201
|
Hu W, Nessler S, Hemmer B, Eagar TN, Kane LP, Leliveld SR, Müller-Schiffmann A, Gocke AR, Lovett-Racke A, Ben LH, Hussain RZ, Breil A, Elliott JL, Puttaparthi K, Cravens PD, Singh MP, Petsch B, Stitz L, Racke MK, Korth C, Stüve O. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. ACTA ACUST UNITED AC 2010; 133:375-88. [PMID: 20145049 PMCID: PMC2822628 DOI: 10.1093/brain/awp298] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Glycosylation of PrPC determines timing of neuroinvasion and targeting in the brain following transmissible spongiform encephalopathy infection by a peripheral route. J Virol 2010; 84:3464-75. [PMID: 20106922 DOI: 10.1128/jvi.02374-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathy (TSE) infectivity naturally spreads from site of entry in the periphery to the central nervous system where pathological lesions are formed. Several routes and cells within the host have been identified as important for facilitating the infectious process. Expression of the glycoprotein cellular PrP (PrP(C)) is considered a key factor for replication of infectivity in the central nervous system (CNS) and its transport to the brain, and it has been suggested that the infectious agent propagates from cell to cell via a domino-like effect. However, precisely how this is achieved and what involvement the different glycoforms of PrP have in these processes remain to be determined. To address this issue, we have used our unique models of gene-targeted transgenic mice expressing different glycosylated forms of PrP. Two TSE strains were inoculated intraperitoneally into these mice to assess the contribution of diglycosylated, monoglycosylated, and unglycosylated PrP in spreading of infectivity to the brain. This study demonstrates that glycosylation of host PrP has a profound effect in determining the outcome of disease. Lack of diglycosylated PrP slowed or prevented disease onset after peripheral challenge, suggesting an important role for fully glycosylated PrP in either the replication of the infectious agent in the periphery or its transport to the CNS. Moreover, mice expressing unglycosylated PrP did not develop clinical disease, and mice expressing monoglycosylated PrP showed strikingly different neuropathologic features compared to those expressing diglycosylated PrP. This demonstrates that targeting in the brain following peripheral inoculation is profoundly influenced by the glycosylation status of host PrP.
Collapse
|
203
|
Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A. Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010; 13:310-8. [PMID: 20098419 DOI: 10.1038/nn.2483] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/16/2009] [Indexed: 12/15/2022]
Abstract
The integrity of peripheral nerves relies on communication between axons and Schwann cells. The axonal signals that ensure myelin maintenance are distinct from those that direct myelination and are largely unknown. Here we show that ablation of the prion protein PrP(C) triggers a chronic demyelinating polyneuropathy (CDP) in four independently targeted mouse strains. Ablation of the neighboring Prnd locus, or inbreeding to four distinct mouse strains, did not modulate the CDP. CDP was triggered by depletion of PrP(C) specifically in neurons, but not in Schwann cells, and was suppressed by PrP(C) expression restricted to neurons but not to Schwann cells. CDP was prevented by PrP(C) variants that undergo proteolytic amino-proximal cleavage, but not by variants that are nonpermissive for cleavage, including secreted PrP(C) lacking its glycolipid membrane anchor. These results indicate that neuronal expression and regulated proteolysis of PrP(C) are essential for myelin maintenance.
Collapse
Affiliation(s)
- Juliane Bremer
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Dramatic reduction of PrP C level and glycosylation in peripheral nerves following PrP knock-out from Schwann cells does not prevent transmissible spongiform encephalopathy neuroinvasion. J Neurosci 2010; 29:15445-54. [PMID: 20007469 DOI: 10.1523/jneurosci.4195-09.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expression of the prion protein (PrP(C)) is a requirement for host susceptibility to the transmissible spongiform encephalopathies (TSEs) and thought to be necessary for the replication and transport of the infectious agent. The mechanism of TSE neuroinvasion is not fully understood, although the routing of infection has been mapped through the peripheral nervous system (PNS) and Schwann cells have been implicated as a potential conduit for transport of the TSE infectious agent. To address whether Schwann cells are a requirement for spread of the TSE agent from the site of infection to the CNS, PrP(C) expression was selectively removed from Schwann cells in vivo. This dramatically reduced total PrP(C) within peripheral nerves by 90%, resulting in the selective loss of glycosylated PrP(C) species. Despite this, 139A and ME7 mouse-passaged scrapie agent strains were efficiently replicated and transported to the CNS following oral and intraperitoneal exposure. Thus, the myelinating glial cells within the PNS do not appear to play a significant role in TSE neuroinvasion.
Collapse
|
205
|
Rial D, Duarte F, Xikota J, Schmitz A, Dafré A, Figueiredo C, Walz R, Prediger R. Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 2009; 164:896-907. [DOI: 10.1016/j.neuroscience.2009.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 02/04/2023]
|
206
|
Espinosa JC, Herva ME, Andréoletti O, Padilla D, Lacroux C, Cassard H, Lantier I, Castilla J, Torres JM. Transgenic mice expressing porcine prion protein resistant to classical scrapie but susceptible to sheep bovine spongiform encephalopathy and atypical scrapie. Emerg Infect Dis 2009; 15:1214-21. [PMID: 19751582 PMCID: PMC2815954 DOI: 10.3201/eid1508.081218] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atypical scrapie strain phenotypes may shift when transmitted to a new host. How susceptible pigs are to infection with sheep prions is unknown. We show, through transmission experiments in transgenic mice expressing porcine prion protein (PrP), that the susceptibility of this mouse model to bovine spongiform encephalopathy (BSE) can be enhanced after its passage in ARQ sheep, indicating that the pathogenicity of the BSE agent is modified after passage in sheep. Transgenic mice expressing porcine PrP were, nevertheless, completely resistant to infection with a broad panel of classical scrapie isolates from different sheep PrP genotypes and with different biochemical characteristics. The atypical (Nor98 like) isolate (SC-PS152) was the only scrapie isolate capable of transmission in these mice, although with a marked transmission barrier. Unexpectedly, the atypical scrapie agent appeared to undergo a strain phenotype shift upon transmission to porcine-PrP transgenic mice and acquired new strain properties, suggesting that atypical scrapie agent may exhibit different phenotypes depending on the host cellular PrP or other genetic factors.
