201
|
Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. AJR Am J Roentgenol 2014; 203:W158-65. [PMID: 25055291 DOI: 10.2214/ajr.14.12518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Improved predictive imaging would enable personalization and adjustment of treatment, which are critical for patients with glioblastomain whom therapy is likely to fail. This article describes the use of MR spectroscopic imaging (MRSI) to predict early clinical and behavioral response to a therapy and an effort to develop high-resolution, volumetric MRSI to improve its clinical application. CONCLUSION MRSI may enable quantitative analysis of brain tumor response, offering a precise tool for monitoring of patients in clinical trials.
Collapse
|
202
|
Lutz ST, Jones J, Chow E. Role of radiation therapy in palliative care of the patient with cancer. J Clin Oncol 2014; 32:2913-9. [PMID: 25113773 DOI: 10.1200/jco.2014.55.1143] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is a successful, time-efficient, well-tolerated, and cost-effective intervention that is crucial for the appropriate delivery of palliative oncology care. The distinction between curative and palliative goals is blurred in many patients with cancer, requiring that treatments be chosen on the basis of factors related to the patient (ie, poor performance status, advanced age, significant weight loss, severe comorbid disease), the cancer (ie, metastatic disease, aggressive histology), or the treatment (ie, poor response to systemic therapy, previous radiotherapy). Goals may include symptom relief at the site of primary tumor or from metastatic lesions. Attention to a patient's discomfort and transportation limitations requires hypofractionated courses, when feasible. Innovative approaches include rapid response palliative care clinics as well as the formation of palliative radiotherapy specialty services in academic centers. Guidelines are providing better definitions of appropriate palliative radiotherapy interventions, and bone metastases fractionation has become the first radiotherapy quality measure accepted by the National Quality Forum. Further advances in the palliative radiation oncology subspecialty will require integration of education and training between the radiotherapy and palliative care specialties.
Collapse
Affiliation(s)
- Stephen T Lutz
- Stephen T. Lutz, Blanchard Valley Regional Cancer Center, Findlay, OH; Joshua Jones, University of Pennsylvania, Philadelphia, PA; Edward Chow, University of Toronto, Toronto, Ontario, Canada.
| | - Joshua Jones
- Stephen T. Lutz, Blanchard Valley Regional Cancer Center, Findlay, OH; Joshua Jones, University of Pennsylvania, Philadelphia, PA; Edward Chow, University of Toronto, Toronto, Ontario, Canada
| | - Edward Chow
- Stephen T. Lutz, Blanchard Valley Regional Cancer Center, Findlay, OH; Joshua Jones, University of Pennsylvania, Philadelphia, PA; Edward Chow, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
203
|
Deviers A, Ken S, Filleron T, Rowland B, Laruelo A, Catalaa I, Lubrano V, Celsis P, Berry I, Mogicato G, Cohen-Jonathan Moyal E, Laprie A. Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2014; 90:385-93. [PMID: 25104068 DOI: 10.1016/j.ijrobp.2014.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-(1)H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). METHODS AND MATERIALS Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis of the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥ 2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. RESULTS A LNR of ≥ 0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm(3); range: 6-49 cm(3)). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). CONCLUSIONS Pre-RT LNR-0.4 in GBM indicates tumor areas that are likely to relapse. Further investigations are needed to confirm lactate imaging as a tool to define additional biological target volumes for dose painting.
Collapse
Affiliation(s)
- Alexandra Deviers
- Département de Radiothérapie, Institut Claudius Regaud, Toulouse, France; UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France; INP (Institut National Polytechnique), ENVT (Ecole Nationale Vétérinaire de Toulouse), Unité d'Anatomie-Imagerie-Embryologie, Université de Toulouse, Toulouse, France
| | - Soléakhéna Ken
- Département de Radiothérapie, Institut Claudius Regaud, Toulouse, France; UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Thomas Filleron
- Bureau des Etudes Cliniques, Institut Claudius Regaud, Toulouse, France
| | - Benjamin Rowland
- Département de Radiothérapie, Institut Claudius Regaud, Toulouse, France
| | - Andrea Laruelo
- Département de Radiothérapie, Institut Claudius Regaud, Toulouse, France
| | - Isabelle Catalaa
- UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France; Hôpital de Rangueil, CHU (Centre Hospitalier Universitaire) de Toulouse, Toulouse, France
| | - Vincent Lubrano
- UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France; Hôpital de Rangueil, CHU (Centre Hospitalier Universitaire) de Toulouse, Toulouse, France
| | - Pierre Celsis
- UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Isabelle Berry
- UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France; Hôpital de Rangueil, CHU (Centre Hospitalier Universitaire) de Toulouse, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Giovanni Mogicato
- UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France; INP (Institut National Polytechnique), ENVT (Ecole Nationale Vétérinaire de Toulouse), Unité d'Anatomie-Imagerie-Embryologie, Université de Toulouse, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Département de Radiothérapie, Institut Claudius Regaud, Toulouse, France; UMR1037, CRCT, Institut National de la Santé et de la Recherche Médicale, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Laprie
- Département de Radiothérapie, Institut Claudius Regaud, Toulouse, France; UMR (Unité Mixte de Recherche) 825, Institut National de la Santé et de la Recherche Médicale, Toulouse, France.
| |
Collapse
|
204
|
Ulasov I, Yi R, Guo D, Sarvaiya P, Cobbs C. The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta Rev Cancer 2014; 1846:113-20. [DOI: 10.1016/j.bbcan.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023]
|
205
|
Kaye AH, Morokoff A. The Continuing Evolution: Biology and Treatment of Brain Tumors. Neurosurgery 2014; 61 Suppl 1:100-4. [DOI: 10.1227/neu.0000000000000388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Andrew H. Kaye
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia
| | - Andrew Morokoff
- Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
206
|
Lo SS, Sahgal A, Slotman BJ, Mansur DB, Khouri A, Sloan AE, Machtay M, Chang EL. What is the most appropriate clinical target volume for glioblastoma? CNS Oncol 2014; 2:419-25. [PMID: 25054665 DOI: 10.2217/cns.13.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma is one of the most common primary brain tumors in adults and the prognosis is very poor. The standard treatment is gross total resection and postoperative radiotherapy with concurrent and adjuvant chemotherapy with temozolomide. Given its propensity to spread to areas of brain parenchyma surrounding the gross tumor volume (GTV), a generous margin is typically created around the GTV. Peritumoral edema is frequently included in the GTV, especially in the USA. The margin of expansion from GTV to clinical target volume also varies widely among different institutions. There is a lack of consensus as to what constitutes the most appropriate clinical target volume for glioblastoma.
Collapse
Affiliation(s)
- Simon S Lo
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Young JS, Morshed RA, Kim JW, Balyasnikova IV, Ahmed AU, Lesniak MS. Advances in stem cells, induced pluripotent stem cells, and engineered cells: delivery vehicles for anti-glioma therapy. Expert Opin Drug Deliv 2014; 11:1733-46. [PMID: 25005767 DOI: 10.1517/17425247.2014.937420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A limitation of small molecule inhibitors, nanoparticles (NPs) and therapeutic adenoviruses is their incomplete distribution within the entirety of solid tumors such as malignant gliomas. Currently, cell-based carriers are making their way into the clinical setting as they offer the potential to selectively deliver many types of therapies to cancer cells. AREAS COVERED Here, we review the properties of stem cells, induced pluripotent stem cells and engineered cells that possess the tumor-tropic behavior necessary to serve as cell carriers. We also report on the different types of therapeutic agents that have been delivered to tumors by these cell carriers, including: i) therapeutic genes; ii) oncolytic viruses; iii) NPs; and iv) antibodies. The current challenges and future promises of cell-based drug delivery are also discussed. EXPERT OPINION While the emergence of stem cell-mediated therapy has resulted in promising preclinical results and a human clinical trial utilizing this approach is currently underway, there is still a need to optimize these delivery platforms. By improving the loading of therapeutic agents into stem cells and enhancing their migratory ability and persistence, significant improvements in targeted cancer therapy may be achieved.
