201
|
Mincarelli L, Lister A, Lipscombe J, Macaulay IC. Defining Cell Identity with Single-Cell Omics. Proteomics 2018; 18:e1700312. [PMID: 29644800 PMCID: PMC6175476 DOI: 10.1002/pmic.201700312] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/23/2018] [Indexed: 01/17/2023]
Abstract
Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.
Collapse
Affiliation(s)
- Laura Mincarelli
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Ashleigh Lister
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - James Lipscombe
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Iain C. Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| |
Collapse
|
202
|
Epigenetic and Cellular Diversity in the Brain through Allele-Specific Effects. Trends Neurosci 2018; 41:925-937. [PMID: 30098802 DOI: 10.1016/j.tins.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
The benefits of diploidy are considered to involve masking partially recessive mutations and increasing genetic diversity. Here, we review new studies showing evidence for diverse allele-specific expression and epigenetic states in mammalian brain cells, which suggest that diploidy expands the landscape of gene regulatory and expression programs in cells. Allele-specific expression has been thought to be restricted to a few specific classes of genes. However, new studies show novel genomic imprinting effects that are brain-region-, cell-type- and age-dependent. In addition, novel forms of random monoallelic expression that impact many autosomal genes have been described in vitro and in vivo. We discuss the implications for understanding the benefits of diploidy, and the mechanisms shaping brain development, function, and disease.
Collapse
|
203
|
Spangler A, Su EY, Craft AM, Cahan P. A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo. Stem Cell Res 2018; 31:201-215. [PMID: 30118958 PMCID: PMC6579609 DOI: 10.1016/j.scr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent to differentiation. Here, we used a combination of bulk RNA-Seq, single cell RNA-Seq, and bioinformatics analyses to dissect the cell types that emerge during directed differentiation of mouse embryonic stem cells as embryoid bodies and we compared them to spatially and temporally resolved transcriptional profiles of early embryos. Our single cell analyses of the day 4 embryoid bodies revealed three populations which had retained related yet distinct pluripotent signatures that resemble the pre- or post-implantation epiblast, one population of presumptive neuroectoderm, one population of mesendoderm, and four populations of neural progenitors. By day 6, the neural progenitors predominated the embryoid bodies, but both a small population of pluripotent-like cells and an anterior mesoderm-like Brachyury-expressing population were present. By comparing the day 4 and day 6 populations, we identified candidate differentiation paths, transcription factors, and signaling pathways that mark the in vitro correlate of the transition from the mid-to-late primitive streak stage.
Collapse
Affiliation(s)
- Abby Spangler
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - April M Craft
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
204
|
Shahbazi MN, Zernicka-Goetz M. Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 2018; 20:878-887. [PMID: 30038253 DOI: 10.1038/s41556-018-0144-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
The emergence of form and function during mammalian embryogenesis is a complex process that involves multiple regulatory levels. The foundations of the body plan are laid throughout the first days of post-implantation development as embryonic stem cells undergo symmetry breaking and initiate lineage specification, in a process that coincides with a global morphological reorganization of the embryo. Here, we review experimental models and how they have shaped our current understanding of the post-implantation mammalian embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| |
Collapse
|
205
|
Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W, Stegle O. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol 2018; 14:e8124. [PMID: 29925568 PMCID: PMC6010767 DOI: 10.15252/msb.20178124] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Multi-omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi-omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy-chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation.
Collapse
Affiliation(s)
- Ricard Argelaguet
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Britta Velten
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Damien Arnol
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | | | - Thorsten Zenz
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (dkfz) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Germany & Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
206
|
Gao S, Yan L, Wang R, Li J, Yong J, Zhou X, Wei Y, Wu X, Wang X, Fan X, Yan J, Zhi X, Gao Y, Guo H, Jin X, Wang W, Mao Y, Wang F, Wen L, Fu W, Ge H, Qiao J, Tang F. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol 2018; 20:721-734. [DOI: 10.1038/s41556-018-0105-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
207
|
Zhong Y, Choi T, Kim M, Jung KH, Chai YG, Binas B. Isolation of primitive mouse extraembryonic endoderm (pXEN) stem cell lines. Stem Cell Res 2018; 30:100-112. [PMID: 29843002 DOI: 10.1016/j.scr.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Mouse blastocysts contain the committed precursors of the extraembryonic endoderm (ExEn), which express the key transcription factor Oct4, depend on LIF/LIF-like factor-driven Jak/Stat signaling, and initially exhibit lineage plasticity. Previously described rat blastocyst-derived ExEn precursor-like cell lines (XENP cells/HypoSCs) also show these features, but equivalent mouse blastocyst-derived cell lines are lacking. We now present mouse blastocyst-derived cell lines, named primitive XEN (pXEN) cells, which share these and additional characteristics with the XENP cells/HypoSCs, but not with previously known mouse blastocyst-derived XEN cell lines. Otherwise, pXEN cells are highly similar to XEN cells by morphology, lineage-intrinsic differentiation potential, and multi-gene expression profile, although the pXEN cell profile correlates better with the blastocyst stage. Finally, we show that pXEN cells easily convert into XEN-like cells but not vice versa. The findings indicate that (i) pXEN cells are more representative than XEN cells of the blastocyst stage; (ii) mouse pXEN, rather than XEN, cells are homologs of rat XENP cells/HypoSCs, which we propose to call rat pXEN cells.
