201
|
Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S, Klisch D, Wood L, Loose M, Surani MA, Alberio R. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 2019; 10:500. [PMID: 30700715 PMCID: PMC6353908 DOI: 10.1038/s41467-019-08387-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
High-resolution molecular programmes delineating the cellular foundations of mammalian embryogenesis have emerged recently. Similar analysis of human embryos is limited to pre-implantation stages, since early post-implantation embryos are largely inaccessible. Notwithstanding, we previously suggested conserved principles of pig and human early development. For further insight on pluripotent states and lineage delineation, we analysed pig embryos at single cell resolution. Here we show progressive segregation of inner cell mass and trophectoderm in early blastocysts, and of epiblast and hypoblast in late blastocysts. We show that following an emergent short naive pluripotent signature in early embryos, there is a protracted appearance of a primed signature in advanced embryonic stages. Dosage compensation with respect to the X-chromosome in females is attained via X-inactivation in late epiblasts. Detailed human-pig comparison is a basis towards comprehending early human development and a foundation for further studies of human pluripotent stem cell differentiation in pig interspecies chimeras. Lineage segregation from conception to gastrulation has been mapped at the single cell level in mouse, human and monkey. Here, the authors provide a comprehensive analysis of porcine preimplantation development using single cell RNA-seq; mapping metabolic changes, X chromosome inactivation and signalling pathways.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology, 28040, Madrid, Spain
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, St Lucia, QLD, 4072, Australia
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Liam Wood
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK. .,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
202
|
Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M, Kreibich E, Krueger C, Reik W. Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev 2019; 33:194-208. [PMID: 30692203 PMCID: PMC6362816 DOI: 10.1101/gad.321174.118] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023]
Abstract
In this study, Eckersley-Maslin et al. investigated the upstream maternal factors that initiate zygotic genome activation (ZGA) in either a Dux-dependent (a transcription factor expressed in the minor wave of ZGA) or Dux-independent manner. They performed a candidate-based overexpression screen, identifying developmental pluripotency-associated 2 (Dppa2) and Dppa4 as positive regulators of 2C-like cells and transcription of ZGA genes, and their results suggest that Dppa2/4 binding to the Dux promoter leads to Dux up-regulation and activation of the 2C-like transcriptional program, which is subsequently reinforced by Zscan4c. The molecular regulation of zygotic genome activation (ZGA) in mammals remains an exciting area of research. Primed mouse embryonic stem cells contain a rare subset of “2C-like” cells that are epigenetically and transcriptionally similar to the two-cell embryo and thus represent an in vitro approximation for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA in either a Dux-dependent or Dux-independent manner. Here we performed a candidate-based overexpression screen, identifying, among others, developmental pluripotency-associated 2 (Dppa2) and Dppa4 as positive regulators of 2C-like cells and transcription of ZGA genes. In the germline, promoter DNA demethylation coincides with expression of Dppa2 and Dppa4, which remain expressed until embryonic day 7.5 (E7.5), when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during induced pluripotent stem cell (iPSC) reprogramming at the time that 2C-like transcription transiently peaks. Through a combination of overexpression, knockdown, knockout, and rescue experiments together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we teased apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilized. Dppa2 and Dppa4 require Dux to initiate 2C-like transcription, suggesting that they act upstream by directly regulating Dux. Supporting this, ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild-type cells but, in contrast to Dux, can no longer do so in Dppa2/4 double-knockout cells, suggesting that it may act to stabilize rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux up-regulation and activation of the 2C-like transcriptional program, which is subsequently reinforced by Zscan4c.