Collapse
Affiliation(s)
- Jacob S Young
- The University of Chicago Pritzker School of Medicine , 5841 South Maryland Ave., M/C 3026, Chicago, IL 60637 , USA
| | | | | | | | | | | |
Collapse
|
208
|
Whitfield GA, Kennedy SR, Djoukhadar IK, Jackson A. Imaging and target volume delineation in glioma. Clin Oncol (R Coll Radiol) 2014; 26:364-76. [PMID: 24824451 DOI: 10.1016/j.clon.2014.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 11/22/2022]
Abstract
Here we review current practices in target volume delineation for radical radiotherapy planning for gliomas. Current radiotherapy planning margins for glioma are informed by historic data of recurrence patterns using radiological imaging or post-mortem studies. Radiotherapy planning for World Health Organization grade II-IV gliomas currently relies predominantly on T1-weighted contrast-enhanced magnetic resonance imaging (MRI) and T2/fluid-attenuated inversion recovery sequences to identify the gross tumour volume (GTV). Isotropic margins are added empirically for each tumour type, usually without any patient-specific individualisation. We discuss novel imaging techniques that have the potential to influence radiotherapy planning, by improving definition of the tumour extent and its routes of invasion, thus modifying the GTV and allowing anisotropic expansion to a clinical target volume better reflecting areas at risk of recurrence. Identifying the relationships of tumour boundaries to important white matter pathways and eloquent areas of cerebral cortex could lead to reduced normal tissue complications. Novel magnetic resonance approaches to identify tumour extent and invasion include: (i) diffusion-weighted magnetic resonance metrics; (ii) diffusion tensor imaging; and (iii) positron emission tomography, using radiolabelled amino acids methyl-11C-L-methionine and 18F-fluoroethyltyrosine. Novel imaging techniques may also have a role together with clinical characteristics and molecular genetic markers in predicting response to therapy. Most significant among these techniques is dynamic contrast-enhanced MRI, which uses dynamic acquisition of images after injection of intravenous contrast. A number of studies have identified changes in diffusion and microvascular characteristics occurring during the early stages of radiotherapy as powerful predictive biomarkers of outcome.
Collapse
Affiliation(s)
| | - S R Kennedy
- The Christie NHS Foundation Trust, Manchester, UK
| | - I K Djoukhadar
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - A Jackson
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| |
Collapse
|
209
|
Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide. Radiat Oncol 2014; 9:130. [PMID: 24906388 PMCID: PMC4055938 DOI: 10.1186/1748-717x-9-130] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/29/2014] [Indexed: 12/22/2022] Open
Abstract
Background To analyze patterns of failure in patients with glioblastoma multiforme (GBM) treated with limited-margin radiation therapy and concurrent temozolomide. We hypothesize that patients treated with margins in accordance with Adult Brain Tumor Consortium guidelines (ABTC) will demonstrate patterns of failure consistent with previous series of patients treated with 2–3 cm margins. Methods A retrospective review was performed of patients treated at the University of Alabama at Birmingham for GBM between 2000 and 2011. Ninety-five patients with biopsy-proven disease and documented disease progression after treatment were analyzed. The initial planning target volume includes the T1-enhancing tumor and surrounding edema plus a 1 cm margin. The boost planning target volume includes the T1-enhancing tumor plus a 1 cm margin. The tumors were classified as in-field, marginal, or distant if greater than 80%, 20-80%, or less than 20% of the recurrent volume fell within the 95% isodose line, respectively. Results The median progression-free survival from the time of diagnosis to documented failure was 8 months (range 3–46). Of the 95 documented recurrences, 77 patients (81%) had an in-field component of treatment failure, 6 (6%) had a marginal component, and 27 (28%) had a distant component. Sixty-three patients (66%) demonstrated in-field only recurrence. Conclusions The low rate of marginal recurrence suggests that wider margins would have little impact on the pattern of failure, validating the use of limited margins in accordance ABTC guidelines.
Collapse
|
210
|
Wang CJ, Choe KS. Genomic landscape of glioblastoma and the potential clinical utility. CNS Oncol 2014; 3:169-72. [DOI: 10.2217/cns.14.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chiachien Jake Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9183, USA
| | - Kevin S Choe
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9183, USA
| |
Collapse
|
211
|
Zehri AH, Ramey W, Georges JF, Mooney MA, Martirosyan NL, Preul MC, Nakaji P. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities. Surg Neurol Int 2014; 5:60. [PMID: 24872922 PMCID: PMC4033764 DOI: 10.4103/2152-7806.131638] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/13/2014] [Indexed: 01/15/2023] Open
Abstract
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.
Collapse
Affiliation(s)
- Aqib H Zehri
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wyatt Ramey
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Joseph F Georges
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA ; School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Michael A Mooney
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L Martirosyan
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA ; Division of Neurosurgery, Department of Surgery, The University of Arizona, Tucson, AZ, Arizona, USA
| | - Mark C Preul
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Peter Nakaji
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
212
|
Wegscheid ML, Morshed RA, Cheng Y, Lesniak MS. The art of attraction: applications of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin Drug Deliv 2014; 11:957-75. [PMID: 24766329 DOI: 10.1517/17425247.2014.912629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Malignant gliomas remain one of medicine's most daunting unsolved clinical problems. The development of new technologies is urgently needed to improve the poor prognosis of patients suffering from these brain tumors. Magnetic nanomaterials are appealing due to unique properties that allow for noninvasive brain tumor diagnostics and therapeutics in one multifunctional platform. AREAS COVERED We report on the recent advances of magnetic nanomaterials for brain tumor imaging and therapy, with an emphasis on novel approaches and clinical progress. We detail their biomedical applications including brain tumor targeting, MRI contrast enhancement, optical imaging, magnetic hyperthermia, magnetomechanical destruction, drug delivery, gene therapy, as well as tracking of cell-based and viral-based therapies. The clinical cases and obstacles encountered in the use of magnetic nanomaterials for malignant glioma are also examined. EXPERT OPINION To accelerate the effective translation of these materials to the clinic as theranostics for brain tumors, limitations such as poor intratumoral distribution, targeting efficiency and nonspecific systemic side effects must be addressed. Future innovations should focus on optimizing and combining the unique therapeutic applications of these magnetic nanomaterials as well as improving the selectivity of the system based on the molecular profiling of tumors.
Collapse
|
213
|
Ryken TC, Kalkanis SN, Buatti JM, Olson JJ. The role of cytoreductive surgery in the management of progressive glioblastoma : a systematic review and evidence-based clinical practice guideline. J Neurooncol 2014; 118:479-88. [PMID: 24756348 DOI: 10.1007/s11060-013-1336-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/28/2013] [Indexed: 02/04/2023]
Abstract
QUESTION Should patients with previously diagnosed malignant glioma who are suspected of experiencing progression of the neoplasm process undergo repeat open surgical resection? TARGET POPULATION These recommendations apply to adults with previously diagnosed malignant glioma who are suspected of experiencing progression of the neoplastic process and are amenable to surgical resection. RECOMMENDATIONS LEVEL II Repeat cytoreductive surgery is recommended in symptomatic patients with locally recurrent or progressive malignant glioma. The median survival in these patient diagnosed with glioblastoma is expected to range from 6 to 17 months following a second procedure. It is recommended that the following preoperative factors be considered when evaluating a patient for repeat operation: location of recurrence in eloquent/critical brain regions, Karnofsky Performance Status and tumor volume.
Collapse
|
214
|
Abstract
Radiotherapy is a primary mode of treatment of many of the disease entities seen by the neurologist. Therefore knowledge of how ionizing radiation works and when it is indicated is a crucial part of the field of Neurology. The neurologist may also be confronted with some of the side effects and complications or radiotherapy treatment. This chapter attempts to serve as a review of the current day process of radiotherapy, a brief review of biology and physics of radiation, and how it is used in the treatment diseases which are common to the Neurologist. In addition we review the more commonly seen side effects and complications of treatment which may be seen by the neurologist.
Collapse
|
215
|
Schlaff CD, Krauze A, Belard A, O'Connell JJ, Camphausen KA. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context. Radiat Oncol 2014; 9:88. [PMID: 24679134 PMCID: PMC4002206 DOI: 10.1186/1748-717x-9-88] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/16/2014] [Indexed: 12/23/2022] Open
Abstract
Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia, demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy. However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location, in the future design and implementation of clinical trials. With the existing data available we believe that the expansion of carbon ion facilities into the United States is warranted.
