201
|
Sandra F, Oktaviono YH, Widodo MA, Dirgantara Y, Chouw A, Sargowo D. Endothelial progenitor cells proliferated via MEK-dependent p42 MAPK signaling pathway. Mol Cell Biochem 2014; 400:201-6. [DOI: 10.1007/s11010-014-2276-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/15/2014] [Indexed: 01/22/2023]
|
202
|
Flynn N, Getz A, Visser F, Janes TA, Syed NI. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis. PLoS One 2014; 9:e111103. [PMID: 25347295 PMCID: PMC4210270 DOI: 10.1371/journal.pone.0111103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/27/2014] [Indexed: 11/19/2022] Open
Abstract
Neurotrophic factors (NTFs) support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK) activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF) act through RTKs to trigger a specific subset of intracellular signalling events in the postsynaptic neuron, which lead to the activation of the tumor suppressor menin, encoded by Lymnaea MEN1 (L-MEN1) and the expression of excitatory nicotinic acetylcholine receptors (nAChRs). We provide direct evidence that the activation of the MAPK/ERK cascade is required for the expression of nAChRs, and subsequent synapse formation between pairs of neurons in vitro. Furthermore, we show that L-menin activation is sufficient for the expression of postsynaptic excitatory nAChRs and subsequent synapse formation in media devoid of NTFs. By extending our findings in situ, we reveal the necessity of EGFRs in mediating synapse formation between a single transplanted neuron and its intact presynaptic partner. Moreover, deficits in excitatory synapse formation following EGFR knock-down can be rescued by injecting synthetic L-MEN1 mRNA in the intact central nervous system. Taken together, this study provides the first direct evidence that NTFs functioning via RTKs activate the MEN1 gene, which appears sufficient to regulate synapse formation between central neurons. Our study also offers a novel developmental role for menin beyond tumour suppression in adult humans.
Collapse
Affiliation(s)
- Nichole Flynn
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Angela Getz
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Frank Visser
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Tara A. Janes
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Naweed I. Syed
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
203
|
Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G, George M, Kelly DL, Natarajan A, Raja SM, Band V, Band H. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289:30443-30458. [PMID: 25225290 DOI: 10.1074/jbc.m114.608992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.
Collapse
Affiliation(s)
- Tameka A Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Timothy Alan Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - David L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950.
| |
Collapse
|
204
|
Abstract
Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other's targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.
Collapse
|
205
|
Plasticity of Mammary Cell Boundaries Governed by EGF and Actin Remodeling. Cell Rep 2014; 8:1722-1730. [DOI: 10.1016/j.celrep.2014.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/01/2014] [Accepted: 08/12/2014] [Indexed: 11/20/2022] Open
|
206
|
ERK1/2 is related to oestrogen receptor and predicts outcome in hormone-treated breast cancer. Breast Cancer Res Treat 2014; 147:25-37. [DOI: 10.1007/s10549-014-3066-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/17/2014] [Indexed: 12/23/2022]
|
207
|
Wu Y, Beland FA, Chen S, Fang JL. Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells. Arch Toxicol 2014; 89:1297-311. [PMID: 25033989 DOI: 10.1007/s00204-014-1308-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
Triclosan is a broad spectrum anti-bacterial agent widely used in many personal care products, household items, medical devices, and clinical settings. Human exposure to triclosan is mainly through oral and dermal routes. In previous studies, we found that sub-chronic dermal exposure of B6C3F1 mice to triclosan induced epidermal hyperplasia and focal necrosis; however, the mechanisms for these responses remain elusive. In this study, using mouse epidermis-derived JB6 Cl 41-5a cells, we found that triclosan stimulated cell growth in a concentration- and time-dependent manner. Enhanced cell proliferation was demonstrated by a substantial increase in the percentage of BrdU-positive cells, an elevation in the protein levels of cyclin D1 and cyclin A, and a reduction in the protein level of p27(Kip1). Western blotting analysis revealed that triclosan induced the activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), p38, and Akt. Pre-treatment of the cells with PD184352, an inhibitor of the upstream kinase MEK1/2, or with wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked triclosan-mediated phosphorylation of ERK1/2 and Akt, respectively, and substantially suppressed triclosan-stimulated cell proliferation, whereas the JNK inhibitor SP600125 or the p38 inhibitor SB203580 had little to no effect on triclosan-stimulated cell proliferation. The phosphorylation activation of ERK1/2 and Akt was further confirmed on the skin of mice dermally administered triclosan. These data suggest that the activation of ERK1/2 and Akt is involved in triclosan-stimulated proliferation of JB6 Cl 41-5a cells.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | |
Collapse
|
208
|
HUWE1 is a molecular link controlling RAF-1 activity supported by the Shoc2 scaffold. Mol Cell Biol 2014; 34:3579-93. [PMID: 25022756 DOI: 10.1128/mcb.00811-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scaffold proteins play a critical role in controlling the activity of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Shoc2 is a leucine-rich repeat scaffold protein that acts as a positive modulator of ERK1/2 signaling. However, the precise mechanism by which Shoc2 modulates the activity of the ERK1/2 pathway is unclear. Here we report the identification of the E3 ubiquitin ligase HUWE1 as a binding partner and regulator of Shoc2 function. HUWE1 mediates ubiquitination and, consequently, the levels of Shoc2. Additionally, we show that both Shoc2 and HUWE1 are necessary to control the levels and ubiquitination of the Shoc2 signaling partner, RAF-1. Depletion of HUWE1 abolishes RAF-1 ubiquitination, with corresponding changes in ERK1/2 pathway activity occurring. Our results indicate that the HUWE1-mediated ubiquitination of Shoc2 is the switch that regulates the transition from an active to an inactive state of the RAF-1 kinase. Taken together, our results demonstrate that HUWE1 is a novel player involved in regulating ERK1/2 signal transmission through the Shoc2 scaffold complex.
Collapse
|
209
|
Rodríguez CI, Setaluri V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch Biochem Biophys 2014; 563:22-7. [PMID: 25017568 DOI: 10.1016/j.abb.2014.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/02/2023]
Abstract
G-protein coupled receptors (GPCRs), which include melanocortin-1 receptor (MC1R), play a crucial role in melanocytes development, proliferation and differentiation. Activation of the MC1R by the α-melanocyte stimulating hormone (α-MSH) leads to the activation of the cAMP signaling pathway that is mainly associated with differentiation and pigment production. Some MC1R polymorphisms produce cAMP signaling impairment and pigmentary phenotypes such as the red head color and fair skin phenotype (RHC) that is usually associated with higher risk for melanoma development. Despite its importance in melanocyte biology, the role of cAMP signaling cutaneous melanoma is not well understood. Melanoma is primarily driven by mutations in the components of mitogen-activated protein kinases (MAPK) pathway. Increasing evidence, however, now suggests that cAMP signaling also plays an important role in melanoma even though genetic alterations in components of this pathway are note commonly found in melanoma. Here we review these new roles for cAMP in melanoma including its contribution to the notorious treatment resistance of melanoma.