Collapse
Affiliation(s)
| | | | - Marloes Blotenburg
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Elisa Kreibich
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
203
|
Świtońska K, Szlachcic WJ, Handschuh L, Wojciechowski P, Marczak Ł, Stelmaszczuk M, Figlerowicz M, Figiel M. Identification of Altered Developmental Pathways in Human Juvenile HD iPSC With 71Q and 109Q Using Transcriptome Profiling. Front Cell Neurosci 2019; 12:528. [PMID: 30713489 PMCID: PMC6345698 DOI: 10.3389/fncel.2018.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
In Huntington disease (HD) subtle symptoms in patients may occur years or even decades prior to diagnosis. HD changes at a molecular level may begin as early as in cells that are non-lineage committed such as stem cells or HD patients induced pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously not directly investigated in detail by RNA-seq. In the present manuscript, we define the early HD and juvenile HD transcriptional alterations using 6 human HD iPS cell lines from two patients, one with 71 CAGs and one with 109 CAG repeats. We identified 107 (6 HD lines), 198 (3 HD71Q lines) and 217 (3 HD109Q lines) significantly dysregulated mRNAs in each comparison group. The analyses showed that many of dysregulated transcripts in HD109Q iPSC lines are involved in DNA damage response and apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B, TNFRSF10C, TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D, ZMAT3, PLK2, and RPS27L. Most of them were identified as downregulated and their proteins are direct interactors with TP53. HTT probably alters the level of several TP53 interactors influencing apoptosis. This may lead to accumulation of an excessive number of progenitor cells and potential disruption of cell differentiation and production of mature neurons. In addition, HTT effects on cell polarization also demonstrated in the analysis may result in a generation of incorrect progenitors. Bioinformatics analysis of transcripts dysregulated in HD71Q iPSC lines showed that several of them act as transcription regulators during the early multicellular stages of development, such as ZFP57, PIWIL2, HIST1H3C, and HIST1H2BB. Significant upregulation of most of these transcripts may lead to a global increase in expression level of genes involved in pathways critical for embryogenesis and early neural development. In addition, MS analysis revealed altered levels of TP53 and ZFP30 proteins reflecting the functional significance of dysregulated mRNA levels of these proteins which were associated with apoptosis and DNA binding. Our finding very well corresponds to the fact that mutation in the HTT gene may cause precocious neurogenesis and identifies pathways likely disrupted during development.
Collapse
Affiliation(s)
- Karolina Świtońska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Stelmaszczuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
204
|
Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genet 2019; 15:e1007874. [PMID: 30625149 PMCID: PMC6342324 DOI: 10.1371/journal.pgen.1007874] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/22/2019] [Accepted: 12/04/2018] [Indexed: 12/03/2022] Open
Abstract
Extensive cell-to-cell variation exists even among putatively identical cells, and there is great interest in understanding how the properties of transcription relate to this heterogeneity. Differential expression from the two gene copies in diploid cells could potentially contribute, yet our ability to measure from which gene copy individual RNAs originated remains limited, particularly in the context of tissues. Here, we demonstrate quantitative, single molecule allele-specific RNA FISH adapted for use on tissue sections, allowing us to determine the chromosome of origin of individual RNA molecules in formaldehyde-fixed tissues. We used this method to visualize the allele-specific expression of Xist and multiple autosomal genes in mouse kidney. By combining these data with mathematical modeling, we evaluated models for allele-specific heterogeneity, in particular demonstrating that apparent expression from only one of the alleles in single cells can arise as a consequence of low-level mRNA abundance and transcriptional bursting. In mammals, most cells of the body contain two genetic datasets: one from the mother and one from the father, and—in theory—these two sets of information could contribute equally to produce the molecules in a given cell. In practice, however, this is not always the case, which can have dramatic implications for many traits, including visible features (such as fur color) and even disease outcomes. However, it remains difficult to measure the parental origin of individual molecules in a given cell and thus to assess what processes lead to an imbalance of the maternal and paternal contribution. We adapted a microscopy technique—called allele-specific single molecule RNA FISH—that uses a combination of fluorescent tags to specifically label one type of molecule, RNA, depending on its origin, for use in mouse kidney sections. Focusing on RNAs that were previously reported to show imbalance, we performed measurements and combined these with mathematical modeling to quantify imbalance in tissues and explain how these can arise. We found that we could recapitulate the observed imbalances using models that only take into account the random processes that produce RNA, without the need to invoke special regulatory mechanisms to create unequal contributions.
Collapse
|
205
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
206
|
Abstract
Establishing the different lineages of the early mammalian embryo takes place over several days and several rounds of cell divisions from the fertilized egg. The resulting blastocyst contains the pluripotent cells of the epiblast, from which embryonic stem cells can be derived, as well as the extraembryonic lineages required for a mammalian embryo to survive in the uterine environment. The dynamics of the cellular and genetic interactions controlling the initiation and maintenance of these lineages in the mouse embryo are increasingly well understood through application of the tools of single-cell genomics, gene editing, and in vivo imaging. Exploring the similarities and differences between mouse and human development will be essential for translation of these findings into new insights into human biology, derivation of stem cells, and improvements in fertility treatments.