Collapse
Affiliation(s)
| | | | | | | | - Kevin A Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center Room B3B100, Bethesda, MD 20892, USA.
| |
Collapse
|
216
|
Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 2014; 6:149-70. [PMID: 24711712 PMCID: PMC3969256 DOI: 10.2147/cmar.s54726] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas.
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J Oborski
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misun Hwang
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank S Lieberman
- Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
217
|
Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Ayache N, Shih HA. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Phys Med Biol 2014; 59:771-89. [PMID: 24440905 DOI: 10.1088/0031-9155/59/3/771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gliomas differ from many other tumors as they grow infiltratively into the brain parenchyma rather than forming a solid tumor mass with a well-defined boundary. Tumor cells can be found several centimeters away from the central tumor mass that is visible using current imaging techniques. The infiltrative growth characteristics of gliomas question the concept of a radiotherapy target volume that is irradiated to a homogeneous dose-the standard in current clinical practice. We discuss the use of the Fisher-Kolmogorov glioma growth model in radiotherapy treatment planning. The phenomenological tumor growth model assumes that tumor cells proliferate locally and migrate into neighboring brain tissue, which is mathematically described via a partial differential equation for the spatio-temporal evolution of the tumor cell density. In this model, the tumor cell density drops approximately exponentially with distance from the visible gross tumor volume, which is quantified by the infiltration length, a parameter describing the distance at which the tumor cell density drops by a factor of e. This paper discusses the implications for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model, an exponential fall-off of the cell density suggests a linear fall-off of the prescription dose with distance. We introduce the dose fall-off rate, which quantifies the steepness of the prescription dose fall-off in units of Gy mm(-1). It is shown that the dose fall-off rate is given by the inverse of the product of radiosensitivity and infiltration length. For an infiltration length of 3 mm and a surviving fraction of 50% at 2 Gy, this suggests a dose fall-off of approximately 1 Gy mm(-1). The concept is illustrated for two glioblastoma patients by optimizing intensity-modulated radiotherapy plans. The dose fall-off rate concept reflects the idea that infiltrating gliomas lack a defined boundary and are characterized by a continuous fall-off of the density of infiltrating tumor cells. The approach can potentially be used to individualize the prescribed dose distribution if better methods to estimate radiosensitivity and infiltration length on a patient by patient basis become available.
Collapse
Affiliation(s)
- Jan Unkelbach
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
218
|
Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma: final report of a pilot study. Strahlenther Onkol 2014; 190:370-6. [PMID: 24429479 DOI: 10.1007/s00066-013-0506-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Evaluated in this study were the feasibility and the efficacy of concurrent low dose fractionated radiotherapy (LD-FRT) and chemotherapy as palliative treatment for recurrent/progressive glioblastoma multiforme (GBM). PATIENTS AND METHODS Eligible patients had recurrent or progressive GBM, Karnofsky performance status ≥ 70, prior surgery, and standard radiochemotherapy treatment. Recurrence/progression disease during temozolomide (TMZ) received cisplatin (CDDP; 30 mg/m(2) on days 1, 8, 15), fotemustine (FTM; 40 mg/m(2) on days 2, 9, 16), and concurrent LD-FRT (0.3 Gy twice daily); recurrence/progression after 4 months from the end of adjuvant TMZ were treated by TMZ (150/200 mg/m(2) on days 1-5) concomitant with LD-FRT (0.4 Gy twice daily). Primary endpoints were safety and toxicity. RESULTS A total of 32 patients were enrolled. Hematologic toxicity G1-2 was observed in 18.7 % of patients and G3-4 in 9.4 %. One patient (3.1 %) had complete response, 3 (9.4 %) had partial response, 8 (25 %) had stable disease for at least 8 weeks, while 20 patients (62.5 %) experienced progressive disease. The clinical benefit was 37.5 %. Median progression-free survival (PFS) and overall survival (OS) were 5 and 8 months, respectively. Survival rate at 12 months was of 27.8 %. CONCLUSION LD-FRT and chemotherapy for recurrent/progressive GBM have a good toxicity profile and clinical outcomes, even though further investigation of this novel palliative treatment approach is warranted.
Collapse
|
219
|
Abstract
Malignant gliomas are the most prevalent type of primary brain tumor in adults. Despite progress in brain tumor therapy, the prognosis of malignant glioma patients remains dismal. The median survival of patients with glioblastoma multiforme, the most common grade of malignant glioma, is 10-12 months. Conventional therapy of surgery, radiation and chemotherapy is largely palliative. Essentially, tumor recurrence is inevitable. Salvage treatments upon recurrence are palliative at best and rarely provide significant survival benefit. Therapies targeting the underlying molecular pathogenesis of brain tumors are urgently required. Common genetic abnormalities in malignant glioma specimens are associated with aberrant activation or suppression of cellular signal transduction pathways and resistance to radiation and chemotherapy. Several low molecular weight signal transduction inhibitors have been examined in preclinical and clinical malignant glioma trials. The efficacy of these agents as monotherapies has been modest, at best; however, small subsets of patients who harbor specific genetic changes in their tumors may display favorable clinical responses to defined small molecule inhibitors. Multitargeted kinase inhibitors or combinations of agents targeting different mitogenic pathways may overcome the resistance of tumors to single-agent targeted therapies. Well designed studies of small molecule kinase inhibitors will include assessment of safety, drug delivery, target inhibition and correlative biomarkers to define mechanisms of response or resistance to these agents. Predictive biomarkers will enrich for patients most likely to respond in future clinical trials. Additional clinical studies will combine novel targeted therapies with radiation, chemotherapies and immunotherapies.
Collapse
Affiliation(s)
- Sith Sathornsumetee
- The Preston Robert Tisch Brain Tumor Center Division of Neurosurgery/Neuro-Oncology, Duke University Medical Center, DUMC 3624, Durham, NC 27710, USA.
| | | |
Collapse
|
220
|
Wardak Z, Choe KS. Molecular pathways and potential therapeutic targets in glioblastoma multiforme. Expert Rev Anticancer Ther 2014; 13:1307-18. [DOI: 10.1586/14737140.2013.852472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
221
|
Hwang CS, Marymont MH, Muro K. Photon radiotherapy for the treatment of high-grade gliomas. Expert Rev Anticancer Ther 2014; 7:S37-43. [DOI: 10.1586/14737140.7.12s.s37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
222
|
Abstract
Malignant gliomas are challenging tumors that are often treated with a multimodality approach. This article focuses on the role of radiotherapy in the management of these tumors. The role of radiotherapy in low-grade gliomas remains controversial and this review focuses on the importance of prognostic factors, recent randomized trials involving radiotherapy, and toxicity from radiotherapy. In terms of high-grade gliomas, radiotherapy has a more established role and this review will address methods that have been evaluated in order to improve radiotherapy outcome. Improvements in radiotherapy delivery, tumor imaging and biologic modifiers may ultimately lead to improved outcome in the treatment of these difficult tumors.
Collapse
Affiliation(s)
- Neil Mehta
- Department of Radiation & Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, USA.
| | | |
Collapse
|
223
|
Villà S, Balañà C, Comas S. Radiation and concomitant chemotherapy for patients with glioblastoma multiforme. CHINESE JOURNAL OF CANCER 2014; 33:25-31. [PMID: 24325790 PMCID: PMC3905087 DOI: 10.5732/cjc.013.10216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
Postoperative external beam radiotherapy was considered the standard adjuvant treatment for patients with glioblastoma multiforme until the advent of using the drug temozolomide (TMZ) in addition to radiotherapy. High-dose volume should be focal, minimizing whole brain irradiation. Modern imaging, using several magnetic resonance sequences, has improved the planning target volume definition. The total dose delivered should be in the range of 60 Gy in fraction sizes of 1.8-2.0 Gy. Currently, TMZ concomitant and adjuvant to radiotherapy has become the standard of care for glioblastoma multiforme patients. Radiotherapy dose-intensification and radiosensitizer approaches have not improved the outcome. In spite of the lack of high quality evidence, stereotactic radiotherapy can be considered for a selected group of patients. For elderly patients, data suggest that the same survival benefit can be achieved with similar morbidity using a shorter course of radiotherapy (hypofractionation). Elderly patients with tumors that exhibit methylation of the O-6-methylguanine-DNA methyltransferase promoter can benefit from TMZ alone.