Collapse
Affiliation(s)
- Carlos Iván Rodríguez
- Department of Dermatology and Molecular and Environmental Toxicology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, United States
| | - Vijayasaradhi Setaluri
- Department of Dermatology and Molecular and Environmental Toxicology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, United States.
| |
Collapse
|
210
|
Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer 2014; 120:3446-56. [PMID: 24948110 DOI: 10.1002/cncr.28864] [Citation(s) in RCA: 674] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022]
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is activated by upstream genomic events and/or activation of multiple signaling events in which information coalesces at this important nodal pathway point. This pathway is tightly regulated under normal conditions by phosphatases and bidirectional communication with other pathways, like the protein kinase B/mammalian target of rapamycin (AKT/m-TOR) pathway. Recent evidence indicates that the MAPK/ERK signaling node can function as a tumor suppressor as well as the more common pro-oncogenic signal. The effect that predominates depends on the intensity of the signal and the context or tissue in which the signal is aberrantly activated. Genomic profiling of tumors has revealed common mutations in MAPK/ERK pathway components, such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF). Currently approved for the treatment of melanoma, inhibitors of BRAF kinase are being studied alone and in combination with inhibitors of the MAPK and other pathways to optimize the treatment of many tumor types. Therapies targeted toward MAPK/ERK components have various response rates when used in different solid tumors, such as colorectal cancer and ovarian cancer. Understanding the differential nature of activation of the MAPK/ERK pathway in each tumor type is critical in developing single and combination regimens, because different tumors have unique mechanisms of primary and secondary signaling and subsequent sensitivity to drugs.
Collapse
Affiliation(s)
- Mauricio Burotto
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | | |
Collapse
|
211
|
Dürnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E, Hudecz O, Mechtler K, Herbst R. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol Cell Proteomics 2014; 13:1993-2003. [PMID: 24899341 DOI: 10.1074/mcp.m113.036087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of the neuromuscular synapse depends on signaling processes that involve protein phosphorylation as a crucial regulatory event. Muscle-specific kinase (MuSK) is the key signaling molecule at the neuromuscular synapse whose activity is required for the formation of a mature and functional synapse. However, the signaling cascade downstream of MuSK and the regulation of the different components are still poorly understood. In this study we used a quantitative phosphoproteomics approach to study the phosphorylation events and their temporal regulation downstream of MuSK. We identified a total of 10,183 phosphopeptides, of which 203 were significantly up- or down-regulated. Regulated phosphopeptides were classified into four different clusters according to their temporal profiles. Within these clusters we found an overrepresentation of specific protein classes associated with different cellular functions. In particular, we found an enrichment of regulated phosphoproteins involved in posttranscriptional mechanisms and in cytoskeletal organization. These findings provide novel insights into the complex signaling network downstream of MuSK and form the basis for future mechanistic studies.
Collapse
Affiliation(s)
- Gerhard Dürnberger
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bahar Z Camurdanoglu
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Matthias Tomschik
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schutzbier
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Elisabeth Roitinger
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Otto Hudecz
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ruth Herbst
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; ‡‡Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| |
Collapse
|
212
|
Feldman ME, Yarden Y. Steering tumor progression through the transcriptional response to growth factors and stroma. FEBS Lett 2014; 588:2407-14. [PMID: 24873881 DOI: 10.1016/j.febslet.2014.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 02/04/2023]
Abstract
Tumor progression can be understood as a collaborative effort of mutations and growth factors, which propels cell proliferation and matrix invasion, and also enables evasion of drug-induced apoptosis. Concentrating on EGFR, we discuss downstream signaling and the initiation of transcriptional events in response to growth factors. Specifically, we portray a wave-like program, which initiates by rapid disappearance of two-dozen microRNAs, followed by an abrupt rise of immediate early genes (IEGs), relatively short transcripts encoding transcriptional regulators. Concurrent with the fall of IEGs, some 30-60 min after stimulation, a larger group, the delayed early genes, is up-regulated and its own fall overlaps the rise of the final wave of late response genes. This late wave persists and determines long-term phenotype acquisition, such as invasiveness. Key regulatory steps in the orderly response to growth factors provide a trove of potential oncogenes and tumor suppressors.
Collapse
Affiliation(s)
- Morris E Feldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
213
|
Schiefermeier N, Scheffler JM, de Araujo MEG, Stasyk T, Yordanov T, Ebner HL, Offterdinger M, Munck S, Hess MW, Wickström SA, Lange A, Wunderlich W, Fässler R, Teis D, Huber LA. The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. ACTA ACUST UNITED AC 2014; 205:525-40. [PMID: 24841562 PMCID: PMC4033770 DOI: 10.1083/jcb.201310043] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Late endosomes locally regulate cell migration by transporting the p14–MP1 scaffold complex to the vicinity of focal adhesions. Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.
Collapse
Affiliation(s)
- Natalia Schiefermeier
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Julia M Scheffler
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Taras Stasyk
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Teodor Yordanov
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Hannes L Ebner
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sebastian Munck
- VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
| | - Michael W Hess
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sara A Wickström
- Paul Gerson Unna group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anika Lange
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Winfried Wunderlich
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria Oncotyrol, 6020 Innsbruck, Austria
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David Teis
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
214
|
Magi S, Saeki Y, Kasamatsu M, Tashiro E, Imoto M. Chemical genomic-based pathway analyses for epidermal growth factor-mediated signaling in migrating cancer cells. PLoS One 2014; 9:e96776. [PMID: 24820097 PMCID: PMC4018296 DOI: 10.1371/journal.pone.0096776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/11/2014] [Indexed: 12/20/2022] Open
Abstract
To explore the diversity and consistency of the signaling pathways that regulate tumor cell migration, we chose three human tumor cell lines that migrated after treatment with EGF. We then quantified the effect of fifteen inhibitors on the levels of expression or the phosphorylation levels of nine proteins that were induced by EGF stimulation in each of these cell lines. Based on the data obtained in this study and chemical-biological assumptions, we deduced cell migration pathways in each tumor cell line, and then compared them. As a result, we found that both the MEK/ERK and JNK/c-Jun pathways were activated in all three migrating cell lines. Moreover, GSK-3 and p38 were found to regulate PI3K/Akt pathway in only EC109 cells, and JNK was found to crosstalk with p38 and Fos related pathway in only TT cells. Taken together, our analytical system could easily distinguish between the common and cell type-specific pathways responsible for tumor cell migration.
Collapse
Affiliation(s)
- Shigeyuki Magi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
| | - Yuya Saeki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
| | - Masato Kasamatsu
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
- * E-mail:
| |
Collapse
|
215
|
Chang HW, Huang CY, Yang SY, Wu VC, Chu TS, Chen YM, Hsieh BS, Wu KD. Role of D2 dopamine receptor in adrenal cortical cell proliferation and aldosterone-producing adenoma tumorigenesis. J Mol Endocrinol 2014; 52:87-96. [PMID: 24293642 DOI: 10.1530/jme-13-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the two characteristic types of primary aldosteronism. Dysregulation of adrenal cortical cell proliferation contributes to both diseases. We previously demonstrated that APA expressed less dopamine D2 receptor than the respective non-tumor tissue and might contribute to the overproduction of aldosterone. As activation of D2 receptor inhibits the proliferation of various cells, downregulation of D2 receptor in APA may play a role in the tumorigenesis of APA. In this study, we demonstrate that D2 receptor plays a role in angiotensin II (AII)-stimulated adrenal cortical cell proliferation. The D2 receptor agonist, bromocriptine, inhibited AII-stimulated cell proliferation in primary cultures of the normal human adrenal cortex and APA through attenuating AII-induced phosphorylation of PK-stimulated cyclin D1 protein expression and cell proliferation. D2 receptor also inhibited AII-induced ERK1/2 phosphorylation. Our results demonstrate that, in addition to inhibiting aldosterone synthesis/production, D2 receptor exerts an anti-proliferative effect in adrenal cortical and APA cells by attenuating PKCμ and ERK phosphorylation. The lower level of expression of D2 receptor in APA may augment cell proliferation and plays a crucial role in the tumorigenesis of APA. Our novel finding suggests a new therapeutic target for primary aldosteronism.