Collapse
|
207
|
Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K. Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Proteins 2009; 77:279-96. [PMID: 19422054 DOI: 10.1002/prot.22435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies we have demonstrated that prion protein (PrP) binds directly to tubulin and this interaction leads to the inhibition of microtubule formation by inducement of tubulin oligomerization. This report is aimed at mapping the regions of PrP and tubulin involved in the interaction and identification of PrP domains responsible for tubulin oligomerization. Preliminary studies focused our attention to the N-terminal flexible part of PrP encompassing residues 23-110. Using a panel of deletion mutants of PrP, we identified two microtubule-binding motifs at both ends of this part of the molecule. We found that residues 23-32 constitute a major site of interaction, whereas residues 101-110 represent a weak binding site. The crucial role of the 23-32 sequence in the interaction with tubulin was confirmed employing chymotryptic fragments of PrP. Surprisingly, the octarepeat region linking the above motifs plays only a supporting role in the interaction. The binding of Cu(2+) to PrP did not affect the interaction. We also demonstrate that PrP deletion mutants lacking residues 23-32 exhibit very low efficiency in the inducement of tubulin oligomerization. Moreover, a synthetic peptide corresponding to this sequence, but not that identical with fragment 101-110, mimics the effects of the full-length protein on tubulin oligomerization and microtubule assembly. At the cellular level, peptide composed of the PrP motive 23-30 and signal sequence (1-22) disrupted the microtubular cytoskeleton. Using tryptic and chymotryptic fragments of alpha- and beta-tubulin, we mapped the docking sites for PrP within the C-terminal domains constituting the outer surface of microtubule.
Collapse
Affiliation(s)
- Katarzyna M Osiecka
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
208
|
Steele AD, Zhou Z, Jackson WS, Zhu C, Auluck P, Moskowitz MA, Chesselet MF, Lindquist S. Context dependent neuroprotective properties of prion protein (PrP). Prion 2009; 3:240-9. [PMID: 19901559 DOI: 10.4161/pri.3.4.10135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure--independent of infectious prion conformation--to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-beta, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP's neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson disease or tauopathy. Deletion of PrP in one of two Huntington disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.
Collapse
Affiliation(s)
- Andrew D Steele
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Wang S, Lv X, Zhang K, Lin T, Liu X, Yuan J, Dai Y, Li N. Knockdown of the prion gene expression by RNA interference in bovine fibroblast cells. Mol Biol Rep 2009; 37:3193-8. [PMID: 19821149 DOI: 10.1007/s11033-009-9900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/02/2009] [Indexed: 01/14/2023]
Abstract
PRNP is the gene encoding prion protein whose misfolded and β-sheet-rich isoform is the infectious agent of transmissible spongiform encephalopathy (TSE). TSE, also called prion diseases, cause fatal neurodegenerative and transmissible disorders in human and animals. Among these diseases, bovine spongiform encephalopathy (BSE) has tremendous impact on economy and human health in the world. In the present study, we hypothesize suppression of the PRNP gene expression could raise resistance to BSE in cattle by using vector-based small interfering RNA (siRNA) expression systems. Therefore, the objective was to screen effective DNA-encoding short hairpin RNAs (shRNAs) which could knockdown the PRNP gene expression in bovine fibroblast cells. Human U6 promoter was employed to drive shRNA transcription from the DNA vector, and seven shRNAs, that designed to target coding region and 3' untranslated region of the PRNP gene, were selected. Four out of seven shRNAs tested were found to be effective in inhibiting the PRNP gene expression, and the most significant suppression level was as much as 62.9% evidenced by real-time RT-PCR. Furthermore, the protein abundance was obviously reduced compared to the control. Overall, the present study demonstrated that vector-based siRNA expression systems is an efficient approach to knockdown the PRNP gene expression in bovine fibroblast cells and thereby provide donor cells for somatic cell nuclear cloning to produce cattle that is resistant to prion related diseases.
Collapse
Affiliation(s)
- Shaohua Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Sorgato MC, Peggion C, Bertoli A. Is, indeed, the prion protein a Harlequin servant of "many" masters? Prion 2009; 3:202-5. [PMID: 19887913 DOI: 10.4161/pri.3.4.10012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tens of putative interacting partners of the cellular prion protein (PrP(C)) have been identified, yet the physiologic role of PrP(C) remains unclear. For the first time, however, a recent paper has demonstrated that the absence of PrP(C) produces a lethal phenotype. Starting from this evidence, here we discuss the validity of past and more recent literature supporting that, as part of protein platforms at the cell surface, PrP(C) may bridge extracellular matrix molecules and/or membrane proteins to intracellular signaling pathways.
Collapse
Affiliation(s)
- M Catia Sorgato
- Department of Biological Chemistry and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | | | | |
Collapse
|
211
|
Abstract
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding that of neuronal cell bodies. In Alzheimer, Huntington, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Giovanna R Mallucci
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.
| |
Collapse
|
212
|
Prion metal interaction: Is prion pathogenesis a cause or a consequence of metal imbalance? Chem Biol Interact 2009; 181:282-91. [PMID: 19660443 DOI: 10.1016/j.cbi.2009.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 12/14/2022]
|
213
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
214
|
Arantes C, Nomizo R, Lopes MH, Hajj GNM, Lima FRS, Martins VR. Prion protein and its ligand stress inducible protein 1 regulate astrocyte development. Glia 2009; 57:1439-49. [DOI: 10.1002/glia.20861] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
215
|
Jackson WS, Borkowski AW, Faas H, Steele AD, King OD, Watson N, Jasanoff A, Lindquist S. Spontaneous generation of prion infectivity in fatal familial insomnia knockin mice. Neuron 2009; 63:438-50. [PMID: 19709627 PMCID: PMC2775465 DOI: 10.1016/j.neuron.2009.07.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/20/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022]
Abstract
A crucial tenet of the prion hypothesis is that misfolding of the prion protein (PrP) induced by mutations associated with familial prion disease is, in an otherwise normal mammalian brain, sufficient to generate the infectious agent. Yet this has never been demonstrated. We engineered knockin mice to express a PrP mutation associated with a distinct human prion disease, fatal familial insomnia (FFI). An additional substitution created a strong transmission barrier against pre-existing prions. The mice spontaneously developed a disease distinct from that of other mouse prion models and highly reminiscent of FFI. Unique pathology was transmitted from FFI mice to mice expressing wild-type PrP sharing the same transmission barrier. FFI mice were highly resistant to infection by pre-existing prions, confirming infectivity did not arise from contaminating agents. Thus, a single amino acid change in PrP is sufficient to induce a distinct neurodegenerative disease and the spontaneous generation of prion infectivity.