Collapse
Affiliation(s)
- Salvador Villà
- Radiation Oncology, Catalan Institute of Oncology, HU Germans Trias, Badalona 08916, Catalonia, Spain.
| | | | | |
Collapse
|
224
|
Durst CR, Raghavan P, Shaffrey ME, Schiff D, Lopes MB, Sheehan JP, Tustison NJ, Patrie JT, Xin W, Elias WJ, Liu KC, Helm GA, Cupino A, Wintermark M. Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2013; 56:107-15. [DOI: 10.1007/s00234-013-1308-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
|
225
|
Niyazi M, Karin I, Söhn M, Nachbichler SB, Lang P, Belka C, Ganswindt U. Analysis of equivalent uniform dose (EUD) and conventional radiation treatment parameters after primary and re-irradiation of malignant glioma. Radiat Oncol 2013; 8:287. [PMID: 24330746 PMCID: PMC4029146 DOI: 10.1186/1748-717x-8-287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/08/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Re-irradiation is a reasonable second treatment option for patients with recurrent malignant glioma (MG) after previous radio(chemo)therapy. However, only limited data is available allowing for a precise selection of patients suitable for re-treatment in regard to safety and efficacy. METHODS Using the department database, 58 patients with two courses of percutaneous radiation were identified. Besides classical dose-volume histogram (DVH) parameters equivalent uniform dose (EUD) values were calculated for the tumor and organs at risk (OARs), retrospectively analyzed and correlated to survival outcome parameters. Cumulative EUD values were also calculated in all cases where previous OAR DVHs were available. RESULTS Median follow-up was 265 days and no relevant toxicity was observed after re-irradiation in our patient cohort during follow-up. Time interval between first and second irradiation was regularly above 6 months. As a conservative estimation of the cumulative EUD to the OARs, the EUDs of first and second irradiation were added. Median cumulative EUD to the optic chiasm was 48.8 Gy (range, 2.5-76.5 Gy), 57.4 Gy (range, 2.7-75.3 Gy) to the brainstem, 20.9/22.1 Gy (range, 0.0-68.3 Gy) to the right/left optic nerve and 73.8 Gy (range, 64.9-77.3 Gy) to the brain. No correlation between treated volume and survival was seen. CONCLUSIONS This study provides retrospective estimates on cumulative doses at the OARs. EUD values are derived and may serve as reference for further studies, including planning studies where specific constraints are needed.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University of Munich, Marchioninistr, 15, Munich 81377, Germany.
| | | | | | | | | | | | | |
Collapse
|
226
|
Christensen M, Kamson DO, Snyder M, Kim H, Robinette NL, Mittal S, Juhász C. Tryptophan PET-defined gross tumor volume offers better coverage of initial progression than standard MRI-based planning in glioblastoma patients. ACTA ACUST UNITED AC 2013; 3:131-138. [PMID: 25414765 DOI: 10.1007/s13566-013-0132-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Glioblastoma is an infiltrative malignancy that tends to extend beyond the MRI-defined tumor volume. We utilized positron emission tomography (PET) imaging with the radiotracer alpha-[11C]methyl-L -tryptophan (AMT) to develop a reliable high-risk gross tumor volume (HR-GTV) method for delineation of glioblastoma. AMT can detect solid tumor mass and tumoral brain infiltration by increased tumoral tryptophan transport and metabolism via the immunosuppressive kynurenine pathway. METHODS We reviewed all patients in our database with histologically proven glioblastoma who underwent preoperative AMT-PET scan prior to surgery and chemoradiation. Treated radiotherapy volumes were derived from the simulation CT with MRI fusion. High-GTV with contrast enhanced T1-weighted MRI alone (GTVMRI) was defined as the postoperative cavity plus any residual area of enhancement on postcontrast T1-weighted images. AMT-PET images were retrospectively fused to the simulation CT, and a high-risk GTVs generated by both AMT-PET alone (GTVAMT) was defined using a threshold previously established to distinguish tumor tissue from peritumoral edema. A composite volume of MRI and AMT tumor volume was also created (combination of MRI fused with AMT-PET data; GTVMRI+AMT). In patients with definitive radiographic progression, follow-up MRI demonstrating initial tumor progression was fused with the pretreatment images and a progression volume was contoured. The coverage of the progression volume by GTVMRI, GTVAMT, and GTVMRI+AMT was determined and compared using the Wilcoxon's signed-rank test. RESULTS Eleven patients completed presurgical AMT-PET scan, seven of whom had progressive disease after initial therapy. GTVMRI (mean, 50.2 cm3) and GTVAMT (mean, 48.9 cm3) were not significantly different. Mean concordance index of the volumes was 39±15 %. Coverage of the initial recurrence volume by HR-GTVMRI (mean, 52 %) was inferior to both GTVAMT (mean, 68 %; p =0.028) and GTVMRI+AMT (mean 73 %; p =0.018). The AMT-PET-exclusive coverage was up to 41 % of the recurrent volume. There was a tendency towards better recurrence coverage with GTVMRI+AMT than with GTVAMT alone (p =0.068). Addition of 5 mm concentric margin around GTVMRI, GTVAMT, and GTVMRI+AMT would have completely covered the initial progression volume in 14, 57, and 71 % of the patients, respectively. CONCLUSION We found that a GTV defined by AMT-PET produced similar volume, but superior recurrence coverage than the treated standard MRI-determined volume. A prospective study is necessary to fully determine the usefulness of AMT-PET for volume definition in glioblastoma radiotherapy planning.
Collapse
Affiliation(s)
- Michael Christensen
- Department of Radiation Oncology, Barbara Ann, Karmanos Cancer Center, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - David Olayinka Kamson
- Departments of Pediatrics and Neurology, Wayne State University School of Medicine, Detroit, MI, USA. PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Michael Snyder
- Department of Radiation Oncology, Barbara Ann, Karmanos Cancer Center, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Harold Kim
- Department of Radiation Oncology, Barbara Ann, Karmanos Cancer Center, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Natasha L Robinette
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA. Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandeep Mittal
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA. Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Csaba Juhász
- Departments of Pediatrics and Neurology, Wayne State University School of Medicine, Detroit, MI, USA. Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA. PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
227
|
Sandvei Skeie B, Wang J, Dodoo E, Heggdal JI, Grønli J, Sleire L, Bragstad S, Ganz JC, Chekenya M, Mørk S, Pedersen PH, Enger PØ. Gamma knife surgery as monotherapy with clinically relevant doses prolongs survival in a human GBM xenograft model. BIOMED RESEARCH INTERNATIONAL 2013; 2013:139674. [PMID: 24312904 PMCID: PMC3842058 DOI: 10.1155/2013/139674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
OBJECT Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. METHODS GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12 Gy or 18 Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. RESULTS In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls (P < 0.001). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls (P < 0.006). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment (P = 0.04). CONCLUSION GKS administered with clinically relevant doses prolongs survival in rats harboring GBM xenografts, and the associated toxicity is mild.
Collapse
Affiliation(s)
- Bente Sandvei Skeie
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
- Institute of Surgical Sciences, Haukeland University Hospital, 5021 Bergen, Norway
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Jian Wang
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Ernest Dodoo
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jan Ingeman Heggdal
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, 5021 Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Linda Sleire
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Sidsel Bragstad
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jeremy C. Ganz
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martha Chekenya
- Brain Tumor Immunology & Therapy Group, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Sverre Mørk
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Paal-Henning Pedersen
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
- Institute of Surgical Sciences, Haukeland University Hospital, 5021 Bergen, Norway
| | - Per Øyvind Enger
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
228
|
Abstract
Patients with glioblastoma typically present when tumors are at an advanced stage. Surgical resection, radiotherapy and adjuvant chemotherapy are currently the standard of care for glioblastoma. However, due to the infiltrative and dispersive nature of the tumor, recurrence rate remains high and typically results in very poor prognosis. Efforts to treat the primary tumor are, therefore, palliative rather than curative. From a practical perspective, controlling growth and dispersal of the recurrence may have a greater impact on disease-free survival. In order for cells to disperse, they must first detach from the mass. Preventing detachment may keep tumors that recur more localized and perhaps more amenable to therapy. Here we introduce a new perspective in which a quantifiable mechanical property, namely tissue surface tension, can provide novel information on tumor behavior. The overall theme of the discussion will attempt to integrate how adhesion molecules can alter a tumor's mechanical properties and how, in turn, these properties can be modified to prevent tumor cell detachment and dispersal.
