201
|
Ritz T, Yoshii T, Helfrich-Foerster C, Ahmad M. Cryptochrome: A photoreceptor with the properties of a magnetoreceptor? Commun Integr Biol 2010; 3:24-7. [PMID: 20539777 PMCID: PMC2881235 DOI: 10.4161/cib.3.1.9865] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
It was recently discovered that the photoreceptor cryptochrome is involved in mediating magnetosensitive entrainment of the internal clock of fruit flies.1 This discovery follows other recent studies implicating a role of cryptochrome in mediating magnetic sensitivity in orientation responses of fruit flies2,3 and growth responses of plants.4 Such widespread use of the same molecule for mediating magnetic sensitivity might suggest that cryptochrome is in some way optimal for detecting the magnetic field of the earth and that the magnetoreception function cannot be easily taken over by other molecules. This raises the question what properties might set cryptochromes apart from other molecules in terms of their ability to detect the geomagnetic field. Here, we will discuss possible answers to this question. We will first review the likely biophysical mechanism by which magnetic fields can be detected by a photoreceptor and discuss what constitutes an optimal photo-magneto-receptor. We will then discuss in how far cryptochrome matches the profile of an optimal molecule and what further steps are required for more conclusive answers.
Collapse
Affiliation(s)
- Thorsten Ritz
- Department of Physics and Astronomy; University of California at Irvine, CA USA
| | - T Yoshii
- University of Regensburg; Institute of Zoology; Regensburg, Germany
| | | | | |
Collapse
|
202
|
Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 2009; 461:1274-7. [PMID: 19865170 DOI: 10.1038/nature08528] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/23/2009] [Indexed: 11/09/2022]
Abstract
Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.
Collapse
Affiliation(s)
- Manuela Zapka
- AG Neurosensorik/Animal Navigation, IBU, University of Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore P, Okamoto H. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J R Soc Interface 2009; 6:1193-205. [PMID: 19324677 PMCID: PMC2817153 DOI: 10.1098/rsif.2008.0519] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/09/2009] [Indexed: 11/21/2022] Open
Abstract
The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however, stands out; it has a clear hypothesis-that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors-tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 muT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the 'gold standard' of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 microT magnetic field, with simultaneous control experiments at 50 microT. Additionally, we have determined hypocotyl lengths of plants grown in 50 microT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene (CHS, HY5 and GST) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected.
Collapse
Affiliation(s)
- Sue-Re Harris
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Kevin B. Henbest
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Kiminori Maeda
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - John R. Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Christiane R. Timmel
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - P.J. Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Haruko Okamoto
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
204
|
Hein CM, Zapka M, Heyers D, Kutzschbauch S, Schneider NL, Mouritsen H. Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J R Soc Interface 2009; 7 Suppl 2:S227-33. [PMID: 19889693 DOI: 10.1098/rsif.2009.0376.focus] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies have suggested that the magnetic compass of birds is located only in the right eye. However, here we show that night-migrating garden warblers (Sylvia borin) are able to perform magnetic compass orientation with both eyes open, with only the left eye open and with only the right eye open. We did not observe any clear lateralization of magnetic compass orientation behaviour in this migratory songbird, and, therefore, it seems that the suggested all-or-none lateralization of magnetic compass orientation towards the right eye only cannot be generalized to all birds, and that the answer to the question of whether magnetic compass orientation in birds is lateralized is probably not as simple as suggested previously.
Collapse
Affiliation(s)
- Christine Maira Hein
- AG Neurosensorik/Animal Navigation, IBU, University of Oldenburg, 26111 Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
205
|
Keary N, Ruploh T, Voss J, Thalau P, Wiltschko R, Wiltschko W, Bischof HJ. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Front Zool 2009; 6:25. [PMID: 19852792 PMCID: PMC2774300 DOI: 10.1186/1742-9994-6-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 10/23/2009] [Indexed: 11/14/2022] Open
Abstract
Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz) was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results indicate that zebra finches use a receptor that bases on radical pair processes for sensing the direction of the earth magnetic field in this short distance orientation behavior.
Collapse
Affiliation(s)
- Nina Keary
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Tim Ruploh
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Joe Voss
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Peter Thalau
- FB Biowissenschaften, J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt/Main, Germany
| | - Roswitha Wiltschko
- FB Biowissenschaften, J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt/Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt/Main, Germany
| | - Hans-Joachim Bischof
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
206
|
Solov'yov IA, Greiner W. Micromagnetic insight into a magnetoreceptor in birds: existence of magnetic field amplifiers in the beak. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041919. [PMID: 19905354 DOI: 10.1103/physreve.80.041919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The Earth's magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings of the ophthalmic nerves in the skin of the upper beak of homing pigeons and were shown to fulfill the special prerequisites of a biological receptor. Here we study the proposed receptor theoretically and formulate the criteria for which it becomes operational and can be used for registering the weak magnetic fields as, e.g., the geomagnetic field, by a bird.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe Universität, Ruth-Moufang-Strasse 1, 60438 Frankfurt-am-Main, Germany.