Collapse
Affiliation(s)
- Walker S Jackson
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Young R, Passet B, Vilotte M, Cribiu EP, Béringue V, Le Provost F, Laude H, Vilotte JL. The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett 2009; 583:3296-300. [PMID: 19766638 DOI: 10.1016/j.febslet.2009.09.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/14/2009] [Indexed: 10/25/2022]
Abstract
The prion protein PrP has a key role in transmissible spongiform encephalopathies but its biological function remains largely unknown. Recently, a related protein, Shadoo, was discovered. Its biological properties and brain distribution partially overlap that of PrP. We report that the Shadoo-encoding gene knockdown in PrP-knockout mouse embryos results in a lethal phenotype, occurring between E8 and E11, not observed on the wild-type genetic background. It reveals that these two proteins play a shared, crucial role in mammalian embryogenesis, explaining the lack of severe phenotype in PrP-knockout mammals, an appreciable step towards deciphering the biological role of this protein family.
Collapse
Affiliation(s)
- Rachel Young
- INRA-UMR1313, Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Muras AG, Hajj GNM, Ribeiro KB, Nomizo R, Nonogaki S, Chammas R, Martins VR. Prion protein ablation increases cellular aggregation and embolization contributing to mechanisms of metastasis. Int J Cancer 2009; 125:1523-31. [PMID: 19444918 DOI: 10.1002/ijc.24425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cellular Prion Protein (PrP(C)) is a cell surface protein highly expressed in the nervous system, and to a lesser extent in other tissues. PrP(C) binds to the extracellular matrix laminin and vitronectin, to mediate cell adhesion and differentiation. Herein, we investigate how PrP(C) expression modulates the aggressiveness of transformed cells. Mesenchymal embryonic cells (MEC) from wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were immortalized and transformed by co-expression of ras and myc. These cells presented similar growth rates and tumor formation in vivo. When injected in the tail vein, Prnp(0/0)ras/myc cells exhibited increased lung colonization compared with Prnp(+/+)ras/myc cells. Additionally, Prnp(0/0)ras/myc cells form more aggregates with blood components than Prnp(+/+)ras/myc cells, facilitating the arrest of Prnp(0/0)ras/myc cells in the lung vasculature. Integrin alpha(v)beta(3) is more expressed and activated in MEC and in transformed Prnp(0/0) cells than in the respective Prnp(+/+) cells. The blocking of integrin alpha(v)beta(3) by RGD peptide reduces lung colonization in transformed Prnp(0/0) cells to similar levels of those presented by transformed Prnp(+/+) cells. Our data indicate that PrP(C) negatively modulates the expression and activation of integrin alpha(v)beta(3) resulting in a more aggressive phenotype. These results indicate that PrP(C) may have main implications in modulating metastasis formation.
Collapse
Affiliation(s)
- Angelita G Muras
- Cellular and Molecular Biology Group, Ludwig Institute for Cancer Research, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
218
|
Analysis of protein levels of 24 cytokines in scrapie agent-infected brain and glial cell cultures from mice differing in prion protein expression levels. J Virol 2009; 83:11244-53. [PMID: 19710140 DOI: 10.1128/jvi.01413-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of microglia and astroglia is seen in many neurodegenerative diseases including prion diseases. Activated glial cells produce cytokines as a protective response against certain pathogens and as part of the host inflammatory response to brain damage. In addition, cytokines might also exacerbate tissue damage initiated by other processes. In the present work using multiplex assays to analyze protein levels of 24 cytokines in scrapie agent-infected C57BL/10 mouse brains, we observed elevation of CCL2, CCL5, CXCL1, CXCL10, granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-gamma), interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, and IL-12p40. Scrapie agent-infected wild-type mice and transgenic mice expressing anchorless prion protein (PrP) had similar cytokine responses in spite of extensive differences in neuropathology. Therefore, these responses may be primarily a reaction to brain damage induced by prion infection rather than specific inducers of a particular type of pathology. To study the roles of astroglia and microglia in these cytokine responses, primary glial cultures were exposed to scrapie agent-infected brain homogenates. Microglia produced only IL-12p40 and CXCL10, whereas astroglia produced these cytokines plus CCL2, CCL3, CCL5, CXCL1, G-CSF, IL-1beta, IL-6, IL-12p70, and IL-13. Glial cytokine responses from wild-type mice and transgenic mice expressing anchorless PrP differed only slightly, but glia from PrP-null mice produced only IL-12p40, indicating that PrP expression was required for scrapie agent induction of other cytokines detected. The difference in cytokine response between microglia and astroglia correlated with 20-fold-higher levels of PrP expression in astroglia versus microglia, suggesting that high-level PrP expression on astroglia might be important for induction of certain cytokines.
Collapse
|
219
|
Romano SA, Cordeiro Y, Lima LMTR, Lopes MH, Silva JL, Foguel D, Linden R. Reciprocal remodeling upon binding of the prion protein to its signaling partner hop/STIl. FASEB J 2009; 23:4308-16. [DOI: 10.1096/fj.09-138974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sebastián A. Romano
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | | - Jerson L. Silva
- Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Débora Foguel
- Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
220
|
Benvegnù S, Franciotta D, Sussman J, Bachi A, Zardini E, Torreri P, Govaerts C, Pizzo S, Legname G. Prion protein paralog doppel protein interacts with alpha-2-macroglobulin: a plausible mechanism for doppel-mediated neurodegeneration. PLoS One 2009; 4:e5968. [PMID: 19536284 PMCID: PMC2693666 DOI: 10.1371/journal.pone.0005968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 05/08/2009] [Indexed: 11/18/2022] Open
Abstract
Doppel protein (Dpl) is a paralog of the cellular form of the prion protein (PrPC), together sharing common structural and biochemical properties. Unlike PrPC, which is abundantly expressed throughout the central nervous system (CNS), Dpl protein expression is not detectable in the CNS. Interestingly, its ectopic expression in the brain elicits neurodegeneration in transgenic mice. Here, by combining native isoelectric focusing plus non-denaturing polyacrylamide gel electrophoresis and mass spectrometry analysis, we identified two Dpl binding partners: rat alpha-1-inhibitor-3 (α1I3) and, by sequence homology, alpha-2-macroglobulin (α2M), two known plasma metalloproteinase inhibitors. Biochemical investigations excluded the direct interaction of PrPC with either α1I3 or α2M. Nevertheless, enzyme-linked immunosorbent assays and surface plasmon resonance experiments revealed a high affinity binding occurring between PrPC and Dpl. In light of these findings, we suggest a mechanism for Dpl-induced neurodegeneration in mice expressing Dpl ectopically in the brain, linked to a withdrawal of natural inhibitors of metalloproteinase such as α2M. Interestingly, α2M has been proven to be a susceptibility factor in Alzheimer's disease, and as our findings imply, it may also play a relevant role in other neurodegenerative disorders, including prion diseases.