Collapse
Affiliation(s)
- Ramsey A Foty
- Department of Surgery, University of Medicine & Dentistry, New Jersey Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
229
|
Khangembam BC, Sharma P, Karunanithi S, Singhal A, Das CJ, Kumar P, Julka PK, Bandopadhyaya GP, Kumar R, Malhotra A, Bal C. 13N-Ammonia PET/CT for detection of recurrent glioma: a prospective comparison with contrast-enhanced MRI. Nucl Med Commun 2013; 34:1046-1054. [PMID: 24025920 DOI: 10.1097/mnm.0b013e328365bb41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE We assessed the value of N-ammonia PET-computed tomography (PET/CT) in recurrent glioma and compared the results with those of contrast-enhanced MRI (CE MRI). MATERIALS AND METHODS Fifty-two (mean age, 39.8±11.6 years; male, 33; female, 19) histopathologically proven and previously treated glioma patients with clinical suspicion of recurrence were evaluated with 13N-ammonia PET/CT and CE MRI. PET/CT images were evaluated qualitatively and quantitatively (maximum standardized uptake value). Tumour to white matter (T/W), tumour to grey matter (T/G) and tumour to pituitary (T/P) ratios were calculated and cutoff levels were derived with receiver operating characteristic curve analysis. Sensitivity, specificity and predictive values were compared. A combination of clinical follow-up, repeat imaging and biopsy (when available) was taken as the reference standard. RESULTS On the basis of the reference standard, 23 out of 52 patients were seen to have recurrence. Overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 13N-ammonia PET/CT were 82.6, 86.2, 82.6, 86.2 and 84.6%, respectively, whereas those of CE MRI were 96.7, 48.3, 59.5, 93.3 and 69.2%, respectively. Overall, 13N-ammonia PET/CT was statistically superior to CE MRI (P=0.001). In low-grade tumours, 13N-ammonia PET/CT performed better than MRI with an accuracy of 86.8 versus 68.4% (P=0.003). In high-grade tumours, both the modalities had comparable performances with accuracies of 78.6% for N-ammonia PET/CT and 71.4% for CE MRI (P=0.250). Among the ratios, T/P was the most useful, with the largest area under the curve (0.825; P=0.0001). CONCLUSION N-Ammonia PET/CT shows higher accuracy compared with contrast-enhanced MRI for detecting recurrent gliomas, particularly in low-grade tumours.
Collapse
Affiliation(s)
- Bangkim C Khangembam
- Departments of aNuclear Medicine bRadiodiagnosis cRadiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Alexander BM, Ligon KL, Wen PY. Enhancing radiation therapy for patients with glioblastoma. Expert Rev Anticancer Ther 2013; 13:569-81. [PMID: 23617348 DOI: 10.1586/era.13.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation therapy has been the foundation of therapy following maximal surgical resection in patients with newly diagnosed glioblastoma for decades and the primary therapy for unresected tumors. Using the standard approach with radiation and temozolomide, however, outcomes are poor, and glioblastoma remains an incurable disease with the majority of recurrences and progression within the radiation treatment field. As such, there is much interest in elucidating the mechanisms of resistance to radiation therapy and in developing novel approaches to overcoming this treatment resistance.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA.
| | | | | |
Collapse
|
231
|
Beccaria K, Canney M, Goldwirt L, Fernandez C, Adam C, Piquet J, Autret G, Clément O, Lafon C, Chapelon JY, Carpentier A. Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits. J Neurosurg 2013; 119:887-98. [DOI: 10.3171/2013.5.jns122374] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The blood-brain barrier (BBB) is a major impediment to the intracerebral diffusion of drugs used in the treatment of gliomas. Previous studies have demonstrated that pulsed focused ultrasound (US) in conjunction with a microbubble contrast agent can be used to open the BBB. To apply the US-induced opening of the BBB in clinical practice, the authors designed an innovative unfocused US device that can be implanted in the skull and used to transiently and repeatedly open the BBB during a standard chemotherapy protocol. The goal of this preliminary work was to study the opening of the BBB induced by the authors' small unfocused US transducer and to evaluate the effects of the sonications on brain parenchyma.
Methods
Craniectomy was performed in 16 healthy New Zealand White rabbits; epidural application of a single-element planar ultrasonic transducer operating at 1 MHz was then used with a pulse-repetition frequency of 1 Hz, pulse lengths of 10–35 msec, in situ acoustic pressure levels of 0.3–0.8 MPa, and sonication for 60–120 seconds. SonoVue was intravenously injected during the US applications, and opening of the BBB was determined by detecting extravasation of Evans blue dye (EBD) in brain tissues, quantitative measurement of EBD with UV-visible spectrophotometry, and contrast enhancement after Gd injection in 4.7-T MRI. A histological study was performed to determine adverse effects.
Results
An opening of the BBB was observed over a large extent of the US beam in the brain corresponding to in situ pressures of greater than 0.2 MPa. The BBB opening observed was highly significant for both EBD (p < 0.01) and MRI Gd enhancement (p < 0.0001). The BBB opening was associated with minor adverse effects that included perivascular red blood cell extravasations that were less than 150 μm in size and not visible on MR images. Moderate edema was visible on FLAIR sequences and limited to the extent of the sonication field.
Conclusions
The results demonstrate that the BBB can be opened in large areas of the brain in rabbits with lowpower, pulsed, and unfocused US with limited damage to healthy tissue.
Collapse
Affiliation(s)
- Kevin Beccaria
- 1CarThera Research Team, Brain and Spine Institute, Paris
- 2Departments of Neurosurgery and
| | - Michael Canney
- 1CarThera Research Team, Brain and Spine Institute, Paris
- 5Inserm U1032, LabTau, University of Lyon
| | - Lauriane Goldwirt
- 3Pharmacology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris
| | - Christine Fernandez
- 3Pharmacology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris
| | - Clovis Adam
- 4Assistance Publique–Hôpitaux de Paris, Bicêtre Hospital, Pathology Department, Le Kremlin-Bicêtre, Paris
| | | | - Gwennhael Autret
- 7Inserm UMR 970, Université Paris Descartes, Sorbonne Paris Cité, Paris; and
| | - Olivier Clément
- 7Inserm UMR 970, Université Paris Descartes, Sorbonne Paris Cité, Paris; and
| | | | | | - Alexandre Carpentier
- 2Departments of Neurosurgery and
- 8Sorbonne University, Paris 6 School of Medicine, Paris, France
| |
Collapse
|
232
|
Thon N, Kreth S, Kreth FW. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther 2013; 6:1363-72. [PMID: 24109190 PMCID: PMC3792931 DOI: 10.2147/ott.s50208] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The identification of molecular genetic biomarkers considerably increased our current understanding of glioma genesis, prognostic evaluation, and treatment planning. In glioblastoma, the most malignant intrinsic brain tumor entity in adults, the promoter methylation status of the gene encoding for the repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) indicates increased efficacy of current standard of care, which is concomitant and adjuvant chemoradiotherapy with the alkylating agent temozolomide. In the elderly, MGMT promoter methylation status has recently been introduced to be a predictive biomarker that can be used for stratification of treatment regimes. This review gives a short summery of epidemiological, clinical, diagnostic, and treatment aspects of patients who are currently diagnosed with glioblastoma. The most important molecular genetic markers and epigenetic alterations in glioblastoma are summarized. Special focus is given to the physiological function of DNA methylation-in particular, of the MGMT gene promoter, its clinical relevance, technical aspects of status assessment, its correlation with MGMT mRNA and protein expressions, and its place within the management cascade of glioblastoma patients.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Hospital of the University of Munich, Campus Grosshadern, Munich, Germany
| | | | | |
Collapse
|
233
|
Kim TG, Lim DH. Interfractional variation of radiation target and adaptive radiotherapy for totally resected glioblastoma. J Korean Med Sci 2013; 28:1233-7. [PMID: 23960453 PMCID: PMC3744714 DOI: 10.3346/jkms.2013.28.8.1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/14/2013] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate the effects of volume adapted re-planning for radiotherapy (RT) after gross total resection (GTR) for glioblastoma. Nineteen patients with glioblastoma who underwent GTR and postoperative RT were analyzed. The volumes of the surgical cavity on computed tomography (CT) obtained one day after GTR (CT0), the first RT simulation CT (sim-CT1), and the second simulation CT for the boost RT plan (sim-CT2) were compared. The boost RT plan was based on the surgical cavity observed on the sim-CT2 (boost RTP2) and was compared with that based on the surgical cavity observed on the sim-CT1 (boost RTP1). The volume reduction ratios were 14.4%-51.3% (median, 29.0%) between CT0 and sim-CT1 and -7.9%-71.9% (median, 34.9%) between sim-CT1 and sim-CT2 (P < 0.001). The normal brain volumes in boost RTP1 were significantly reduced in boost RTP2, especially at high dose levels. Target volume in sim-CT2 which was not covered with the boost RTP1, developed in five cases (26.3%). The surgical cavity volume was reduced following surgery in patients with glioblastoma who underwent GTR. The application of volume-adapted re-planning during RT could decrease the irradiated volume of normal brain and prevent a target miss for boost RT.