Collapse
Affiliation(s)
- Janet Rossant
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
207
|
Jia G, Preussner J, Chen X, Guenther S, Yuan X, Yekelchyk M, Kuenne C, Looso M, Zhou Y, Teichmann S, Braun T. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 2018; 9:4877. [PMID: 30451828 PMCID: PMC6242939 DOI: 10.1038/s41467-018-07307-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 10/27/2018] [Indexed: 01/01/2023] Open
Abstract
Formation and segregation of cell lineages forming the heart have been studied extensively but the underlying gene regulatory networks and epigenetic changes driving cell fate transitions during early cardiogenesis are still only partially understood. Here, we comprehensively characterize mouse cardiac progenitor cells (CPCs) marked by Nkx2-5 and Isl1 expression from E7.5 to E9.5 using single-cell RNA sequencing and transposase-accessible chromatin profiling (ATAC-seq). By leveraging on cell-to-cell transcriptome and chromatin accessibility heterogeneity, we identify different previously unknown cardiac subpopulations. Reconstruction of developmental trajectories reveal that multipotent Isl1+ CPC pass through an attractor state before separating into different developmental branches, whereas extended expression of Nkx2-5 commits CPC to an unidirectional cardiomyocyte fate. Furthermore, we show that CPC fate transitions are associated with distinct open chromatin states critically depending on Isl1 and Nkx2-5. Our data provide a model of transcriptional and epigenetic regulations during cardiac progenitor cell fate decisions at single-cell resolution.
Collapse
Affiliation(s)
- Guangshuai Jia
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Jens Preussner
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany
| | - Xi Chen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stefan Guenther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany
| | - Michail Yekelchyk
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany
| | - Carsten Kuenne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany
| | - Yonggang Zhou
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Sarah Teichmann
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, 60596, Germany.
| |
Collapse
|
208
|
Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 2018; 145:145/21/dev167833. [PMID: 30413530 PMCID: PMC6240320 DOI: 10.1242/dev.167833] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis. Highlighted Article: Analysis of stage-matched, single-cell gene expression data from three mammalian species reveals conserved and primate-specific regulation of early embryogenesis and lineage specification.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Giuliano G Stirparo
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | - Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Austin Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Erika Sasaki
- Central Institute for Experimental Animals, Department of Applied Developmental Biology, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Paul Bertone
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
209
|
Liu Q, Herring CA, Sheng Q, Ping J, Simmons AJ, Chen B, Banerjee A, Li W, Gu G, Coffey RJ, Shyr Y, Lau KS. Quantitative assessment of cell population diversity in single-cell landscapes. PLoS Biol 2018; 16:e2006687. [PMID: 30346945 PMCID: PMC6211764 DOI: 10.1371/journal.pbio.2006687] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/01/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a powerful tool for the systematic investigation of cellular diversity. As a number of computational tools have been developed to identify and visualize cell populations within a single scRNA-seq dataset, there is a need for methods to quantitatively and statistically define proportional shifts in cell population structures across datasets, such as expansion or shrinkage or emergence or disappearance of cell populations. Here we present sc-UniFrac, a framework to statistically quantify compositional diversity in cell populations between single-cell transcriptome landscapes. sc-UniFrac enables sensitive and robust quantification in simulated and experimental datasets in terms of both population identity and quantity. We have demonstrated the utility of sc-UniFrac in multiple applications, including assessment of biological and technical replicates, classification of tissue phenotypes and regional specification, identification and definition of altered cell infiltrates in tumorigenesis, and benchmarking batch-correction tools. sc-UniFrac provides a framework for quantifying diversity or alterations in cell populations across conditions and has broad utility for gaining insight into tissue-level perturbations at the single-cell resolution.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Charles A. Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alan J. Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Wei Li
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ken S. Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
210
|
Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA. Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data. Cell Syst 2018; 7:284-294.e12. [PMID: 30172840 PMCID: PMC6167088 DOI: 10.1016/j.cels.2018.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023]
Abstract
Cell-to-cell transcriptional variability in otherwise homogeneous cell populations plays an important role in tissue function and development. Single-cell RNA sequencing can characterize this variability in a transcriptome-wide manner. However, technical variation and the confounding between variability and mean expression estimates hinder meaningful comparison of expression variability between cell populations. To address this problem, we introduce an analysis approach that extends the BASiCS statistical framework to derive a residual measure of variability that is not confounded by mean expression. This includes a robust procedure for quantifying technical noise in experiments where technical spike-in molecules are not available. We illustrate how our method provides biological insight into the dynamics of cell-to-cell expression variability, highlighting a synchronization of biosynthetic machinery components in immune cells upon activation. In contrast to the uniform up-regulation of the biosynthetic machinery, CD4+ T cells show heterogeneous up-regulation of immune-related and lineage-defining genes during activation and differentiation.