Collapse
Affiliation(s)
- Stefano Benvegnù
- Scuola Internazionale Superiore di Studi Avanzati - International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Diego Franciotta
- IRCCS, Foundation, Neurological Institute C. Mondino, University of Pavia, Pavia, Italy
| | | | - Angela Bachi
- DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Zardini
- IRCCS, Foundation, Neurological Institute C. Mondino, University of Pavia, Pavia, Italy
| | - Paola Torreri
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Cedric Govaerts
- Institute for Neurodegenerative Diseases
- Université Libre de Bruxelles, Bruxelles, Belgium
| | - Salvatore Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati - International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
- Institute for Neurodegenerative Diseases
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
221
|
New insights into cellular prion protein (PrPc) functions: the "ying and yang" of a relevant protein. ACTA ACUST UNITED AC 2009; 61:170-84. [PMID: 19523487 DOI: 10.1016/j.brainresrev.2009.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 12/19/2022]
Abstract
The conversion of cellular prion protein (PrP(c)), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrP(sc)) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrP(c) is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrP(c) interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrP(c) functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrP(c) protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrP(c) has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrP(c) functions, especially those related to neural degeneration and cell signaling.
Collapse
|
222
|
Abstract
The prion protein is infamous for its role in devastating neurological diseases, but its normal, physiological function has remained mysterious. A new study uses the experimentally tractable zebrafish model to obtain fresh clues to this puzzle.
Collapse
Affiliation(s)
- Roberto Chiesa
- * To whom correspondence should be addressed. E-mail: (RC); (DAH)
| | - David A Harris
- * To whom correspondence should be addressed. E-mail: (RC); (DAH)
| |
Collapse
|
223
|
Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009; 457:1128-32. [PMID: 19242475 PMCID: PMC2748841 DOI: 10.1038/nature07761] [Citation(s) in RCA: 1217] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 01/07/2009] [Indexed: 11/09/2022]
Abstract
A pathological hallmark of Alzheimer’s disease (AD) is an accumulation of insoluble plaque containing the amyloid-β peptide (Aβ) of 40–42 aa residues1. Prefibrillar, soluble oligomers of Aβ have been recognized to be early and key intermediates in AD-related synaptic dysfunction2–9. At nanomolar concentrations, soluble Aβ-oligomers block hippocampal long-term potentiation7, cause dendritic spine retraction from pyramidal cells5,8 and impair rodent spatial memory2. Soluble Aβ-oligomers have been prepared from chemical syntheses, from transfected cell culture supernatants, from transgenic mouse brain and from human AD brain2,4,7,9. Together, these data imply a high affinity cell surface receptor for soluble Aβ-oligomers on neurons, one that is central to the pathophysiological process in AD. Here, we identify the cellular Prion Protein (PrPC) as an Aβ-oligomer receptor by expression cloning. Aβ-oligomers bind with nanomolar affinity to PrPC, but the interaction does not require the infectious PrPSc conformation. Synaptic responsiveness in hippocampal slices from young adult PrP null mice is normal, but the Aβ-oligomer blockade of long-term potentiation is absent. Anti-PrP antibodies prevent Aβ-oligomer binding to PrPC and rescue synaptic plasticity in hippocampal slices from oligomeric β. Thus, PrPC is a mediator of Aβoligomer induced synaptic dysfunction, and PrPC-specific pharmaceuticals may have therapeutic potential for Alzheimer’s disease.
Collapse
Affiliation(s)
- Juha Laurén
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
224
|
Jones M, Wight D, McLoughlin V, Norrby K, Ironside JW, Connolly JG, Farquhar CF, MacGregor IR, Head MW. An antibody to the aggregated synthetic prion protein peptide (PrP106-126) selectively recognizes disease-associated prion protein (PrP) from human brain specimens. Brain Pathol 2009; 19:293-302. [PMID: 18507665 PMCID: PMC8094797 DOI: 10.1111/j.1750-3639.2008.00181.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022] Open
Abstract
Human prion diseases are characterized by the conversion of the normal host cellular prion protein (PrP(C)) into an abnormal misfolded form [disease-associated prion protein (PrP(Sc))]. Antibodies that are capable of distinguishing between PrP(C) and PrP(Sc) may prove to be useful, not only for the diagnosis of these diseases, but also for a better understanding of the molecular mechanisms involved in disease pathogenesis. In an attempt to produce such antibodies, we immunized mice with an aggregated peptide spanning amino acid residues 106 to 126 of human PrP (PrP106-126). We were able to isolate and single cell clone a hybridoma cell line (P1:1) which secreted an IgM isotype antibody [monoclonal antibody (mAb P1:1)] that recognized the aggregated, but not the monomeric form of the immunogen. When used in immunoprecipitation assays, the antibody did not recognize normal PrP(C) from non-prion disease brain specimens, but did selectively immunoprecipitate full-length PrP(Sc) from cases of variant and sporadic Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. These results suggest that P1:1 recognizes an epitope formed during the structural rearrangement or aggregation of the PrP that is common to the major PrP(Sc) types found in the most common forms of human prion disease.
Collapse
Affiliation(s)
- Michael Jones
- National CJD Surveillance Unit, School of Molecular and Clinical Medicine (Pathology), University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Race B, Meade-White K, Race R, Baumann F, Aguzzi A, Chesebro B. Prion protein on astrocytes or in extracellular fluid impedes neurodegeneration induced by truncated prion protein. Exp Neurol 2009; 217:347-52. [PMID: 19332059 DOI: 10.1016/j.expneurol.2009.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/06/2009] [Accepted: 03/14/2009] [Indexed: 12/01/2022]
Abstract
Prion protein (PrP) is a host-encoded membrane-anchored glycoprotein which is required for susceptibility to prion disease. PrP may also be important for normal brain functions such as hippocampal spatial memory. Previously transgenic mice expressing amino terminally truncated mouse PrP (Delta32-134) spontaneously developed a fatal disease associated with degeneration of cerebellar granular neurons as well as vacuolar degeneration of deep cerebellar and brain stem white matter. This disease could be prevented by co-expression of wild-type (WT) mouse PrP on neurons or oligodendroglia. In the present experiments we studied Delta32-134 PrP transgenic mice with WT PrP expression restricted to astroglia, an abundant CNS cell-type important for neuronal viability. Expression of WT PrP in astroglia was sufficient to rescue 50% of mice from disease and prolonged survival by 200 days in the other 50%. We also found that transgenic mice expressing full-length soluble anchorless PrP had increased survival by 100 days. Together these two results indicated that rescue from neurodegeneration induced by Delta32-134 PrP might involve interactions between neurons expressing truncated PrP and nearby astrocytes expressing WT PrP or extracellular fluid containing soluble WT PrP.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840 USA.