Collapse
Affiliation(s)
- Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | | |
Collapse
|
234
|
Kamoshima Y, Terasaka S, Kuroda S, Iwasaki Y. Morphological and histological changes of glioma cells immediately after 5-aminolevulinic acid mediated photodynamic therapy. Neurol Res 2013; 33:739-46. [DOI: 10.1179/1743132810y.0000000001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
235
|
Kirkpatrick JP, Yin FF, Sampson JH. Radiotherapy and Radiosurgery for Tumors of the Central Nervous System. Surg Oncol Clin N Am 2013; 22:445-61. [DOI: 10.1016/j.soc.2013.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
236
|
Yang S, Liu J, Wang T, Li X, You C. Cerebellar glioblastoma multiforme: a retrospective study of 28 patients at a single institution. Int J Neurosci 2013; 123:691-7. [PMID: 23550813 DOI: 10.3109/00207454.2013.791292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shuaifeng Yang
- 1Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jiagang Liu
- 1Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Tinghua Wang
- 2Laboratory of Neurobiology, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Xuehua Li
- 3Yunnan Center for Disease Control and Prevention, Kunming, PR China
| | - Chao You
- 1Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
237
|
Shields LBE, Kadner R, Vitaz TW, Spalding AC. Concurrent bevacizumab and temozolomide alter the patterns of failure in radiation treatment of glioblastoma multiforme. Radiat Oncol 2013; 8:101. [PMID: 23618500 PMCID: PMC3648458 DOI: 10.1186/1748-717x-8-101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background We investigated the pattern of failure in glioblastoma multiforma (GBM) patients treated with concurrent radiation, bevacizumab (BEV), and temozolomide (TMZ). Previous studies demonstrated a predominantly in-field pattern of failure for GBM patients not treated with concurrent BEV. Methods We reviewed the treatment of 23 patients with GBM who received 30 fractions of simultaneous integrated boost IMRT. PTV60 received 2 Gy daily to the tumor bed or residual tumor while PTV54 received 1.8 Gy daily to the surrounding edema. Concurrent TMZ (75 mg/m^2) daily and BEV (10 mg/kg every 2 weeks) were given during radiation therapy. One month after RT completion, adjuvant TMZ (150 mg/m^2 × 5 days) and BEV were delivered monthly until progression or 12 months total. Results With a median follow-up of 12 months, the median disease-free and overall survival were not reached. Four patients discontinued therapy due to toxicity for the following reasons: bone marrow suppression (2), craniotomy wound infection (1), and pulmonary embolus (1). Five patients had grade 2 or 3 hypertension managed by oral medications. Of the 12 patients with tumor recurrence, 7 suffered distant failure with either subependymal (5/12; 41%) or deep white matter (2/12; 17%) spread detected on T2 FLAIR sequences. Five of 12 patients (41%) with a recurrence demonstrated evidence of GAD enhancement. The patterns of failure did not correlate with extent of resection or number of adjuvant cycles. Conclusions Treatment of GBM patients with concurrent radiation, BEV, and TMZ was well tolerated in the current study. The majority of patients experienced an out-of-field pattern of failure with radiation, BEV, and TMZ which has not been previously reported. Further investigation is warranted to determine whether BEV alters the underlying tumor biology to improve survival. These data may indicate that the currently used clinical target volume thought to represent microscopic disease for radiation may not be appropriate in combination with TMZ and BEV.
Collapse
|
238
|
McKenzie JT, Guarnaschelli JN, Vagal AS, Warnick RE, Breneman JC. Hypofractionated stereotactic radiotherapy for unifocal and multifocal recurrence of malignant gliomas. J Neurooncol 2013; 113:403-9. [PMID: 23589034 DOI: 10.1007/s11060-013-1126-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 03/31/2013] [Indexed: 01/13/2023]
Abstract
To evaluate the efficacy and safety of stereotactic radiotherapy (SRT) for unifocal and multifocal recurrence of malignant gliomas. Between June 2007 and October 2010, 35 consecutive patients with 47 recurrent lesions were treated with salvage SRT at the University of Cincinnati. Thirty-three patients treated had a diagnosis of high grade glioma, four Grade III and twenty-nine Grade IV, while two patients initially were diagnosed with grade II tumors but recurred as high grade lesions. All patients had previously received a median dose of 59.4 Gy. Twenty-six patients were treated for a single lesion, and nine patients were treated for multiple lesions. Using SRT, patients were re-treated with a median total dose of 30 Gy in a median of five fractions. Median survival from diagnosis was 22 months and median survival following SRT was 8.6 months. The median survival following SRT for those patients treated for multifocal recurrence was 7.9 versus 10 months for those treated for unifocal recurrence (p = 0.7). Multivariate analysis showed local control of the SRT treated lesion(s) 6 months after SRT was associated with a significant improvement in survival (p ≤ 0.01). All patients tolerated their treatment well and completed their prescribed SRT as planned. Three patients (9 %) were felt to possibly have developed radiation necrosis following therapy. SRT was both well tolerated and efficacious with the local control provided by SRT resulting in improved overall survival. This benefit also seems to be apparent for patients with multi-focal recurrence.
Collapse
Affiliation(s)
- Joshua T McKenzie
- Department of Radiation Oncology, Precision Radiotherapy, University of Cincinnati, West Chester, OH, USA
| | | | | | | | | |
Collapse
|
239
|
|
240
|
Plasmacytoid dendritic cells in the tumor microenvironment: immune targets for glioma therapeutics. Neoplasia 2013; 14:757-70. [PMID: 22952428 DOI: 10.1593/neo.12794] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023] Open
Abstract
Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.