Collapse
Affiliation(s)
- Nils Eling
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Arianne C Richard
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK; Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
| | - Catalina A Vallejos
- The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK; Department of Statistical Science, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XY, UK.
| |
Collapse
|
211
|
Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, Pillai RS. Methylation of Structured RNA by the m 6A Writer METTL16 Is Essential for Mouse Embryonic Development. Mol Cell 2018; 71:986-1000.e11. [PMID: 30197299 PMCID: PMC6162343 DOI: 10.1016/j.molcel.2018.08.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Internal modification of RNAs with N6-methyladenosine (m6A) is a highly conserved means of gene expression control. While the METTL3/METTL14 heterodimer adds this mark on thousands of transcripts in a single-stranded context, the substrate requirements and physiological roles of the second m6A writer METTL16 remain unknown. Here we describe the crystal structure of human METTL16 to reveal a methyltransferase domain furnished with an extra N-terminal module, which together form a deep-cut groove that is essential for RNA binding. When presented with a random pool of RNAs, METTL16 selects for methylation-structured RNAs where the critical adenosine is present in a bulge. Mouse 16-cell embryos lacking Mettl16 display reduced mRNA levels of its methylation target, the SAM synthetase Mat2a. The consequence is massive transcriptome dysregulation in ∼64-cell blastocysts that are unfit for further development. This highlights the role of an m6A RNA methyltransferase in facilitating early development via regulation of SAM availability. Structure of the METTL16 m6A writer domain with a unique N-terminal module N-terminal module of METTL16 is essential for charge-based binding to RNA METTL16 preferentially methylates adenosines within structured RNAs Regulation of Mat2a mRNA by Mettl16 is essential for mouse embryonic development
Collapse
Affiliation(s)
- Mateusz Mendel
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Kuan-Ming Chen
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Pascal Gos
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Radha Raman Pandey
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
212
|
Ye Y, Song H, Zhang J, Shi S. Understanding the Biology and Pathogenesis of the Kidney by Single-Cell Transcriptomic Analysis. KIDNEY DISEASES 2018; 4:214-225. [PMID: 30574498 DOI: 10.1159/000492470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Background Single-cell RNA-seq (scRNA-seq) has recently emerged as a revolutionary and powerful tool for biomedical research. However, there have been relatively few studies using scRNA-seq in the field of kidney study. Summary scRNA-seq achieves gene expression profiling at single-cell resolution in contrast with the conventional methods of gene expression profiling, which are based on cell population and give averaged values of gene expression of the cells. Single-cell transcriptomic analysis is crucial because individual cells of the same type are highly heterogeneous in gene expression, which reflects the existence of subpopulations, different cellular states, or molecular dynamics, of the cells, and should be resolved for further insights. In addition, gene expression analysis of tissues or organs that usually comprise multiple cell types or subtypes results in data that are not fully applicable to any given cell type. scRNA-seq is capable of identifying all cell types and subtypes in a tissue, including those that are new or present in small quantity. With these unique capabilities, scRNA-seq has been used to dissect molecular processes in cell differentiation and to trace cell lineages in development. It is also used to analyze the cells in a lesion of disease to identify the cell types and molecular dynamics implicated in the injury. With continuous technical improvement, scRNA-seq has become extremely high throughput and cost effective, making it accessible to all laboratories. In the present review article, we provide an overall review of scRNA-seq concerning its history, improvements, and applications. In addition, we describe the available studies in which scRNA-seq was employed in the field of kidney research. Lastly, we discuss other potential uses of scRNA-seq for kidney research. Key Message This review article provides general information on scRNA-seq and its various uses. Particularly, we summarize the studies in the field of kidney diseases in which scRNA-seq was used and discuss potential additional uses of scRNA-seq for kidney research.