Collapse
Affiliation(s)
- Hong-Wei Chang
- Nephrology Division, Department of Internal Medicine, Room 1419, National Taiwan University Hospital, Clinical Research Building, 7 Chung-Sun South Road, Taipei 100, Taiwan Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Emdad L, Das SK, Dasgupta S, Hu B, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res 2014; 120:75-111. [PMID: 23889988 DOI: 10.1016/b978-0-12-401676-7.00003-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocyte elevated gene-1 (AEG-1), also known as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), was initially cloned in 2002. AEG-1/MTDH/LYRIC has emerged as an important oncogene that is overexpressed in multiple types of human cancer. Expanded research on AEG-1/MTDH/LYRIC has established a functional role of this molecule in several crucial aspects of tumor progression, including transformation, proliferation, cell survival, evasion of apoptosis, migration and invasion, metastasis, angiogenesis, and chemoresistance. The multifunctional role of AEG-1/MTDH/LYRIC in tumor development and progression is associated with a number of signaling cascades, and recent studies identified several important interacting partners of AEG-1/MTDH/LYRIC in regulating cancer promotion and other biological functions. This review evaluates the current literature on AEG-1/MTDH/LYRIC function relative to signaling changes, interacting partners, and angiogenesis and highlights new perspectives of this molecule, indicating its potential as a significant target for the clinical treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
217
|
Kovalenko PL, Basson MD. Schlafen 12 expression modulates prostate cancer cell differentiation. J Surg Res 2014; 190:177-84. [PMID: 24768141 DOI: 10.1016/j.jss.2014.03.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Schlafen proteins have previously been linked to leukocyte and intestinal epithelial differentiation. We hypothesized that Schlafen 12 (SLFN12) overexpression in human prostate epithelial cells would modulate expression of prostate-specific antigen (PSA) and dipeptidyl peptidase 4 (DPP4), markers of prostatic epithelial differentiation. MATERIALS AND METHODS Differentiation of the human prostate cancer cell lines LNCaP and PC-3 was compared after infection with an adenoviral vector coding for SLFN12 (Ad-SLFN12) or green fluorescent protein (GFP) only expressing virus (control). Transcript levels of SLFN12, PSA, and DPP4 were evaluated by real-time reverse transcription PCR and protein levels by Western blotting. Because mixed lineage kinase (MLK) and one of its downstream effectors (extracellular signal-regulated kinases [ERK]) have previously been implicated in some aspects of prostate epithelial differentiation, we conducted further studies in which LNCaP cells were cotreated with dimethyl sulfoxide (control), PD98059 (ERK inhibitor), or MLK inhibitor during transfection with Ad-SLFN12 for 72 h. RESULTS Treatment of LNCaP or PC-3 cells with Ad-SLFN12 reduced PSA expression by 56.6±4.6% (P<0.05) but increased DPP4 transcript level by 4.8±1.0 fold (P<0.05) versus Ad-GFP-treated controls. Further studies in LNCaP cells showed that Ad-SLFN12 overexpression increased the ratio of the mature E-cadherin protein to its precursor protein. Furthermore, SLFN12 overexpression promoted DPP4 expression either when MLK or ERK was blocked. ERK inhibition did not reverse SLFN12-induced changes in PSA, E-cadherin, or DPP4. CONCLUSIONS SLFN12 may regulate differentiation in prostate epithelial cells, at least in part independently of ERK or MLK. Understanding how SLFN12 influences prostatic epithelial differentiation may ultimately identify targets to influence the phenotype of prostatic malignancy.
Collapse
Affiliation(s)
- Pavlo L Kovalenko
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Marc D Basson
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
218
|
Leibovich-Rivkin T, Liubomirski Y, Meshel T, Abashidze A, Brisker D, Solomon H, Rotter V, Weil M, Ben-Baruch A. The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells. BMC Cancer 2014; 14:158. [PMID: 24598028 PMCID: PMC4015419 DOI: 10.1186/1471-2407-14-158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/06/2014] [Indexed: 02/08/2023] Open
Abstract
Background In the present study we determined the relative contribution of two processes to breast cancer progression: (1) Intrinsic events, such as activation of the Ras pathway and down-regulation of p53; (2) The inflammatory cytokines TNFα and IL-1β, shown in our published studies to be highly expressed in tumors of >80% of breast cancer patients with recurrent disease. Methods Using MCF-7 human breast tumor cells originally expressing WT-Ras and WT-p53, we determined the impact of the above-mentioned elements and cooperativity between them on the expression of CXCL8 (ELISA, qRT-PCR), a member of a “cancer-related chemokine cluster” that we have previously identified. Then, we determined the mechanisms involved (Ras-binding-domain assays, Western blot, luciferase), and tested the impact of Ras + TNFα on angiogenicity (chorioallantoic membrane assays) and on tumor growth at the mammary fat pad of mice and on metastasis, in vivo. Results Using RasG12V that recapitulates multiple stimulations induced by receptor tyrosine kinases, we found that RasG12V alone induced CXCL8 expression at the mRNA and protein levels, whereas down-regulation of p53 did not. TNFα and IL-1β potently induced CXCL8 expression and synergized with RasG12V, together leading to amplified CXCL8 expression. Testing the impact of WT-Ras, which is the common form in breast cancer patients, we found that WT-Ras was not active in promoting CXCL8; however, TNFα has induced the activation of WT-Ras: joining these two elements has led to cooperative induction of CXCL8 expression, via the activation of MEK, NF-κB and AP-1. Importantly, TNFα has led to increased expression of WT-Ras in an active GTP-bound form, with properties similar to those of RasG12V. Jointly, TNFα + Ras activities have given rise to increased angiogenesis and to elevated tumor cell dissemination to lymph nodes. Conclusions TNFα cooperates with Ras in promoting the metastatic phenotype of MCF-7 breast tumor cells, and turns WT-Ras into a tumor-supporting entity. Thus, in breast cancer patients the cytokine may rescue the pro-cancerous potential of WT-Ras, and together these two elements may lead to a more aggressive disease. These findings have clinical relevance, suggesting that we need to consider new therapeutic regimens that inhibit Ras and TNFα, in breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Adit Ben-Baruch
- Department Cell Research and Immunology, George S, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
219
|
Farahani E, Patra HK, Jangamreddy JR, Rashedi I, Kawalec M, Rao Pariti RK, Batakis P, Wiechec E. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis 2014; 35:747-59. [PMID: 24531939 DOI: 10.1093/carcin/bgu045] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite decades of search for anticancer drugs targeting solid tumors, this group of diseases remains largely incurable, especially if in advanced, metastatic stage. In this review, we draw comparison between reprogramming and carcinogenesis, as well as between stem cells (SCs) and cancer stem cells (CSCs), focusing on changing garniture of adhesion molecules. Furthermore, we elaborate on the role of adhesion molecules in the regulation of (cancer) SCs division (symmetric or asymmetric), and in evolving interactions between CSCs and extracellular matrix. Among other aspects, we analyze the role and changes of expression of key adhesion molecules as cancer progresses and metastases develop. Here, the role of cadherins, integrins, as well as selected transcription factors like Twist and Snail is highlighted, not only in the regulation of epithelial-to-mesenchymal transition but also in the avoidance of anoikis. Finally, we briefly discuss recent developments and new strategies targeting CSCs, which focus on adhesion molecules or targeting tumor vasculature.