| | | | | | | | | | | |
Collapse
|
226
|
Barenco MG, Valori CF, Roncoroni C, Loewer J, Montrasio F, Rossi D. Deletion of the amino-terminal domain of the prion protein does not impair prion protein-dependent neuronal differentiation and neuritogenesis. J Neurosci Res 2009; 87:806-19. [DOI: 10.1002/jnr.21894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
227
|
Ingram RJ, Isaacs JD, Kaur G, Lowther DE, Reynolds CJ, Boyton RJ, Collinge J, Jackson GS, Altmann DM. A role of cellular prion protein in programming T‐cell cytokine responses in disease. FASEB J 2009; 23:1672-84. [DOI: 10.1096/fj.08-116087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rebecca J. Ingram
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| | - Jeremy D. Isaacs
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
- MRC Prion UnitDepartment of Neurodegenerative DiseaseInstitute of NeurologyUniversity College LondonQueen SquareLondonUK
| | - Gurman Kaur
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| | - Daniel E. Lowther
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| | - Catherine J. Reynolds
- Lung Immunology GroupImmunology and InfectionNHLISir Alexander Fleming Building, South Kensington CampusLondonUK
| | - Rosemary J. Boyton
- Lung Immunology GroupImmunology and InfectionNHLISir Alexander Fleming Building, South Kensington CampusLondonUK
| | - John Collinge
- MRC Prion UnitDepartment of Neurodegenerative DiseaseInstitute of NeurologyUniversity College LondonQueen SquareLondonUK
| | - Graham S. Jackson
- MRC Prion UnitDepartment of Neurodegenerative DiseaseInstitute of NeurologyUniversity College LondonQueen SquareLondonUK
| | - Daniel M. Altmann
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| |
Collapse
|
228
|
Aggregated, wild-type prion protein causes neurological dysfunction and synaptic abnormalities. J Neurosci 2009; 28:13258-67. [PMID: 19052217 DOI: 10.1523/jneurosci.3109-08.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The neurotoxic forms of the prion protein (PrP) that cause neurodegeneration in prion diseases remain to be conclusively identified. Considerable evidence points to the importance of noninfectious oligomers of PrP in the pathogenic process. In this study, we describe lines of Tg(WT) transgenic mice that over-express wild-type PrP by either approximately 5-fold or approximately 10-fold (depending on whether the transgene array is, respectively, hemizygous or homozygous). Homozygous but not hemizygous Tg(WT) mice develop a spontaneous neurodegenerative illness characterized clinically by tremor and paresis. Both kinds of mice accumulate large numbers of punctate PrP deposits in the molecular layer of the cerebellum as well as in several other brain regions, and they display abnormally enlarged synaptic terminals accompanied by a dramatic proliferation of membranous structures. The over-expressed PrP in Tg(WT) mice assembles into an insoluble form that is mildly protease-resistant and is recognizable by aggregation-specific antibodies, but that is not infectious in transmission experiments. Together, our results demonstrate that noninfectious aggregates of wild-type PrP are neurotoxic, particularly to synapses, and they suggest common pathogenic mechanisms shared by prion diseases and nontransmissible neurodegenerative disorders associated with protein misfolding.
Collapse
|
229
|
Prion expression is activated by Adenovirus 5 infection and affects the adenoviral cycle in human cells. Virology 2009; 385:343-50. [PMID: 19138779 DOI: 10.1016/j.virol.2008.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/29/2008] [Accepted: 12/04/2008] [Indexed: 01/01/2023]
Abstract
The prion protein is a cell surface glycoprotein whose physiological role remains elusive, while its implication in transmissible spongiform encephalopathies (TSEs) has been demonstrated. Multiple interactions between the prion protein and viruses have been described: viruses can act as co-factors in TSEs and life cycles of different viruses have been found to be controlled by prion modulation. We present data showing that human Adenovirus 5 induces prion expression. Inactivated Adenovirus did not alter prion transcription, while variants encoding for early products did, suggesting that the prion is stimulated by an early adenoviral function. Down-regulation of the prion through RNA interference showed that the prion controls adenovirus replication and expression. These data suggest that the prion protein could play a role in the defense strategy mounted by the host during viral infection, in a cell autonomous manner. These results have implications for the study of the prion protein and of associated TSEs.
Collapse
|
230
|
Burgess STG, Shen C, Ferguson LA, O'Neill GT, Docherty K, Hunter N, Goldmann W. Identification of adjacent binding sites for the YY1 and E4BP4 transcription factors in the ovine PrP (Prion) gene promoter. J Biol Chem 2009; 284:6716-24. [PMID: 19129193 DOI: 10.1074/jbc.m807065200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PrP gene encodes the cellular isoform of the prion protein (PrP(c)) which has been shown to be crucial to the development of transmissible spongiform encephalopathies (TSEs). PrP knock-out mice, which do not express endogenous PrP(c), exhibit resistance to TSE disease. The regulation of PrP gene expression represents, therefore, a crucial factor in the development of TSEs. Two sequence motifs in the PrP promoter (positions -287 to -263 from transcriptional start) were previously reported as being highly conserved, and it was suggested that they represent binding sites for as yet unidentified transcription factors. To test this hypothesis, binding of nuclear proteins was analyzed by electrophoretic mobility shift assays using ovine or murine cells and tissues with radiolabeled DNA probes containing the conserved motif sequences. Specific binding was observed to both motifs, and polymorphic variants of these motifs exhibited differential binding. Two proteins bound to these motifs were identified as the Yin Yang 1 (YY1) (motif 1) and E4BP4 (motif 2) transcription factors. Functional promoter analysis of four different promoter variants revealed that motif 1 (YY1) was associated with inhibitory activity in the context of the PrP promoter, whereas motif 2 (E4BP4) was linked to a slight enhancing activity. This represents the first demonstration of binding of nuclear factors to two highly conserved DNA sequence motifs within mammalian PrP promoters. The action of these factors on the PrP promoter is haplotype-specific, leading us to propose that the prion protein expression pattern and, with it, the distribution of TSE infectivity may be associated with PrP promoter genotype.