Collapse
Affiliation(s)
- Yuting Ye
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hui Song
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiong Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
213
|
Mincarelli L, Lister A, Lipscombe J, Macaulay IC. Defining Cell Identity with Single-Cell Omics. Proteomics 2018; 18:e1700312. [PMID: 29644800 PMCID: PMC6175476 DOI: 10.1002/pmic.201700312] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/23/2018] [Indexed: 01/17/2023]
Abstract
Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.
Collapse
Affiliation(s)
- Laura Mincarelli
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Ashleigh Lister
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - James Lipscombe
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Iain C. Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| |
Collapse
|
214
|
Epigenetic and Cellular Diversity in the Brain through Allele-Specific Effects. Trends Neurosci 2018; 41:925-937. [PMID: 30098802 DOI: 10.1016/j.tins.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
The benefits of diploidy are considered to involve masking partially recessive mutations and increasing genetic diversity. Here, we review new studies showing evidence for diverse allele-specific expression and epigenetic states in mammalian brain cells, which suggest that diploidy expands the landscape of gene regulatory and expression programs in cells. Allele-specific expression has been thought to be restricted to a few specific classes of genes. However, new studies show novel genomic imprinting effects that are brain-region-, cell-type- and age-dependent. In addition, novel forms of random monoallelic expression that impact many autosomal genes have been described in vitro and in vivo. We discuss the implications for understanding the benefits of diploidy, and the mechanisms shaping brain development, function, and disease.
Collapse
|
215
|
Spangler A, Su EY, Craft AM, Cahan P. A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo. Stem Cell Res 2018; 31:201-215. [PMID: 30118958 PMCID: PMC6579609 DOI: 10.1016/j.scr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent to differentiation. Here, we used a combination of bulk RNA-Seq, single cell RNA-Seq, and bioinformatics analyses to dissect the cell types that emerge during directed differentiation of mouse embryonic stem cells as embryoid bodies and we compared them to spatially and temporally resolved transcriptional profiles of early embryos. Our single cell analyses of the day 4 embryoid bodies revealed three populations which had retained related yet distinct pluripotent signatures that resemble the pre- or post-implantation epiblast, one population of presumptive neuroectoderm, one population of mesendoderm, and four populations of neural progenitors. By day 6, the neural progenitors predominated the embryoid bodies, but both a small population of pluripotent-like cells and an anterior mesoderm-like Brachyury-expressing population were present. By comparing the day 4 and day 6 populations, we identified candidate differentiation paths, transcription factors, and signaling pathways that mark the in vitro correlate of the transition from the mid-to-late primitive streak stage.
Collapse
Affiliation(s)
- Abby Spangler
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - April M Craft
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
216
|
Shahbazi MN, Zernicka-Goetz M. Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 2018; 20:878-887. [PMID: 30038253 DOI: 10.1038/s41556-018-0144-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
The emergence of form and function during mammalian embryogenesis is a complex process that involves multiple regulatory levels. The foundations of the body plan are laid throughout the first days of post-implantation development as embryonic stem cells undergo symmetry breaking and initiate lineage specification, in a process that coincides with a global morphological reorganization of the embryo. Here, we review experimental models and how they have shaped our current understanding of the post-implantation mammalian embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| |
Collapse
|
217
|
Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W, Stegle O. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol 2018; 14:e8124. [PMID: 29925568 PMCID: PMC6010767 DOI: 10.15252/msb.20178124] [Citation(s) in RCA: 583] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Multi-omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi-omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy-chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation.