Collapse
Affiliation(s)
- Ensieh Farahani
- Department of Clinical and Experimental Medicine, Division of Cell Biology and Integrative Regenerative Medicine Center (IGEN) and
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Wang Z, Dela Cruz R, Ji F, Guo S, Zhang J, Wang Y, Feng GS, Birnbaumer L, Jiang M, Chu WM. G(i)α proteins exhibit functional differences in the activation of ERK1/2, Akt and mTORC1 by growth factors in normal and breast cancer cells. Cell Commun Signal 2014; 12:10. [PMID: 24521094 PMCID: PMC3937014 DOI: 10.1186/1478-811x-12-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/01/2014] [Indexed: 12/29/2022] Open
Abstract
Background In a classic model, Giα proteins including Gi1α, Gi2α and Gi3α are important for transducing signals from Giα protein-coupled receptors (GiαPCRs) to their downstream cascades in response to hormones and neurotransmitters. Our previous study has suggested that Gi1α, Gi2α and Gi3α are also important for the activation of the PI3K/Akt/mTORC1 pathway by epidermal growth factor (EGF) and its family members. However, a genetic role of these Giα proteins in the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) by EGF is largely unknown. Further, it is not clear whether these Giα proteins are also engaged in the activation of both the Akt/mTORC1 and ERK1/2 pathways by other growth factor family members. Additionally, a role of these Giα proteins in breast cancer remains to be elucidated. Results We found that Gi1/3 deficient MEFs with the low expression level of Gi2α showed defective ERK1/2 activation by EGFs, IGF-1 and insulin, and Akt and mTORC1 activation by EGFs and FGFs. Gi1/2/3 knockdown breast cancer cells exhibited a similar defect in the activations and a defect in in vitro growth and invasion. The Giα proteins associated with RTKs, Gab1, FRS2 and Shp2 in breast cancer cells and their ablation impaired Gab1’s interactions with Shp2 in response to EGF and IGF-1, or with FRS2 and Grb2 in response to bFGF. Conclusions Giα proteins differentially regulate the activation of Akt, mTORC1 and ERK1/2 by different families of growth factors. Giα proteins are important for breast cancer cell growth and invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Meisheng Jiang
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
221
|
Sheean ME, McShane E, Cheret C, Walcher J, Müller T, Wulf-Goldenberg A, Hoelper S, Garratt AN, Krüger M, Rajewsky K, Meijer D, Birchmeier W, Lewin GR, Selbach M, Birchmeier C. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes Dev 2014; 28:290-303. [PMID: 24493648 PMCID: PMC3923970 DOI: 10.1101/gad.230045.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.
Collapse
Affiliation(s)
| | | | | | - Jan Walcher
- Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | - Soraya Hoelper
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Markus Krüger
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dies Meijer
- Department of Cell Biology and Genetics, Erasmus University Medical Center, 3000 DR Rotterdam, Netherlands
| | - Walter Birchmeier
- Signal Transduction, Invasion, and Metastasis, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gary R. Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | |
Collapse
|
222
|
LIN YANG, CUI MANHUA, TENG HONG, WANG FENGWEN, YU WEI, XU TIANMIN. Silencing the receptor of activated C-kinase 1 (RACK1) suppresses tumorigenicity in epithelial ovarian cancer in vitro and in vivo. Int J Oncol 2014; 44:1252-8. [DOI: 10.3892/ijo.2014.2274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 11/05/2022] Open
|
223
|
Jeoung M, Galperin E. Visualizing of signaling proteins on endosomes utilizing knockdown and reconstitution approach. Methods Enzymol 2014; 534:47-63. [PMID: 24359947 DOI: 10.1016/b978-0-12-397926-1.00003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Spatial distribution of intracellular signaling molecules and assembly of signaling complexes are yet to be fully understood. Studies of signaling events in time or space present a particular challenge due to the adverse effects that overexpression of signaling proteins may have on their functions and localization. To follow the distribution of signaling proteins in living cells we developed a methodology named knockdown and reconstitution (KDAR) that allows one to visualize proteins at levels of expression that are close to physiological. This methodology provides a stable expression of "endogenous" shRNA for long-term silencing of the targeted gene and simultaneous expression of a DNA cassette coding for a fluorescently labeled protein, which is insensitive to the targeting shRNA. In this chapter we discuss the needed reagents and outline two experimental approaches to generate KDAR stable cell lines. First, we demonstrate how the plasmid-mediated KDAR approach is successfully utilized to visualize spatial distribution of the GFP-labeled MEK2 in living cells. We then show how the lentivirus-mediated KDAR approach is used to reconstitute and visualize expression of the ERK1/2 scaffold protein Shoc2.
Collapse
Affiliation(s)
- Myoungkun Jeoung
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
224
|
Abstract
The development of targeted therapies has ushered in a new era in the management of melanoma. Inhibitors of the RAS-RAF-MEK-ERK pathway have taken the center stage with development at a rapid pace. Vemurafenib was recently approved by regulatory agencies, and other agents (e.g. dabrafenib) are in various stages of clinical testing. These agents are producing remarkable results for patients, but are also presenting new challenges. Clinical toxicities and drug resistance are topmost issues. Some of the most common and vivid representations of adverse events to these agents are the dermatologic manifestations. Published trials and initial observations reflect a toxicity profile (e.g. squamous cell carcinomas/keratoacanthomas, maculopapular rashes, hyperkeratosis) that is distinct from cutaneous toxicities from EGFR and mTOR inhibitors (acneiform rash, paronychia, xerosis). Their management extends beyond conservative treatment and includes specific physical and surgical treatment modalities, skill sets unique to dermatologists. All these pose significant challenges to clinicians, and sound knowledge of such toxicities and their management will likely result in improved patient outcomes and quality of life. In this manuscript, we provide an overview of the emerging scientific literature on dermatological adverse events arising out of BRAF inhibition.
Collapse
|
225
|
Lamy S, Ouanouki A, Béliveau R, Desrosiers RR. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation. Exp Cell Res 2013; 322:89-98. [PMID: 24326154 DOI: 10.1016/j.yexcr.2013.11.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 12/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention.
Collapse
Affiliation(s)
- Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, and Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8, Canada.
| | - Amira Ouanouki
- Laboratoire d'Oncologie Moléculaire, and Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8, Canada
| | - Richard Béliveau
- Laboratoire d'Oncologie Moléculaire, and Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8, Canada
| | - Richard R Desrosiers
- Laboratoire d'Oncologie Moléculaire, and Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8, Canada
| |
Collapse
|
226
|
Araf kinase antagonizes Nodal-Smad2 activity in mesendoderm development by directly phosphorylating the Smad2 linker region. Nat Commun 2013; 4:1728. [PMID: 23591895 PMCID: PMC3644095 DOI: 10.1038/ncomms2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 02/06/2023] Open
Abstract
Smad2/3-mediated transforming growth factor β signalling and the Ras-Raf-Mek-Erk cascade have important roles in stem cell and development and tissue homeostasis. However, it remains unknown whether Raf kinases directly crosstalk with Smad2/3 signalling and how this would regulate embryonic development. Here we show that Araf antagonizes mesendoderm induction and patterning activity of Nodal/Smad2 signals in vertebrate embryos by directly inhibiting Smad2 signalling. Knockdown of araf in zebrafish embryos leads to an increase of activated Smad2 with a decrease in linker phosphorylation; consequently, the embryos have excess mesendoderm precursors and are dorsalized. Mechanistically, Araf physically binds to and phosphorylates Smad2 in the linker region with S253 being indispensable in a Mek/Erk-independent manner, thereby attenuating Smad2 signalling by accelerating degradation of activated Smad2. Our findings open avenues for investigating the potential significance of Raf regulation of transforming growth factor β signalling in versatile biological and pathological processes in the future.