Collapse
|
241
|
Sherriff J, Tamangani J, Senthil L, Cruickshank G, Spooner D, Jones B, Brookes C, Sanghera P. Patterns of relapse in glioblastoma multiforme following concomitant chemoradiotherapy with temozolomide. Br J Radiol 2013; 86:20120414. [PMID: 23385995 PMCID: PMC3608050 DOI: 10.1259/bjr.20120414] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/18/2012] [Accepted: 10/29/2012] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Different methods for contouring target volumes are currently in use in the UK when irradiating glioblastomas post operatively. Both one- and two-phase techniques are offered at different centres. 90% of relapses are recognised to occur locally when using radiotherapy alone. The objective of this evaluation was to determine the pattern of relapse following concomitant radiotherapy with temozolomide (RT-TMZ). METHODS A retrospective analysis of patients receiving RT-TMZ between 2006 and 2010 was performed. Outcome data including survival were calculated from the start of radiotherapy. Analysis of available serial cross-sectional imaging was performed from diagnosis to first relapse. The site of first relapse was defined by the relationship to primary disease. Central relapse was defined as progression of the primary enhancing mass or the appearance of a new enhancing nodule within 2 cm. RESULTS 105 patients were identified as receiving RT-TMZ. 34 patients were not eligible for relapse analysis owing to either lack of progression or unsuitable imaging. Patterns of first relapse were as follows: 55 (77%) patients relapsed centrally within 2 cm of the original gadolinium-enhanced mass on MRI, 13 (18%) patients relapsed >4 cm from the original enhancement and 3 (4%) relapsed within the contralateral hemisphere. CONCLUSION Central relapse remains the predominant pattern of failure following RT-TMZ. Single-phase conformal radiotherapy using a 2-cm margin from the original contrast-enhanced mass is appropriate for the majority of these patients. ADVANCES IN KNOWLEDGE Central relapse remains the predominant pattern of failure following chemoradiotherapy for glioblastomas.
Collapse
Affiliation(s)
- J Sherriff
- Hall-Edwards Radiotherapy Research Group, Cancer Centre, Queen Elizabeth Hospital, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates. J Neurooncol 2013; 112:121-32. [PMID: 23299463 DOI: 10.1007/s11060-013-1043-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Pretreatment delineation of infiltrating glioma volume remains suboptimal with current neuroimaging techniques. Gadolinium-enhanced T1-weighted (T1-Gad) MR images often underestimate the true extent of the tumor, while T2-weighted images preferentially highlight peritumoral edema. Accumulation of α-[(11)C]methyl-L-tryptophan (AMT) on positron emission tomography (PET) has been shown in gliomas. To determine whether increased uptake on AMT-PET would detect tumor-infiltrated brain tissue outside the contrast-enhancing region and differentiate it from peritumoral vasogenic edema, volumes and spatial concordance of T1-Gad and T2 MRI abnormalities as well as AMT-PET abnormalities were analyzed in 28 patients with newly-diagnosed WHO grade II-IV gliomas. AMT-accumulating grade I meningiomas were used to define an AMT uptake cutoff threshold that detects the tumor but excludes peri-meningioma vasogenic edema. Tumor infiltration in AMT-accumulating areas was studied in stereotactically-resected specimens from patients with glioblastoma. In the 28 gliomas, mean AMT-PET-defined tumor volumes were greater than the contrast-enhancing volume, but smaller than T2 abnormalities. Volume of AMT-accumulating tissue outside MRI abnormalities increased with higher tumor proliferative index and was the largest in glioblastomas. Tumor infiltration was confirmed by histopathology from AMT-positive regions outside contrast-enhancing glioblastoma mass, while no or minimal tumor cells were found in AMT-negative specimens. These results demonstrate that increased AMT accumulation on PET detects glioma-infiltrated brain tissue extending beyond the contrast-enhanced tumor mass. While tryptophan uptake is low in peritumoral vasogenic edema, AMT-PET can detect tumor-infiltrated brain outside T2-lesions. Thus, AMT-PET may assist pretreatment delineation of tumor infiltration, particularly in high-grade gliomas.
Collapse
|
243
|
Choi Y, Song YJ, Lee HS, Hur WJ, Sung KH, Kim KU, Choi SS, Kim SJ, Kim DC. Epidermal growth factor receptor is related to poor survival in glioblastomas: single-institution experience. Yonsei Med J 2013; 54:101-7. [PMID: 23225805 PMCID: PMC3521249 DOI: 10.3349/ymj.2013.54.1.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE There are conflicting results surrounding the prognostic significance of epidermal growth factor receptor (EGFR) status in glioblastoma (GBM) patients. Accordingly, we attempted to assess the influence of EGFR expression on the survival of GBM patients receiving postoperative radiotherapy. MATERIALS AND METHODS Thirty three GBM patients who had received surgery and postoperative radiotherapy at our institute, between March 1997 and February 2006, were included. The evaluation of EGFR expression with immunohistochemistry was available for 30 patients. Kaplan-Meier survival analysis and Cox regression were used for statistical analysis. RESULTS EGFR was expressed in 23 patients (76.7%), and not expressed in seven (23.3%). Survival in EGFR expressing GBM patients was significantly less than that in non-expressing patients (median survival: 12.5 versus 17.5 months, p=0.013). Patients who received more than 60 Gy showed improved survival over those who received up to 60 Gy (median survival: 17.0 versus 9.0 months, p=0.000). Negative EGFR expression and a higher radiation dose were significantly correlated with improved survival on multivariate analysis. Survival rates showed no differences according to age, sex, and surgical extent. CONCLUSION The expression of EGFR demonstrated a significantly deleterious effect on the survival of GBM patients. Therefore, approaches targeting EGFR should be considered in potential treatment methods for GBM patients, in addition to current management strategies.
Collapse
Affiliation(s)
- Youngmin Choi
- Department of Radiation Oncology, Dong-A University School of Medicine, Busan, Korea
| | - Young-Jin Song
- Department of Neurosurgery, Dong-A University School of Medicine, Busan, Korea
| | - Hyung-Sik Lee
- Department of Radiation Oncology, Dong-A University School of Medicine, Busan, Korea
| | - Won-Joo Hur
- Department of Radiation Oncology, Dong-A University School of Medicine, Busan, Korea
| | - Ki-Han Sung
- Department of Radiation Oncology, Dong-A University School of Medicine, Busan, Korea
| | - Ki-Uk Kim
- Department of Neurosurgery, Dong-A University School of Medicine, Busan, Korea
| | - Sun-Seob Choi
- Department of Radiology, Dong-A University School of Medicine, Busan, Korea
| | - Su-Jin Kim
- Department of Pathology, Dong-A University School of Medicine, Busan, Korea
| | - Dae-Cheol Kim
- Department of Pathology, Dong-A University School of Medicine, Busan, Korea
| |
Collapse
|
244
|
Champ CE, Siglin J, Mishra MV, Shen X, Werner-Wasik M, Andrews DW, Mayekar SU, Liu H, Shi W. Evaluating changes in radiation treatment volumes from post-operative to same-day planning MRI in High-grade gliomas. Radiat Oncol 2012; 7:220. [PMID: 23259933 PMCID: PMC3552717 DOI: 10.1186/1748-717x-7-220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/18/2012] [Indexed: 02/16/2023] Open
Abstract
Background Adjuvant radiation therapy (RT) with temozolomide (TMZ) is standard of care for high grade gliomas (HGG) patients. RT is commonly started 3 to 5 weeks after surgery. The deformation of the tumor bed and brain from surgery to RT is poorly studied. This study examined the magnitude of volume change in the postoperative tumor bed and the potential impact of RT planning. Method and materials This study includes 24 patients with HGG who underwent craniotomy and adjuvant RT with TMZ at our institution. All patients had immediate postoperative MRI and repeat MRI during the day of RT simulation. Gross tumor volumes (GTV), clinical target volumes (CTV) of initial 46 Gy (CTV1) and boost to 60 Gy (CTV2) were contoured on both sets of MRIs according to RTOG (Radiation Therapy Oncology Group) guidelines. For patients who recurred after RT, the recurrence pattern was evaluated. Results An average of 17 days elapsed between immediate and delayed MRIs. GTV1 (FLAIR abnormality and tumor bed) decreased significantly on the delayed MRI as compared to immediate post-operative MRI (mean = 30.96cc, p = 0.0005), while GTV2 (contrast-enhanced T1 abnormality and tumor bed) underwent a non-significant increase (mean = 6.82cc, p = 0.07). Such changes lead to significant decrease of CTV1 (mean decrease is 113.9cc, p<0.01), and significant increase of CTV2 (mean increase is 32.5cc, p=0.05). At a median follow-up of 13 months, 16 patients (67%) progressed, recurred, or died, with a progression-free survival time of 13.7 months. Twelve patients failed within all CTVs based on immediate and delayed MRIs, while one patient recurred outside of CTV2 based on immediate post-operative MRI, but within the CTV2 defined on delayed MRI. Conclusion The postoperative tumor bed of HGGs undergoes substantial volumetric changes after surgery. Treatment planning based on delayed MRI significantly reduces the volume of treated brain tissue without local control detriment. The marked reduction of volume treated to 46 Gy based on delayed MRI scan, could result in increased sparing of organs at risk. There may be a small risk of inadequate radiation field design if radiation planning is based on immediate post-operative MRI.