Collapse
Affiliation(s)
- Stewart T G Burgess
- Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Roslin, Midlothian EH25 9PS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
231
|
Li P, Dong C, Lei Y, Shan B, Xiao X, Jiang H, Wang X, Gao C, Shi Q, Xu K, Tian C, Han J, Dong X. Doppel-induced cytotoxicity in human neuronal SH-SY5Y cells is antagonized by the prion protein. Acta Biochim Biophys Sin (Shanghai) 2009; 41:42-53. [PMID: 19129949 DOI: 10.1093/abbs/gmn005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doppel (Dpl) is a prion (PrP)-like protein due to the structural and biochemical similarities; however, the natural functions of Dpl and PrP remain unclear. In this study, a 531-bp human PRND gene sequence encoding Dpl protein was amplified from human peripheral blood leucocytes. Full-length and various truncated human Dpl and PrP proteins were expressed and purified from Escherichia coli. Supplement of the full-length Dpl onto human neuroblastoma cell SH-SY5Y induced remarkable cytotoxicity, and the region responsible for its cytotoxicity was mapped at the middle segment of Dpl [amino acids (aa) 81-122]. Interestingly, Dpl-induced cytotoxicity was antagonized by the presence of fulllength wild-type PrP. Analysis on fragments of PrP mutants showed that the N-terminal fragment (aa 23- 90) of PrP was responsible for the protective activity. A truncated PrP (PrPdelta32-121) with similar secondary structure as Dpl induced Dpl-like cytotoxicity on SHSY5Y cells. Furthermore, binding of copper ion could enhance the antagonizing effect of PrP on Dpl-induced cytotoxicity. Apoptosis assays revealed that cytotoxicity induced by Dpl occurred through an apoptotic mechanism. These results suggested that the function of Dpl is antagonistic to PrP rather than synergistic.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Le Pichon CE, Valley MT, Polymenidou M, Chesler AT, Sagdullaev BT, Aguzzi A, Firestein S. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci 2008; 12:60-9. [PMID: 19098904 PMCID: PMC2704296 DOI: 10.1038/nn.2238] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/06/2008] [Indexed: 11/25/2022]
Abstract
The prion protein PrPC is infamous for its role in disease, yet its normal physiological function remains unknown. Here we report a novel behavioral phenotype of PrP−/− mice in an odor-guided task. This phenotype is manifest in three PrP knockout lines on different genetic backgrounds, strong evidence it is specific to the lack of PrPC rather than other genetic factors. PrP−/− mice also display altered behavior in a second olfactory task, suggesting the phenotype is olfactory specific. Furthermore, PrPC deficiency affects oscillatory activity in the deep layers of the main olfactory bulb, as well as dendrodendritic synaptic transmission between olfactory bulb granule and mitral cells. Importantly, both the behavioral and electrophysiological alterations found in PrP−/− mice are rescued by transgenic neuronal-specific expression of PrPC. These data suggest a critical role for PrPC in the normal processing of sensory information by the olfactory system.
Collapse
Affiliation(s)
- Claire E Le Pichon
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
As manifestations of prion diseases include disturbances of hypothalamic and pituitary functions, we tested the hypothesis that the cellular prion protein (PrPC) has a role as modulator of the hypothalamic-pituitary-adrenal axis. The level of corticosterone and adrenocorticotropic hormone were compared in PrPC null (PrP 0/0) and wild-type (PrP+/+) mice. PrP 0/0 showed hypercorticism during the dark part of day. After acute stress, corticosterone and adrenocorticotropic hormone increased similarly in PrP+/+ and PrP 0/0 mice. Adrenocorticotropic hormone, however, remained elevated in PrP+/+ 0/0 mice at corticosterone levels that are inhibitory in PrP mice. Pretreatment with corticosterone or dexamethasone inhibited stress-induced elevation of adrenocorticotropic hormone in PrP+/+ but not in PrP 0/0 mice. Thus, PrPC may play a role in the negative feedback regulation of axis.
Collapse
|
234
|
Xu F, Karnaukhova E, Vostal JG. Human cellular prion protein interacts directly with clusterin protein. Biochim Biophys Acta Mol Basis Dis 2008; 1782:615-20. [DOI: 10.1016/j.bbadis.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 07/25/2008] [Accepted: 08/05/2008] [Indexed: 02/07/2023]
|
235
|
Mild cognitive deficits associated to neocortical microgyria in mice with genetic deletion of cellular prion protein. Brain Res 2008; 1241:148-56. [DOI: 10.1016/j.brainres.2008.08.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/23/2022]
|
236
|
Wadia JS, Schaller M, Williamson RA, Dowdy SF. Pathologic prion protein infects cells by lipid-raft dependent macropinocytosis. PLoS One 2008; 3:e3314. [PMID: 19390657 PMCID: PMC2671965 DOI: 10.1371/journal.pone.0003314] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/06/2008] [Indexed: 01/28/2023] Open
Abstract
Transmissible spongiform encephalopathies, including variant-Creutzfeldt-Jakob disease (vCJD) in humans and bovine spongiform encephalopathies in cattle, are fatal neurodegenerative disorders characterized by protein misfolding of the host cellular prion protein (PrP(C)) to the infectious scrapie form (PrP(Sc)). However, the mechanism that exogenous PrP(Sc) infects cells and where pathologic conversion of PrP(C) to the PrP(Sc) form occurs remains uncertain. Here we report that similar to the mechanism of HIV-1 TAT-mediated peptide transduction, processed mature, full length PrP contains a conserved N-terminal cationic domain that stimulates cellular uptake by lipid raft-dependent, macropinocytosis. Inhibition of macropinocytosis by three independent means prevented cellular uptake of recombinant PrP; however, it did not affect recombinant PrP cell surface association. In addition, fusion of the cationic N-terminal PrP domain to a Cre recombinase reporter protein was sufficient to promote both cellular uptake and escape from the macropinosomes into the cytoplasm. Inhibition of macropinocytosis was sufficient to prevent conversion of PrP(C) to the pathologic PrP(Sc) form in N2a cells exposed to strain RML PrP(Sc) infected brain homogenates, suggesting that a critical determinant of PrP(C) conversion occurs following macropinocytotic internalization and not through mere membrane association. Taken together, these observations provide a cellular mechanism that exogenous pathological PrP(Sc) infects cells by lipid raft dependent, macropinocytosis.