Collapse
|
227
|
Selvik LKM, Fjeldbo CS, Flatberg A, Steigedal TS, Misund K, Anderssen E, Doseth B, Langaas M, Tripathi S, Beisvag V, Lægreid A, Thommesen L, Bruland T. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis. BMC Genomics 2013; 14:429. [PMID: 23805861 PMCID: PMC3698217 DOI: 10.1186/1471-2164-14-429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 06/19/2013] [Indexed: 01/13/2023] Open
Abstract
Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In accordance with this, only sustained treatment induced anti-apoptotic genes like Clu, Selm and Mcl1, while the pro-apoptotic gene Casp2 was more highly expressed in transiently treated cells. Knockdown studies showed that JUNB is involved in sustained gastrin induced expression of the UPR/ER stress related genes Atf4, Herpud1 and Chac1. Conclusion The duration of gastrin treatment affects both intracellular signalling mechanisms and gene expression, and ERK1/2 and AP-1 seem to play a role in converting different durations of gastrin treatment into distinct cellular responses.
Collapse
Affiliation(s)
- Linn-Karina M Selvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology-NTNU, Trondheim N-7489, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Decreased tumor progression and invasion by a novel anti-cell motility target for human colorectal carcinoma cells. PLoS One 2013; 8:e66439. [PMID: 23755307 PMCID: PMC3670870 DOI: 10.1371/journal.pone.0066439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/08/2013] [Indexed: 12/16/2022] Open
Abstract
We have previously described a novel modulator of the actin cytoskeleton that also regulates Ras and mitogen-activated protein kinase activities in TGFβ-sensitive epithelial cells. Here we examined the functional role of this signaling regulatory protein (km23-1) in mediating the migration, invasion, and tumor growth of human colorectal carcinoma (CRC) cells. We show that small interfering RNA (siRNA) depletion of km23-1 in human CRC cells inhibited constitutive extracellular signal-regulated kinase (ERK) activation, as well as pro-invasive ERK effector functions that include phosphorylation of Elk-1, constitutive regulation of c-Fos-DNA binding, TGFβ1 promoter transactivation, and TGFβ1 secretion. In addition, knockdown of km23-1 reduced the paracrine effects of CRC cell-secreted factors in conditioned medium and in fibroblast co-cultures. Moreover, km23-1 depletion in human CRC cells reduced cell migration and invasion, as well as expression of the ERK-regulated, metastasis-associated scaffold protein Ezrin. Finally, km23-1 inhibition significantly suppressed tumor formation in vivo. Thus, our results implicate km23-1 as a novel anti-metastasis target for human colon carcinoma cells, capable of decreasing tumor growth and invasion via a mechanism involving suppression of various pro-migratory features of CRC. These include a reduction in ERK signaling, diminished TGFβ1 production, decreased expression of the plasma membrane-cytoskeletal linker Ezrin, as well as attenuation of the paracrine effects of colon carcinoma-secreted factors on fibroblast migration and mitogenesis. As such, km23-1 inhibitors may represent a viable therapeutic strategy for interfering with colon cancer progression and invasion.
Collapse
|
229
|
Guenther MK, Graab U, Fulda S. Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Lett 2013; 337:200-9. [PMID: 23684925 DOI: 10.1016/j.canlet.2013.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022]
Abstract
Rhabdomyosarcoma (RMS) frequently exhibits concomitant activation of the PI3K/Akt/mTOR and the Ras/MEK/ERK pathways. Therefore, we investigated whether pharmacological cotargeting of these two key survival pathways suppresses RMS growth. Here, we identify a synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in RMS. The dual PI3K/mTOR inhibitor PI103 and the MEK inhibitor UO126 synergize to trigger apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1), whereas either agent alone induces minimal cell death. Similarly, genetic knockdown of p110α and MEK1/2 cooperates to induce apoptosis. Molecular studies reveal that cotreatment with PI103/UO126 cooperates to suppress PI3K/Akt/mTOR and Ras/MEK/ERK signaling, whereas either compound alone is not only less effective to inhibit signaling, but even cross-activates the other pathway. Accordingly, PI103 alone increases ERK phosphorylation, while UO126 enhances Akt phosphorylation, consistent with negative crosstalks between these two signaling pathways. Furthermore, PI103/UO126 cotreatment causes downregulation of several antiapoptotic proteins such as XIAP, Bcl-xL and Mcl-1 as well as increased expression and decreased phosphorylation of the proapoptotic protein BimEL, thus shifting the balance towards apoptosis. Consistently, PI103/UO126 cotreatment cooperates to trigger Bax activation, loss of mitochondrial membrane potential, caspase activation and caspase-dependent apoptosis. This identification of a synthetic lethal interaction between PI3K/mTOR and MEK inhibitors has important implications for the development of novel treatment strategies in RMS.
Collapse
Affiliation(s)
- Monika Katharina Guenther
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
230
|
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 2013; 3:120. [PMID: 23720710 PMCID: PMC3655421 DOI: 10.3389/fonc.2013.00120] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/28/2013] [Indexed: 12/29/2022] Open
Abstract
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Collapse
Affiliation(s)
- P Godwin
- Department of Clinical Medicine, Thoracic Oncology Research Group, Trinity College Dublin, St. James's Hospital Ireland Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
231
|
Liu H, Zhao B, Chen Y, You D, Liu R, Rong M, Ji W, Zheng P, Lai R. Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell self‐renewal. FASEB J 2013; 27:3298-305. [DOI: 10.1096/fj.13-228825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Liu
- Key Laboratory of Animal Models and Human Disease MechanismsKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Bo Zhao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Graduate School of Chinese Academy of SciencesBeijingChina
| | - Yongchang Chen
- Kunming Primate Research CenterKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Graduate School of Chinese Academy of SciencesBeijingChina
| | - Dewen You
- Key Laboratory of Animal Models and Human Disease MechanismsKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Rui Liu
- Key Laboratory of Animal Models and Human Disease MechanismsKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease MechanismsKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Weizhi Ji
- Kunming Primate Research CenterKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease MechanismsKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
232
|
MEK-1 activates C-Raf through a Ras-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:976-86. [PMID: 23360980 DOI: 10.1016/j.bbamcr.2013.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using (32)P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating the C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the down-regulation of RKIP and MST2.
Collapse
|
233
|
Moteki H, Kimura M, Sunaga K, Tsuda T, Ogihara M. Signal transduction mechanism for potentiation by α1- and β2-adrenoceptor agonists of L-ascorbic acid-induced DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur J Pharmacol 2012; 700:2-12. [PMID: 23270716 DOI: 10.1016/j.ejphar.2012.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 01/26/2023]
Abstract
We investigated the effects of α- and β-adrenoceptor agonists on L-ascorbic acid-induced hepatocyte DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. The results showed that phenylephrine (10(-6) M) and metaproterenol (10(-6) M) alone did not induce hepatocyte DNA synthesis and proliferation. However, when combined with L-ascorbic acid (10(-6) M), these adrenoceptor agonists potentiated the hepatocyte DNA synthesis and proliferation induced by L-ascorbic acid. Then intracellular signal transduction mechanisms for the effects of phenylephrine and metaproterenol on L-ascorbic acid-induced hepatocyte mitogenesis were examined. Western blot analysis showed that phenylephrine and metaproterenol did not potentiate L-ascorbic acid-induced insulin-like growth factor I receptor tyrosine kinase phosphorylation. In contrast, they both significantly potentiated L-ascorbic acid-induced extracellular-signal regulated kinase-2 (ERK2) phosphorylation within 5 min. Moreover, cell-permeable second messenger analogs phorbol ester (10(-7) M) and 8-bromo cAMP (10(-7) M) mimicked the effects of phenylephrine and metaproterenol on L-ascorbic acid-induced ERK2 phosphorylation. The effects of these adrenoceptor agents were specifically antagonized by GF109203X and H-89, respectively. These results indicate that activation of ERK2 via protein kinas C and protein kinase A represents a mechanism for potentiation of L-ascorbic acid-induced hepatocyte DNA synthesis and proliferation in primary cultures of adult rat hepatocytes.
