saffrich R, Hanke M, Eckstein V, Ho AD, Grunze M, Rosenhahn A. Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell Tissue Res 2013; 355:315-26. [DOI: 10.1007/s00441-013-1759-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/29/2013] [Indexed: 12/17/2022]
|