Collapse
Affiliation(s)
- Ricard Argelaguet
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Britta Velten
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Damien Arnol
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | | | - Thorsten Zenz
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (dkfz) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Germany & Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
218
|
Gao S, Yan L, Wang R, Li J, Yong J, Zhou X, Wei Y, Wu X, Wang X, Fan X, Yan J, Zhi X, Gao Y, Guo H, Jin X, Wang W, Mao Y, Wang F, Wen L, Fu W, Ge H, Qiao J, Tang F. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol 2018; 20:721-734. [DOI: 10.1038/s41556-018-0105-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
219
|
Zhong Y, Choi T, Kim M, Jung KH, Chai YG, Binas B. Isolation of primitive mouse extraembryonic endoderm (pXEN) stem cell lines. Stem Cell Res 2018; 30:100-112. [PMID: 29843002 DOI: 10.1016/j.scr.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Mouse blastocysts contain the committed precursors of the extraembryonic endoderm (ExEn), which express the key transcription factor Oct4, depend on LIF/LIF-like factor-driven Jak/Stat signaling, and initially exhibit lineage plasticity. Previously described rat blastocyst-derived ExEn precursor-like cell lines (XENP cells/HypoSCs) also show these features, but equivalent mouse blastocyst-derived cell lines are lacking. We now present mouse blastocyst-derived cell lines, named primitive XEN (pXEN) cells, which share these and additional characteristics with the XENP cells/HypoSCs, but not with previously known mouse blastocyst-derived XEN cell lines. Otherwise, pXEN cells are highly similar to XEN cells by morphology, lineage-intrinsic differentiation potential, and multi-gene expression profile, although the pXEN cell profile correlates better with the blastocyst stage. Finally, we show that pXEN cells easily convert into XEN-like cells but not vice versa. The findings indicate that (i) pXEN cells are more representative than XEN cells of the blastocyst stage; (ii) mouse pXEN, rather than XEN, cells are homologs of rat XENP cells/HypoSCs, which we propose to call rat pXEN cells.
Collapse
Affiliation(s)
- Yixiang Zhong
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Taewoong Choi
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Minjae Kim
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Bert Binas
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea..
| |
Collapse
|
220
|
Bowling S, Di Gregorio A, Sancho M, Pozzi S, Aarts M, Signore M, D Schneider M, Martinez-Barbera JP, Gil J, Rodríguez TA. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun 2018; 9:1763. [PMID: 29720666 PMCID: PMC5932021 DOI: 10.1038/s41467-018-04167-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ensuring the fitness of the pluripotent cells that will contribute to future development is important both for the integrity of the germline and for proper embryogenesis. Consequently, it is becoming increasingly apparent that pluripotent cells can compare their fitness levels and signal the elimination of those cells that are less fit than their neighbours. In mammals the nature of the pathways that communicate fitness remain largely unknown. Here we identify that in the early mouse embryo and upon exit from naive pluripotency, the confrontation of cells with different fitness levels leads to an inhibition of mTOR signalling in the less fit cell type, causing its elimination. We show that during this process, p53 acts upstream of mTOR and is required to repress its activity. Finally, we demonstrate that during normal development around 35% of cells are eliminated by this pathway, highlighting the importance of this mechanism for embryonic development.
Collapse
Affiliation(s)
- Sarah Bowling
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aida Di Gregorio
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Margarida Sancho
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sara Pozzi
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Marieke Aarts
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Massimo Signore
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Michael D Schneider
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Jesús Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
221
|
Studying X chromosome inactivation in the single-cell genomic era. Biochem Soc Trans 2018; 46:577-586. [PMID: 29678955 DOI: 10.1042/bst20170346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Single-cell genomics is set to revolutionise our understanding of how epigenetic silencing works; by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to ask whether they cause transcriptional silencing or are instead a consequence of the silent state. Here, we review what single-cell genomics has revealed about X chromosome inactivation, perhaps the best characterised mammalian epigenetic process, highlighting the novel findings and important differences between mouse and human X inactivation uncovered through these studies. We consider what fundamental questions these techniques are set to answer in coming years and propose that X chromosome inactivation is an ideal model to study gene silencing by single-cell genomics as technical limitations are minimised through the co-analysis of hundreds of genes.
Collapse
|
222
|
Vermillion KL, Bacher R, Tannenbaum AP, Swanson S, Jiang P, Chu LF, Stewart R, Thomson JA, Vereide DT. Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes. Dev Biol 2018; 439:30-41. [PMID: 29678445 DOI: 10.1016/j.ydbio.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak.