Collapse
Affiliation(s)
- Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | | | | | | | | |
Collapse
|
234
|
Qian Y, Zhang N, Chen S, Chu S, Feng A, Liu H. PI3K, Rac1 and pPAK1 are overexpressed in extramammary Paget's disease. J Cutan Pathol 2012; 39:1010-5. [PMID: 22845716 DOI: 10.1111/j.1600-0560.2012.01973.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 04/16/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K), Ras-related C3 botulinum toxin substrate 1 (Rac1) and P21-activated protein kinase 1 (PAK1) appear to play important roles in the pathogenesis of several tumors, but their expressions in extramammary Paget's disease (EMPD) have not been investigated yet. OBJECTIVES To investigate the potential contribution of the PI3K, Rac1 and PAK1 to the development of EMPD. METHODS Thirty-five paraffin-embedded EMPD specimens were subjected to immunohistochemical staining for PI3K (85α), Rac1 and pPAK1. RESULTS All the 35 primary EMPD specimens, including 20 non-invasive EMPD, 13 invasive EMPD and 2 metastatic lymph nodes, showed cytoplasm overexpression of PI3K (85α), Rac1 and pPAK1. The expression (% positive cells) of PI3K(85α), Rac1 and pPAK1 (90.1 ± 8.6, 91.4 ± 9.5 and 89.6 ± 10.8% ) in EMPD were significantly higher than in apocrine glands of normal skin ( 20.1 ± 11.9, 29.8 ± 8.9, 41.1 ± 13.4%), and the expression in invasive EMPD with lymph node metastasis (98.2 ± 1.7, 98.8 ± 0.7 and 98.4 ± 0.9%) are significantly higher than in invasive EMPD without lymph node metastasis (94.1 ± 2.6, 96.5 ± 1.7 and 95.3 ± 1.1%) and non-invasive EMPD (85.2 ± 8.4, 87.1 ± 9.9 and 83.1 ± 10.6%). There were significant positive correlations of the expression levels between PI3K (85α) and Rac1, as well as between Rac1 and pPAK1 in EMPD. CONCLUSIONS These results indicate that PI3K, Rac1 and PAK1 may play important roles in the pathogenesis of EMPD.
Collapse
Affiliation(s)
- Yue Qian
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
235
|
Moteki H, Kimura M, Ogihara M. Activation of extracellular-signal regulated kinase by epidermal growth factor is potentiated by cAMP-elevating agents in primary cultures of adult rat hepatocytes. Biol Pharm Bull 2012; 34:1542-52. [PMID: 21963493 DOI: 10.1248/bpb.34.1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of α- and β-adrenergic agonists on epidermal growth factor (EGF)-stimulated extracellular-signal regulated kinase (ERK) isoforms in primary cultures of adult rat hepatocytes. Hepatocytes were isolated and cultured with EGF (20 ng/ml) and/or α(1)-, α(2)- and β(2)-adrenergic agonists. Phosphorylated ERK isoforms (ERK1; p44 mitogen-activated protein kinase (MAPK) and ERK2; p42 MAPK) were detected by Western blotting analysis using anti-phospho-ERK1/2 antibody. The results show that EGF induced a 2.5-fold increase in ERK2-, but not ERK1-, phosphorylation within 3 min. This EGF-induced ERK2 activation was abolished by treatment with the EGF-receptor kinase inhibitor AG1478 (10(-7) M) or the MEK (MAPK kinase) inhibitor PD98059 (10(-6) M). The α(2)-adrenergic and β(2)-adrenergic agonists, UK14304 (10(-6) M) and metaproterenol (10(-6) M), respectively, had no effect in the absence of EGF, but metaproterenol significantly potentiated EGF-induced ERK2 phosphorylation. Moreover, the cell-permeable cAMP analog 8-bromo cAMP (10(-7) M), also potentiated EGF-induced ERK2 phosphorylation. The effects of these analogs were antagonized by the protein kinase A (PKA) inhibitor H-89 (10(-7) M). These results suggest that direct or indirect activation of PKA represents a positive regulatory mechanism for EGF stimulation of ERK2 induction.
Collapse
Affiliation(s)
- Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350–02, Japan
| | | | | |
Collapse
|
236
|
Terés S, Lladó V, Higuera M, Barceló-Coblijn G, Martin ML, Noguera-Salvà MA, Marcilla-Etxenike A, García-Verdugo JM, Soriano-Navarro M, Saus C, Gómez-Pinedo U, Busquets X, Escribá PV. 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc Natl Acad Sci U S A 2012; 109:8489-94. [PMID: 22586083 PMCID: PMC3365159 DOI: 10.1073/pnas.1118349109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells before treatment. Parallel to membrane-lipid regulation, treatment with 2OHOA induced a dramatic translocation of Ras from the membrane to the cytoplasm, which inhibited the MAP kinase pathway, reduced activity of the PI3K/Akt pathway, and downregulated Cyclin D-CDK4/6 proteins followed by hypophosphorylation of the retinoblastoma protein (RB). These regulatory effects were associated with induction of glioma cell differentiation into mature glial cells followed by autophagic cell death. Given its high efficacy, low toxicity, ease of oral administration, and good distribution to the brain, 2OHOA constitutes a new and potentially valuable therapeutic tool for glioma patients.
Collapse
Affiliation(s)
- Silvia Terés
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Victoria Lladó
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Mónica Higuera
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Gwendolyn Barceló-Coblijn
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Maria Laura Martin
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Maria Antònia Noguera-Salvà
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Amaia Marcilla-Etxenike
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Morfología Celular, Unidad Mixta Centro de Investigación Príncipe Felipe-Universitat de València Estudi General, Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, 46013 Valencia, Spain; and
| | - Mario Soriano-Navarro
- Laboratorio de Morfología Celular, Unidad Mixta Centro de Investigación Príncipe Felipe-Universitat de València Estudi General, Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, 46013 Valencia, Spain; and
| | - Carlos Saus
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Regenerative Medicine, Neuroscience Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Xavier Busquets
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Pablo V. Escribá
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
237
|
Chen W, Liu L, Luo Y, Odaka Y, Awate S, Zhou H, Shen T, Zheng S, Lu Y, Huang S. Cryptotanshinone activates p38/JNK and inhibits Erk1/2 leading to caspase-independent cell death in tumor cells. Cancer Prev Res (Phila) 2012; 5:778-87. [PMID: 22490436 DOI: 10.1158/1940-6207.capr-11-0551] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, the underlying mechanism is not well understood. Here, we show that CPT induced caspase-independent cell death in human tumor cells (Rh30, DU145, and MCF-7). Besides downregulating antiapoptotic protein expression of survivin and Mcl-1, CPT increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK), and inhibited phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2). Inhibition of p38 with SB202190 or JNK with SP600125 attenuated CPT-induced cell death. Similarly, silencing p38 or c-Jun also in part prevented CPT-induced cell death. In contrast, expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) conferred resistance to CPT inhibition of Erk1/2 phosphorylation and induction of cell death. Furthermore, we found that all of these were attributed to CPT induction of reactive oxygen species (ROS). This is evidenced by the findings that CPT induced ROS in a concentration- and time-dependent manner; CPT induction of ROS was inhibited by N-acetyl-L-cysteine (NAC), a ROS scavenger; and NAC attenuated CPT activation of p38/JNK, inhibition of Erk1/2, and induction of cell death. The results suggested that CPT induction of ROS activates p38/JNK and inhibits Erk1/2, leading to caspase-independent cell death in tumor cells.