Collapse
Affiliation(s)
- Jehangir S. Wadia
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Monica Schaller
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America
| | - R. Anthony Williamson
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven F. Dowdy
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
237
|
Christensen HM, Harris DA. Prion protein lacks robust cytoprotective activity in cultured cells. Mol Neurodegener 2008; 3:11. [PMID: 18718018 PMCID: PMC2546390 DOI: 10.1186/1750-1326-3-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/21/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The physiological function of the cellular prion protein (PrPC) remains unknown. However, PrPC has been reported to possess a cytoprotective activity that prevents death of neurons and other cells after a toxic stimulus. To explore this effect further, we attempted to reproduce several of the assays in which a protective activity of PrP had been previously demonstrated in mammalian cells. RESULTS In the first set of experiments, we found that PrP over-expression had a minimal effect on the death of MCF-7 breast carcinoma cells treated with TNF-alpha and Prn-p0/0 immortalized hippocampal neurons (HpL3-4 cells) subjected to serum deprivation. In the second set of assays, we observed only a small difference in viability between cerebellar granule neurons cultured from PrP-null and control mice in response to activation of endogenous or exogenous Bax. CONCLUSION Taken together, our results suggest either that cytoprotection is not a physiologically relevant activity of PrPC, or that PrPC-dependent protective pathways operative in vivo are not adequately modeled by these cell culture systems. We suggest that cell systems capable of mimicking the neurotoxic effects produced in transgenic mice by N-terminally deleted forms of PrP or Doppel may represent more useful tools for analyzing the cytoprotective function of PrPC.
Collapse
Affiliation(s)
- Heather M Christensen
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St, Louis, MO 63110, USA.
| | | |
Collapse
|
238
|
Greil CS, Vorberg IM, Ward AE, Meade-White KD, Harris DA, Priola SA. Acute cellular uptake of abnormal prion protein is cell type and scrapie-strain independent. Virology 2008; 379:284-93. [PMID: 18692214 DOI: 10.1016/j.virol.2008.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/12/2008] [Accepted: 07/02/2008] [Indexed: 11/17/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that include Creutzfeldt-Jakob disease, bovine spongiform encephalopathy and sheep scrapie. Although one of the earliest events during TSE infection is the cellular uptake of protease resistant prion protein (PrP-res), this process is poorly understood due to the difficulty of clearly distinguishing input PrP-res from either PrP-res or protease-sensitive PrP (PrP-sen) made by the cell. Using PrP-res tagged with a unique antibody epitope, we examined PrP-res uptake in neuronal and fibroblast cells exposed to three different mouse scrapie strains. PrP-res uptake was rapid and independent of scrapie strain, cell type, or cellular PrP expression, but occurred in only a subset of cells and was influenced by PrP-res preparation and aggregate size. Our results suggest that PrP-res aggregate size, the PrP-res microenvironment, and/or host cell-specific factors can all influence whether or not a cell takes up PrP-res following exposure to TSE infectivity.
Collapse
Affiliation(s)
- Christopher S Greil
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, NIAID, NIH, 903 S. 4th Street, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
239
|
Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 2008; 28:6691-702. [PMID: 18579743 DOI: 10.1523/jneurosci.1701-08.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrP(C)) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrP(C) trafficking and tested whether this process controls PrP(C)-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrP(C), induced PrP(C) endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrP(C); however, heterologous expression of PrP(C) reconstituted both PKA and ERK1/2 activation. In contrast, a PrP(C) mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrP(C) endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.
Collapse
|
240
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Frank Baumann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Juliane Bremer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| |
Collapse
|
241
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
242
|
Heitz S, Gautheron V, Lutz Y, Rodeau JL, Zanjani HS, Sugihara I, Bombarde G, Richard F, Fuchs JP, Vogel MW, Mariani J, Bailly Y. BCL-2 counteracts Doppel-induced apoptosis of prion-protein-deficient Purkinje cells in the Ngsk Prnp(0/0) mouse. Dev Neurobiol 2008; 68:332-48. [PMID: 18085563 DOI: 10.1002/dneu.20555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pro-apoptotic factor BAX has recently been shown to contribute to Purkinje cell (PC) apoptosis induced by the neurotoxic prion-like protein Doppel (Dpl) in the prion-protein-deficient Ngsk Prnp(0/0) (NP(0/0)) mouse. In view of cellular prion protein (PrP(c)) ability to counteract Dpl neurotoxicity and favor neuronal survival like BCL-2, we investigated the effects of the anti-apoptotic factor BCL-2 on Dpl neurotoxicity by studying the progression of PC death in aging NP(0/0)-Hu-bcl-2 double mutant mice overexpressing human BCL-2 (Hu-bcl-2). Quantitative analysis showed that significantly more PCs survived in NP(0/0)-Hu-bcl-2 double mutants compared with the NP(0/0) mutants. However, number of PCs remained inferior to wild-type levels and to the increased number of PCs observed in Hu-bcl-2 mutants. In the NP(0/0) mutants, Dpl-induced PC death occurred preferentially in the aldolase C-negative parasagittal compartments of the cerebellar cortex. Activation of glial cells exclusively in these compartments, which was abolished by the expression of Hu-bcl-2 in the double mutants, suggested that chronic inflammation is an indirect consequence of Dpl-induced PC death. This partial rescue of NP(0/0) PCs by Hu-bcl-2 expression was similar to that observed in NP(0/0):Bax(-/-) double mutants with bax deletion. Taken together, these data strongly support the involvement of BCL-2 family-dependent apoptotic pathways in Dpl neurotoxicity. The capacity of BCL-2 to compensate PrP(c) deficiency by rescuing PCs from Dpl-induced death suggests that the BCL-2-like property of PrP(c) may impair Dpl-like neurotoxic pathways in wild-type neurons.
Collapse
Affiliation(s)
- S Heitz
- Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168-LC2 CNRS, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Gallozzi M, Béringue V, Decaunes P, Le Dur A, Le Roux K, Tilly G, Le Guillou S, Herzog L, Peyre C, Ladroue A, Chapuis J, Vilotte M, Passet B, Costa J, Chenais N, Le Provost F, Laude H, Vilotte JL. Spatial and temporal down-regulation of transgene expression using the TRSID-silencer in mice: application to Prnp. FEBS Lett 2008; 582:2219-24. [PMID: 18501713 DOI: 10.1016/j.febslet.2008.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/05/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Spatial and temporal control of ovine prion protein (Prnp) gene expression was achieved in mice using two transgenes: a Prnp minigene with tet-operator sequences inserted 5' to exon 1 and a mouse neurofilament genomic clone carrying the chimeric-repressor TRSID cDNA. In bi-transgenic mice, ovine PrP(C) expression could be reversibly controlled in neuronal cells by doxycycline treatment whereas it remains constant in other cell types. Overall, this model opens opportunities to assess the involvement of cell types in prion diseases and PrP physiological function. It demonstrates the potentiality of the TRSID-silencer to precisely control temporal and spatial gene expression in vivo.