Collapse
Affiliation(s)
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA
| | | | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell&Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Molecular, Cellular,&Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
223
|
Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, Billker O, Berriman M, Lawniczak MK. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife 2018; 7:33105. [PMID: 29580379 PMCID: PMC5871331 DOI: 10.7554/elife.33105] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/04/2018] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing is revolutionising our understanding of seemingly homogeneous cell populations but has not yet been widely applied to single-celled organisms. Transcriptional variation in unicellular malaria parasites from the Plasmodium genus is associated with critical phenotypes including red blood cell invasion and immune evasion, yet transcriptional variation at an individual parasite level has not been examined in depth. Here, we describe the adaptation of a single-cell RNA-sequencing (scRNA-seq) protocol to deconvolute transcriptional variation for more than 500 individual parasites of both rodent and human malaria comprising asexual and sexual life-cycle stages. We uncover previously hidden discrete transcriptional signatures during the pathogenic part of the life cycle, suggesting that expression over development is not as continuous as commonly thought. In transmission stages, we find novel, sex-specific roles for differential expression of contingency gene families that are usually associated with immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Adam J Reid
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Arthur M Talman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Hayley M Bennett
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Ana R Gomes
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mandy J Sanders
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Oliver Billker
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Matthew Berriman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mara Kn Lawniczak
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
224
|
Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past and predicting the future. Science 2018; 358:69-75. [PMID: 28983045 DOI: 10.1126/science.aan6826] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-cell multi-omics has recently emerged as a powerful technology by which different layers of genomic output-and hence cell identity and function-can be recorded simultaneously. Integrating various components of the epigenome into multi-omics measurements allows for studying cellular heterogeneity at different time scales and for discovering new layers of molecular connectivity between the genome and its functional output. Measurements that are increasingly available range from those that identify transcription factor occupancy and initiation of transcription to long-lasting and heritable epigenetic marks such as DNA methylation. Together with techniques in which cell lineage is recorded, this multilayered information will provide insights into a cell's past history and its future potential. This will allow new levels of understanding of cell fate decisions, identity, and function in normal development, physiology, and disease.
Collapse
Affiliation(s)
- Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK. .,European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.,Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
225
|
Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Sci Rep 2018; 8:1801. [PMID: 29379062 PMCID: PMC5789065 DOI: 10.1038/s41598-018-20131-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM-/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation.
Collapse
|
226
|
Kinoshita M, Smith A. Pluripotency Deconstructed. Dev Growth Differ 2018; 60:44-52. [PMID: 29359419 DOI: 10.1111/dgd.12419] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Pluripotency denotes the flexible capacity of single cells to give rise to all somatic lineages and typically also the germline. Mouse ES cells and post-implantation epiblast-derived stem cells (EpiSC) are widely used pluripotent cell culture systems. These two in vitro stem cell types have divergent characteristics. They are considered as representative of distinct developmental stages, distinguished by using the terms "naïve" and "primed". A binary description is an over-simplification, however. Here, we discuss an intermediate stage of pluripotency that we term "formative". Formative pluripotency features a gene regulatory network switch from the naïve state and comprises capacitation of enhancers, signaling pathways and epigenetic machinery in order to install competence for lineage specification.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
227
|
Stower MJ, Srinivas S. The Head's Tale: Anterior-Posterior Axis Formation in the Mouse Embryo. Curr Top Dev Biol 2017; 128:365-390. [PMID: 29477169 DOI: 10.1016/bs.ctdb.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.
Collapse
|
228
|
Ruden DM, Gurdziel K, Aschner M. Frontiers in Toxicogenomics in the Twenty-First Century-the Grand Challenge: To Understand How the Genome and Epigenome Interact with the Toxic Environment at the Single-Cell, Whole-Organism, and Multi-Generational Level. Front Genet 2017; 8:173. [PMID: 29170679 PMCID: PMC5684185 DOI: 10.3389/fgene.2017.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Douglas M. Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
229
|
Yang J, Liu P. Cell lineage specification at single cell resolution. Stem Cell Investig 2017; 4:76. [PMID: 29057248 DOI: 10.21037/sci.2017.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| |
Collapse
|