Collapse
Affiliation(s)
- Wenxing Chen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, 71130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Matsuda S, Fujita T, Kajiya M, Takeda K, Shiba H, Kawaguchi H, Kurihara H. Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade. J Cell Physiol 2012; 227:2123-9. [PMID: 21769870 DOI: 10.1002/jcp.22942] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes the regeneration of periodontal tissue. Since angiogenesis is important for tissue regeneration, investigating effect of BDNF on endothelial cell function may help to reveal its mechanism, whereby, BDNF promotes periodontal tissue regeneration. In this study, we examined the influence of BDNF on migration in human microvascular endothelial cells (HMVECs), focusing on the effects on extracellular signal-regulated kinase (ERK), integrin α(V)β(3), and focal adhesion kinase (FAK). The migration of endothelial cells was assessed with a modified Boyden chamber and a wound healing assay. The expression of integrin α(V)β(3) and the phosphorylation of ERK and FAK were analyzed by immunoblotting and immunofluorescence microscopy. BDNF (25 ng/ml) induced cell migration. PD98059, an ERK inhibitor, K252a, a specific inhibitor for TrkB, a high affinity receptor of BDNF, and an anti-integrin α(V)β(3) antibody suppressed the BDNF-induced migration. BDNF increased the levels of integrin α(V)β(3) and phosphorylated ERK1/2 and FAK. The ERK inhibitor and TrkB inhibitor also reduced levels of integrin α(V)β(3) and phosphorylated FAK. We propose that BDNF stimulates endothelial cell migration by a process involving TrkB/ERK/integrin α(V)β(3)/FAK, and this may help to enhance the regeneration of periodontal tissue.
Collapse
Affiliation(s)
- Shinji Matsuda
- Department of Periodontal Medicine, Division of Frontier Medical Science, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
239
|
Kovalenko PL, Basson MD. Changes in morphology and function in small intestinal mucosa after Roux-en-Y surgery in a rat model. J Surg Res 2012; 177:63-9. [PMID: 22487386 DOI: 10.1016/j.jss.2012.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Currently there is no an appropriate model to study intestinal mucosal atrophy in vivo that preserves the nutritional status of the organism. MATERIALS AND METHODS We created a defunctionalized segment of jejunum via a dead-end Roux-en-Y anastomosis in rats. We compared tissue morphometric parameters in the intestinal mucosa of the defunctionalized bowel with that of the mucosa proximal and distal to the anastomosis. We further measured extracellular signal-regulated kinase (ERK) activation within the mucosa as well as sucrase-isomaltase and dipeptidyl peptidase-4 levels as markers of intestinal mucosal differentiation by Western blotting of mucosal scrapings. RESULTS Three days after anastomosis, the defunctionalized bowel exhibited decreased diameter and thickness of both the mucosa and the fibromuscular layer compared with adjacent bowel in continuity for luminal nutrient flow or with bowel from control animals. Sucrase-isomaltase and dipeptidyl peptidase-4 levels also were decreased. Furthermore, mucosal ERK activation, assessed as the ratio of phosphorylated to total ERK, also was reduced. Animal weights did not differ between bypassed and control animals. CONCLUSIONS Deprivation of nutrient flow in a segment of bowel by defunctionalizing Roux-en-anastomosis produces mucosal atrophy as indicated by altered histology, differentiation marker expression, and ERK signaling, in animals that are otherwise able to maintain enteral nutrition.
Collapse
Affiliation(s)
- Pavlo L Kovalenko
- Department of Surgery, Michigan State University, East Lansing, Michigan 48912, USA
| | | |
Collapse
|
240
|
De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 2012; 16 Suppl 2:S17-27. [PMID: 22443084 DOI: 10.1517/14728222.2011.639361] [Citation(s) in RCA: 520] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The RAS/RAF/MAP kinase-ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) (MAPK) and the PI3K/AKT/mammalian target of rapamycin (mTOR) (PI3K) pathways are frequently deregulated in human cancer as a result of genetic alterations in their components or upstream activation of cell-surface receptors. These signalling cascades are regulated by complex feedback and cross-talk mechanisms. AREAS COVERED In this review the key components of the MAPK and AKT pathways and their molecular alterations are described. The complex interactions between these signalling cascades are also analysed. EXPERT OPINION The observation that the MAPK and the PI3K pathways are often deregulated in human cancer makes the components of these signalling cascades interesting targets for therapeutic intervention. Recently, the presence of compensatory loops that activate one pathway following the blockade of the other signalling cascade has been demonstrated. Therefore, the blockade of both pathways with combinations of signalling inhibitors might result in a more efficient anti-tumor effect as compared with a single agent. In addition, the MAPK and PI3K pathways are activated by mutations that coexist or can be mutually exclusive. In this regard, a large-scale characterization of the cancer genome might offer personalized cancer genomic information, which may improve the anti-tumor efficacy of signalling inhibitors.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
241
|
Horst D, Chen J, Morikawa T, Ogino S, Kirchner T, Shivdasani RA. Differential WNT activity in colorectal cancer confers limited tumorigenic potential and is regulated by MAPK signaling. Cancer Res 2012; 72:1547-56. [PMID: 22318865 DOI: 10.1158/0008-5472.can-11-3222] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancers (CRC) express the WNT effector protein β-catenin in a heterogeneous subcellular pattern rather than uniformly in the nucleus. In this study, we investigated this important aspect of molecular heterogeneity in CRCs by analyzing its basis and relationship with tumor-initiating capability. CRC cells with the highest WNT levels showed only a marginal increase in tumor initiation capacity. Notably, high WNT activity correlated with a coincident activation of robust mitogen-activated protein kinase (MAPK) signaling, which when upregulated by KRAS expression or downregulated by epidermal growth factor receptor inhibition elicited parallel effects on WNT activity. These findings suggested that on its own high WNT activity may not be a reliable signifier of tumor-initiating potential or stem-like potential. Furthermore, they suggest that MAPK signaling is a critical modifier of intratumoral heterogeneity that contributes significantly to determining the impact of WNT activity on stemness phenotypes in colon cancer cells.
Collapse
Affiliation(s)
- David Horst
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
242
|
|
243
|
Colmegna I, Pryshchep S, Oishi H, Goronzy JJ, Weyand CM. Dampened ERK signaling in hematopoietic progenitor cells in rheumatoid arthritis. Clin Immunol 2012; 143:73-82. [PMID: 22342385 DOI: 10.1016/j.clim.2012.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 02/07/2023]
Abstract
In rheumatoid arthritis (RA), hematopoietic progenitor cells (HPC) have age-inappropriate telomeric shortening suggesting premature senescence and possible restriction of proliferative capacity. In response to hematopoietic growth factors RA-derived CD34(+) HPC expanded significantly less than age-matched controls. Cell surface receptors for stem cell factor (SCF), Flt 3-Ligand, IL-3 and IL-6 were intact in RA HPC but the cells had lower transcript levels of cell cycle genes, compatible with insufficient signal strength in the ERK pathway. Cytokine-induced phosphorylation of ERK1/2 was diminished in RA HPC whereas phosphorylated STAT3 and STAT5 molecules accumulated to a similar extent as in controls. Confocal microscopy demonstrated that the membrane-proximal colocalization of K-Ras and B-Raf was less efficient in RA-derived CD34(+) cells. Thus, hyporesponsiveness of RA HPC to growth factors results from dampening of the ERK signaling pathways; with a defect localized in the very early steps of the ERK signaling cascade.