Collapse
Affiliation(s)
- Micaela Gallozzi
- Laboratoire de Génétique Biochimique et de Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 2008; 35:16-35. [PMID: 18482256 DOI: 10.1111/j.1365-2990.2008.00947.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To obtain an insight into the function of cellular prion protein (PrPC), we studied PrPC-interacting proteins (PrPIPs) by analysing a protein microarray. METHODS We identified 47 novel PrPIPs by probing an array of 5000 human proteins with recombinant human PrPC spanning amino acid residues 23-231 named PR209. RESULTS The great majority of 47 PrPIPs were annotated as proteins involved in the recognition of nucleic acids. Coimmunoprecipitation and cell imaging in a transient expression system validated the interaction of PR209 with neuronal PrPIPs, such as FAM64A, HOXA1, PLK3 and MPG. However, the interaction did not generate proteinase K-resistant proteins. KeyMolnet, a bioinformatics tool for analysing molecular interaction on the curated knowledge database, revealed that the complex molecular network of PrPC and PrPIPs has a significant relationship with AKT, JNK and MAPK signalling pathways. CONCLUSIONS Protein microarray is a useful tool for systematic screening and comprehensive profiling of the human PrPC interactome. Because the network of PrPC and interactors involves signalling pathways essential for regulation of cell survival, differentiation, proliferation and apoptosis, these observations suggest a logical hypothesis that dysregulation of the PrPC interactome might induce extensive neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
245
|
Bibby DF, Gill AC, Kirby L, Farquhar CF, Bruce ME, Garson JA. Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J Virol Methods 2008; 151:107-15. [PMID: 18433888 DOI: 10.1016/j.jviromet.2008.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/10/2008] [Indexed: 11/18/2022]
Abstract
Clinical diagnosis and research into transmissible spongiform encephalopathies are hampered by the lack of sufficiently sensitive and specific reagents able to adequately detect the normal cellular form of the prion protein, PrP(C), and the pathological isoform, PrP(Sc). In order to provide such reagents, we applied Systematic Evolution of Ligands by EXponential enrichment (SELEX) against a recombinant murine prion protein, to select single-stranded DNA ligands (aptamers) of high affinity. The SELEX protocol and subsequent aptamer characterisation employed protein immobilisation/partitioning using nickel-complexed magnetic particles and a novel SYBR Green-mediated quantitative real-time PCR technique. Following eight rounds of selection, the enriched aptamer pool was cloned and 24 clones sequenced. Seven of these were 'orphan' clones and the remainder were grouped into three separate T-rich families. All but four of the aptamer clones exhibited specific binding to the murine prion protein and the majority also bound to human and ovine prion proteins. Dissociation constants (K(d)) ranged from 18 to 79 nM. Flow cytometry with fluorescein-labelled aptamers confirmed that binding to cells was dependent on the expression of PrP(C). Preliminary studies also indicate that a trivalent aptamer pool is capable of binding the pathological isoform PrP(Sc) following guanidinium denaturation.
Collapse
Affiliation(s)
- David F Bibby
- Centre for Virology, Department of Infection, Windeyer Institute, University College London, London W1T 4JF, UK
| | | | | | | | | | | |
Collapse
|
246
|
Cellular prion protein prevents brain damage after encephalomyocarditis virus infection in mice. Arch Virol 2008; 153:1007-12. [DOI: 10.1007/s00705-008-0086-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/01/2008] [Indexed: 12/26/2022]
|
247
|
Hooper NM, Turner AJ. A new take on prions: preventing Alzheimer's disease. Trends Biochem Sci 2008; 33:151-5. [DOI: 10.1016/j.tibs.2008.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/11/2008] [Accepted: 01/16/2008] [Indexed: 12/31/2022]
|
248
|
Prnp knockdown in transgenic mice using RNA interference. Transgenic Res 2008; 17:783-91. [PMID: 18350371 DOI: 10.1007/s11248-008-9179-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
RNA interference has become a widely used approach to perform gene knockdown experiments in cell cultures and more recently transgenic animals. A designed miRNA targeting the prion protein mRNA was built and expressed using the human PRNP promoter. Its efficiency was confirmed in transfected cells and it was used to generate several transgenic mouse lines. Although expressed at low levels, it was found to downregulate the endogenous mouse Prnp gene expression to an extent that appears to be directly related with the transgene expression level and that could reach up to 80% inhibition. This result highlights the potential and limitations of the RNA interference approach when applied to disease resistance.
Collapse
|
249
|
Bedecs K. Cell culture models to unravel prion protein function and aberrancies in prion diseases. Methods Mol Biol 2008; 459:1-20. [PMID: 18576144 DOI: 10.1007/978-1-59745-234-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
From an early stage of prion research, tissue cultures that could support and propagate the scrapie agent were sought after. The earliest attempts were explants from brains of infected mice, and their growth and morphological characteristics were compared with those from uninfected mice. Using the explant technique, several investigators reported increased cell growth in cultures established from scrapie-sick brain compared with cultures from normal mice. These are odd findings in the light of the massive neuronal cell death known to occur in scrapie-infected brains; however, the cell types responsible for the increased cell growth in the scrapie-explants most probably were not neuronal. The first successful cell culture established in this way, in which the scrapie agent was serially and continuously passaged beyond the initial explant, was in the scrapie mouse brain culture, which is still used today. This chapter describes the generation and use of chronically prion-infected cell lines as cell culture models of prion diseases. These cell lines have been crucial for the current understanding of the cell biology of both the normal (PrP(C)) and the pathogenic isoform (PrP(Sc)) of the prion protein. They also have been useful in the development of antiprion drugs, prospectively used for therapy of prion diseases, and they offer an alternative approach for transmission/infectivity assays normally performed by mouse bioassay. Cell culture models also have been used to study prion-induced cytopathological changes, which could explain the typical spongiform neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- Katarina Bedecs
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
250
|
Abstract
Prions represent a new biological paradigm of protein-mediated information transfer. In mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, often referred to as transmissible spongiform encephalopathies. Many unresolved issues remain, including the exact molecular nature of the prion, the detailed mechanism of prion propagation, and the mechanism by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological function of the normal form of the prion protein remains unclear, and it is uncertain whether loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, dramatic advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic mouse models has done much to further our understanding about various aspects of prion biology. In this chapter, I review recent advances in our understanding of prion biology that derive from this powerful and informative approach.
Collapse
Affiliation(s)
- Glenn C Telling
- Department of Microbiology, Immunology and Molecular Genetics, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|