| | | |
Collapse
|
207
|
Wiltschko W, Dehe L, Stapput K, Thalau P, Wiltschko R. Magnetoreception in birds: no intensity window in "fixed direction" responses. Naturwissenschaften 2009; 97:37-42. [PMID: 19760275 DOI: 10.1007/s00114-009-0608-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Under 502 nm turquoise light combined with 590 nm yellow light and in total darkness, European robins, Erithacus rubecula, no longer prefer their migratory direction, but exhibit so-called fixed direction responses that do not show the seasonal change between spring and autumn. We tested robins under these light conditions in the local geomagnetic field of 46 microT, a field of twice this intensity, 92 microT, and a field of three times this intensity, 138 microT. Under all three magnetic conditions, the birds preferred the same easterly direction under turquoise-and-yellow light and the same northwesterly direction under dark, while they were oriented in their seasonally appropriate direction under control conditions. "Fixed direction" responses are thus not limited to a narrow intensity window as has been found for normal compass orientation. This can be attributed to their origin in the magnetite-based receptor in the upper beak, which operates according to fundamentally different principles than the radical pair mechanism in the retina mediating compass orientation. "Fixed direction" responses are possibly a relict of a receptor mechanism that changed its function, now mainly providing information on magnetic intensity.
Collapse
Affiliation(s)
- Wolfgang Wiltschko
- FB Biowissenschaften, J.W. Goethe-Universität Frankfurt, Siesmayerstrasse 70, 60054, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
208
|
Hogben HJ, Efimova O, Wagner-Rundell N, Timmel CR, Hore P. Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.08.051] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
209
|
Solov'yov IA, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J 2009; 96:4804-13. [PMID: 19527640 PMCID: PMC2712043 DOI: 10.1016/j.bpj.2009.03.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 11/27/2022] Open
Abstract
In the last decades, it has been demonstrated that many animal species orient in the Earth magnetic field. One of the best-studied examples is the use of the geomagnetic field by migratory birds for orientation and navigation. However, the biophysical mechanism underlying animal magnetoreception is still not understood. One theory for magnetoreception in birds invokes the so-called radical-pair model. This mechanism involves a pair of reactive radicals, whose chemical fate can be influenced by the orientation with respect to the magnetic field of the Earth through Zeeman and hyperfine interactions. The fact that the geomagnetic field is weak, i.e., approximately 0.5 G, puts a severe constraint on the radical pair that can establish the magnetic compass sense. For a noticeable change of the reaction yield in a redirected geomagnetic field, the hyperfine interaction has to be as weak as the Earth field Zeeman interaction, i.e., unusually weak for an organic compound. Such weak hyperfine interaction can be achieved if one of the radicals is completely devoid of this interaction as realized in a radical pair containing an oxygen molecule as one of the radicals. Accordingly, we investigate here a possible radical pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH* to the inactive state FADH- (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2*-. We argue that the spin dynamics in the suggested reaction can act as a geomagnetic compass and that the very low physiological concentration (nM-microM) of otherwise toxic O2*- is sufficient, even favorable, for the biological function.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
210
|
Solov'yov IA, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J 2009. [PMID: 19527640 DOI: 10.1016/2fj.bpj.2009.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In the last decades, it has been demonstrated that many animal species orient in the Earth magnetic field. One of the best-studied examples is the use of the geomagnetic field by migratory birds for orientation and navigation. However, the biophysical mechanism underlying animal magnetoreception is still not understood. One theory for magnetoreception in birds invokes the so-called radical-pair model. This mechanism involves a pair of reactive radicals, whose chemical fate can be influenced by the orientation with respect to the magnetic field of the Earth through Zeeman and hyperfine interactions. The fact that the geomagnetic field is weak, i.e., approximately 0.5 G, puts a severe constraint on the radical pair that can establish the magnetic compass sense. For a noticeable change of the reaction yield in a redirected geomagnetic field, the hyperfine interaction has to be as weak as the Earth field Zeeman interaction, i.e., unusually weak for an organic compound. Such weak hyperfine interaction can be achieved if one of the radicals is completely devoid of this interaction as realized in a radical pair containing an oxygen molecule as one of the radicals. Accordingly, we investigate here a possible radical pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH* to the inactive state FADH- (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2*-. We argue that the spin dynamics in the suggested reaction can act as a geomagnetic compass and that the very low physiological concentration (nM-microM) of otherwise toxic O2*- is sufficient, even favorable, for the biological function.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
211
|
Rodgers CT, Hore PJ. Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A 2009; 106:353-60. [PMID: 19129499 PMCID: PMC2626707 DOI: 10.1073/pnas.0711968106] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 11/18/2022] Open
Abstract
Migratory birds travel vast distances each year, finding their way by various means, including a remarkable ability to perceive the Earth's magnetic field. Although it has been known for 40 years that birds possess a magnetic compass, avian magnetoreception is poorly understood at all levels from the primary biophysical detection events, signal transduction pathways and neurophysiology, to the processing of information in the brain. It has been proposed that the primary detector is a specialized ocular photoreceptor that plays host to magnetically sensitive photochemical reactions having radical pairs as fleeting intermediates. Here, we present a physical chemist's perspective on the "radical pair mechanism" of compass magnetoreception in birds. We outline the essential chemical requirements for detecting the direction of an Earth-strength approximately 50 microT magnetic field and comment on the likelihood that these might be satisfied in a biologically plausible receptor. Our survey concludes with a discussion of cryptochrome, the photoactive protein that has been put forward as the magnetoreceptor molecule.
Collapse
Affiliation(s)
- Christopher T. Rodgers
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom; and
- Oxford Centre for Clinical Magnetic Resonance Research, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom; and
| |
Collapse
|