Collapse
Affiliation(s)
- Colin E Champ
- Department of Radiation Oncology, Kimmel Cancer Center and Jefferson Medical College of Thomas Jefferson University, 111 S, 11th Street, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
|
246
|
Ko AL, Fink KR, Stelzer KM, Silbergeld DL. Safety and efficacy of concomitant chemotherapeutic wafers and iodine-125 seeds for recurrent glioblastoma. Surg Neurol Int 2012; 3:137. [PMID: 23230518 PMCID: PMC3515939 DOI: 10.4103/2152-7806.103644] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/09/2012] [Indexed: 11/12/2022] Open
Abstract
Background: Patients with recurrent malignant gliomas have a uniformly poor prognosis. However, further treatment is often warranted at the time of recurrence. Low-activity implanted brachytherapeutic devices, such as iodine-125 seeds, and implantable chemotherapeutic devices such as 1, 3-bis (2-chloroethyl)-nitrosourea (BCNU) impregnated polymer wafers (Gliadel®) have been shown to be safe and modestly effective, but a comparison of combination therapy versus Gliadel® implantation alone has not been performed. Methods: We retrospectively examined 24 patients following re-resection of recurrent glioblastoma, with 17 patients undergoing implantation of both Gliadel® and iodine-125 seeds, and 7 patients undergoing implantation of Gliadel® only. Outcomes examined included adverse events, survival after re-resection (SAR), and time to tumor progression after re-resection (PAR). Results: Implantation of both Gliadel® and low activity iodine-125 seeds is safe with only two wound infections noted, a complication rate comparable to previous reports. The combination appears to confer a median SAR benefit if the activity per tumor resection volume exceeds 0.8 mCi/mL (60 versus 31 weeks, P = 0.02), and this benefit remained significant on multivariate analysis (HR =0.26 [CI:0.07-0.93], P = 0.03). Gross total resection of tumor was also significantly associated with longer time to PAR (HR =5.4 [CI: 1.13-26.0], P = 0.03). Conclusions: The concomitant use of Gliadel® and low activity iodine-125 seeds following re-resection of recurrent glioblastoma is safe. Our study demonstrated a significant benefit in SAR if the iodine-125 activity per tumor volume is greater than 0.8 mCi/mL. While our sample size is small, our results are in agreement with previous studies demonstrating the efficacy of combination treatment.
Collapse
Affiliation(s)
- Andrew L Ko
- Department of Neurosurgery, University of Washington, Seattle, WA 98195
| | | | | | | |
Collapse
|
247
|
Berrocal A, Gil M, Gallego Ó, Balaña C, Pérez Segura P, García-Mata J, Reynes G. SEOM guideline for the treatment of malignant glioma. Clin Transl Oncol 2012; 14:545-50. [PMID: 22721801 DOI: 10.1007/s12094-012-0839-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-grade gliomas are an infrequent disease diagnosed usually in the fifth or sixth decade. Careful histopathological diagnosis is essential because tumour grade and type condition the treatment. Magnetic resonance with gadolinium is considered the standard radiologic exploration and should be followed by tissue sampling. Treatment of these patients should be decided in a multidisciplinary committee. Surgery, radiotherapy and chemotherapy are the basis of patients' treatment, with the best results obtained when the three of them can be used.
Collapse
Affiliation(s)
- Alfonso Berrocal
- Medical Oncology Service, Hospital General Universitario, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
248
|
Bampoe J, Bernstein M. Advances in radiotherapy of brain tumors: radiobiology versus reality. J Clin Neurosci 2012; 5:5-14. [PMID: 18644279 DOI: 10.1016/s0967-5868(98)90193-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1996] [Accepted: 04/17/1997] [Indexed: 10/26/2022]
Abstract
Radiotherapy still remains the most effective adjunctive therapy for malignant gliomas following surgery and provides useful local control for some benign tumors. Research efforts have been directed towards several aspects of the radiation therapy of tumors. The results of clinical trials undertaken in the last decade offer some basis for optimism in the management of patients with malignant brain tumors, although cure is still not a realistic objective. This review focuses on the rationale and radiobiological basis for recent developments in the radiotherapy of adult brain tumors. The salient issues are discussed from a neurosurgeon's perspective.
Collapse
Affiliation(s)
- J Bampoe
- Division of Neurosurgery, The Toronto Hospital, Toronto Western Division, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
249
|
Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1716-25. [PMID: 22818878 PMCID: PMC3438387 DOI: 10.1016/j.ultrasmedbio.2012.04.015] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 05/22/2023]
Abstract
The blood-brain barrier (BBB) inhibits the entry of the majority of chemotherapeutic agents into the brain. Previous studies have illustrated the feasibility of drug delivery across the BBB using focused ultrasound (FUS) and microbubbles. Here, we investigated the effect of FUS-enhanced delivery of doxorubicin on survival in rats with and 9L gliosarcoma cells inoculated in the brain. Each rat received either: (1) no treatment (control; N = 11), (2) FUS only (N = 9), (3) IV liposomal doxorubicin (DOX only; N = 17), or (4) FUS with concurrent IV injections of liposomal doxorubicin (FUS+DOX; N = 20). Post-treatment by magnetic resonance imaging (MRI) showed that FUS+DOX reduced tumor growth compared with DOX only. Further, we observed a modest but significant increase in median survival time after a single treatment FUS+DOX treatment (p = 0.0007), whereas neither DOX nor FUS had any significant impact on survival on its own. These results suggest that combined ultrasound-mediated BBB disruption may significantly increase the antineoplastic efficacy of liposomal doxorubicin in the brain.
Collapse
Affiliation(s)
- Lisa H. Treat
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts USA
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
| | - Nathan McDannold
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
- Correspondence to: Department of Radiology, Brigham and Women’s Hospital, 221, Longwood Avenue, room 521, Boston, MA 02115. Fax: 617-525-7450.
| | - Yongzhi Zhang
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
| | - Natalia Vykhodtseva
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
| | - Kullervo Hynynen
- Imaging Research, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
250
|
Aboziada MA, Abo-Kresha AE. Hypofractionated conformal irradiation of patients with malignant glioma. J Egypt Natl Canc Inst 2012; 24:139-43. [PMID: 22929920 DOI: 10.1016/j.jnci.2012.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The aim of the study is to evaluate the effect of a conformal irradiation in short fractionation scheme of 49.5Gy in 15 fractions in an overall time of 3 weeks, in terms of overall survival (OAS) and progression free survival (PFS) rates in brain glioma patients. PATIENTS AND METHODS A prospective study was conducted on 54 brain glioma patients and was carried out in the Radiation Oncology Department, South Egypt Cancer Institute, Assiut University during the period from April 2006 till June 2009. Patients were treated by hypofractionated conformal irradiation (49.5 Gy/15 fractions/3 weeks). RESULTS The median follow up was 23 months (range: 9-39 months). Two-year OAS and PFS rates were 68% and 60%, respectively. In univariate analysis, age >50 years, poor performance status [Karnofasky score of ≥40-≤70%], poor neuroperformance status of score III, high-grade tumor [glioblastoma multiforme], and biopsy were all associated with statistically significant reduction in OAS and PFS rates. Multivariate analysis, showed that age >50 years and glioblastoma pathology were the only independent prognostic factors that were associated with poor OAS (p=0.003 and p=0.004, respectively), and PFS (p=0.027 and p=0.011, respectively). CONCLUSION Hypofractionated conformal radiotherapy was as effective as the conventional radiotherapy, with time sparing for patients, and for radiation oncology centers. Hypofractionated radiotherapy may be considered the radiotherapy regimen of choice in clinical practice for patients with gliomas.
Collapse
Affiliation(s)
- Mohamed A Aboziada
- Department of Radiation Oncology, South Egypt Cancer Institute (SECI), Assiut, Egypt.
| | | |
Collapse
|