Collapse
Affiliation(s)
- Inés Colmegna
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, USA
| | | | | | | | | |
Collapse
|
244
|
Kasaj A, Meister J, Lehmann K, Stratul SI, Schlee M, Stein JM, Willershausen B, Schmidt M. The influence of enamel matrix derivative on the angiogenic activity of primary endothelial cells. J Periodontal Res 2011; 47:479-87. [DOI: 10.1111/j.1600-0765.2011.01456.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
245
|
Tarcic G, Avraham R, Pines G, Amit I, Shay T, Lu Y, Zwang Y, Katz M, Ben-Chetrit N, Jacob-Hirsch J, Virgilio L, Rechavi G, Mavrothalassitis G, Mills GB, Domany E, Yarden Y. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J 2011; 26:1582-92. [PMID: 22198386 DOI: 10.1096/fj.11-194654] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The signaling pathways that commit cells to migration are incompletely understood. We employed human mammary cells and two stimuli: epidermal growth factor (EGF), which induced cellular migration, and serum factors, which stimulated cell growth. In addition to strong activation of ERK by EGF, and AKT by serum, early transcription remarkably differed: while EGF induced early growth response-1 (EGR1), and this was required for migration, serum induced c-Fos and FosB to enhance proliferation. We demonstrate that induction of EGR1 involves ERK-mediated down-regulation of microRNA-191 and phosphorylation of the ETS2 repressor factor (ERF) repressor, which subsequently leaves the nucleus. Unexpectedly, knockdown of ERF inhibited migration, which implies migratory roles for exported ERF molecules. On the other hand, chromatin immunoprecipitation identified a subset of direct EGR1 targets, including EGR1 autostimulation and SERPINB2, whose transcription is essential for EGF-induced cell migration. In summary, EGR1 and the EGF-ERK-ERF axis emerge from our study as major drivers of growth factor-induced mammary cell migration.
Collapse
Affiliation(s)
- Gabi Tarcic
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Kim JK, Park GM. Indirubin-3-monoxime exhibits anti-inflammatory properties by down-regulating NF-κB and JNK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Inflamm Res 2011; 61:319-25. [DOI: 10.1007/s00011-011-0413-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/13/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022] Open
|
247
|
Zhang Y, Xing X, Zhan H, Li Q, Fan Y, Zhan L, Yu Q, Chen J. EGFR inhibitor enhances cisplatin sensitivity of human glioma cells. ACTA ACUST UNITED AC 2011; 31:773-778. [PMID: 22173497 DOI: 10.1007/s11596-011-0675-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) is found to express at high levels in a variety of solid tumors including gliomas. This study was to examine the effect of an EGFR-tyrosine kinase inhibitor (AG1478) alone or in combination with cisplatin (CDDP) on the growth of glioma cells (U87). U87 glioma cells were treated with AG1478 (10 μmol/L) or CDDP (25 μmol/L) as a single agent or in combination for 24 or 48 h. The expression of EGFR and the components in its downstream signaling pathway [extracellular signal-regulated kinase (ERK), protein kinase B (AKT)] in U87 glioma cells was detected by Western blotting. Cell growth, cell cycle distribution and cell apoptosis were determined by MTT method and flow cytometry, respectively. The results showed that CDDP could induce the activation of EGFR and the components in its downstream signaling pathways in a concentration-dependent manner. The combined treatment of AG1478 with CDDP could inhibit the proliferation of U87 glioma cells, arrest the cell cycle and promote cell apoptosis. In the EGFR signaling pathway, AG1478 decreased the phosphorylation of ERK, AKT and EGFR in U87 glioma cells. It was concluded that the combined treatment of AG1478 and CDDP may exert synergistic inhibitory effects on the growth of glioma cells by suppressing the activities of EGFR, AKT and ERK.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurosurgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xihong Xing
- Diagnosis and Treatment Center for Nervous System Diseases, the Second Hospital of Jingzhou & the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, 434000, China
| | - Hongfeng Zhan
- Department of Oncology, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Qiaoyu Li
- Department of Neurosurgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Yu Fan
- Diagnosis and Treatment Center for Nervous System Diseases, the Second Hospital of Jingzhou & the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, 434000, China
| | - Liping Zhan
- Department of Neurosurgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Qiang Yu
- Department of Neurosurgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
248
|
Zhang LY, Liu LY, Qie LL, Ling KN, Xu LH, Wang F, Fang SH, Lu YB, Hu H, Wei EQ, Zhang WP. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase. Eur J Pharmacol 2011; 674:163-70. [PMID: 22119381 DOI: 10.1016/j.ejphar.2011.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme in the salvaging pathway for the synthesis of nicotinamide adenine dinucleotide (NAD) that is involved in cell metabolism and proliferation. NAMPT is normally absent in astrocyte but highly expressed in glioblastoma, suggesting that it may promote cell survival through synthesizing more NAD. In this report, we evaluated the effect of APO866, a potent inhibitor of NAMPT against C6 glioblastoma. We found that APO866 inhibited the growth of C6 glioblastoma cells with IC(50) in nano-molar range. APO866 depleted intracellular NAD, caused marked inhibition of ERK activation and induced G2/M cell-cycle arrest. The effects by APO866 were abrogated by nicotinamide mononucleotide (NMN), the direct product of NAMPT. Administration of U0126, an ERK1/2 inhibitor, inhibited cell growth but displayed no synergistic effect with APO866. Taken together, our results indicated that APO866 is a potent growth inhibitor against glioblastoma through targeting NAMPT.
Collapse
Affiliation(s)
- Li-Yuan Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 388 Yu-Hang-Tang Rd, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Nanosecond pulsed electric fields activate MAPK pathways in human cells. Arch Biochem Biophys 2011; 515:99-106. [DOI: 10.1016/j.abb.2011.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 01/21/2023]
|
250
|
Wang F, Osawa T, Tsuchida R, Yuasa Y, Shibuya M. Downregulation of receptor for activated C-kinase 1 (RACK1) suppresses tumor growth by inhibiting tumor cell proliferation and tumor-associated angiogenesis. Cancer Sci 2011; 102:2007-13. [PMID: 21848913 PMCID: PMC11159629 DOI: 10.1111/j.1349-7006.2011.02065.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
By behaving as molecular hubs, scaffold proteins can assemble a large number of signaling molecules and organize complicated intracellular signaling networks in time and space. Owing to their crucial role in mediating intracellular signaling related to tumor cell growth and migration, recent studies have highlighted the relevance of scaffold proteins in human cancers and indicated that interfering with their expression and/or their ability to bind effector proteins can inhibit cancer progression. Here, we show that receptor for activated C-kinase 1 (RACK1), a ubiquitously expressed scaffolding protein, plays a crucial regulatory role in tumor growth. Using an RNA silencing approach, we found that downregulation of RACK1 expression in HeLa and A673 tumor cells markedly suppressed the proliferation and invasion of these cells in vitro and tumor development in vivo. Consequently, we found that significant suppression of constitutive phosphorylation of Akt and MAPK by RACK1 silencing may contribute to the inhibition of tumor growth. Moreover, RACK1 silencing significantly attenuated tumor-associated angiogenesis by, at least in part, inhibiting the expression of two critical angiogenic factors, namely vascular endothelial growth factor-B and fibroblast growth factor 2. The results of the present study show that RACK1 is a potent enhancer of tumor growth and, thus, a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Dental and Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|