Collapse
Affiliation(s)
- Yixiang Zhong
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Taewoong Choi
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Minjae Kim
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Bert Binas
- Department of Molecular & Life Science, College of Science and Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea..
| |
Collapse
|
208
|
Bowling S, Di Gregorio A, Sancho M, Pozzi S, Aarts M, Signore M, D Schneider M, Martinez-Barbera JP, Gil J, Rodríguez TA. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun 2018; 9:1763. [PMID: 29720666 PMCID: PMC5932021 DOI: 10.1038/s41467-018-04167-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ensuring the fitness of the pluripotent cells that will contribute to future development is important both for the integrity of the germline and for proper embryogenesis. Consequently, it is becoming increasingly apparent that pluripotent cells can compare their fitness levels and signal the elimination of those cells that are less fit than their neighbours. In mammals the nature of the pathways that communicate fitness remain largely unknown. Here we identify that in the early mouse embryo and upon exit from naive pluripotency, the confrontation of cells with different fitness levels leads to an inhibition of mTOR signalling in the less fit cell type, causing its elimination. We show that during this process, p53 acts upstream of mTOR and is required to repress its activity. Finally, we demonstrate that during normal development around 35% of cells are eliminated by this pathway, highlighting the importance of this mechanism for embryonic development.
Collapse
Affiliation(s)
- Sarah Bowling
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aida Di Gregorio
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Margarida Sancho
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sara Pozzi
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Marieke Aarts
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Massimo Signore
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Michael D Schneider
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Jesús Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
209
|
Studying X chromosome inactivation in the single-cell genomic era. Biochem Soc Trans 2018; 46:577-586. [PMID: 29678955 DOI: 10.1042/bst20170346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Single-cell genomics is set to revolutionise our understanding of how epigenetic silencing works; by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to ask whether they cause transcriptional silencing or are instead a consequence of the silent state. Here, we review what single-cell genomics has revealed about X chromosome inactivation, perhaps the best characterised mammalian epigenetic process, highlighting the novel findings and important differences between mouse and human X inactivation uncovered through these studies. We consider what fundamental questions these techniques are set to answer in coming years and propose that X chromosome inactivation is an ideal model to study gene silencing by single-cell genomics as technical limitations are minimised through the co-analysis of hundreds of genes.
Collapse
|
210
|
Vermillion KL, Bacher R, Tannenbaum AP, Swanson S, Jiang P, Chu LF, Stewart R, Thomson JA, Vereide DT. Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes. Dev Biol 2018; 439:30-41. [PMID: 29678445 DOI: 10.1016/j.ydbio.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak.
Collapse
Affiliation(s)
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA
| | | | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell&Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Molecular, Cellular,&Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
211
|
Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, Billker O, Berriman M, Lawniczak MK. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife 2018; 7:33105. [PMID: 29580379 PMCID: PMC5871331 DOI: 10.7554/elife.33105] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/04/2018] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing is revolutionising our understanding of seemingly homogeneous cell populations but has not yet been widely applied to single-celled organisms. Transcriptional variation in unicellular malaria parasites from the Plasmodium genus is associated with critical phenotypes including red blood cell invasion and immune evasion, yet transcriptional variation at an individual parasite level has not been examined in depth. Here, we describe the adaptation of a single-cell RNA-sequencing (scRNA-seq) protocol to deconvolute transcriptional variation for more than 500 individual parasites of both rodent and human malaria comprising asexual and sexual life-cycle stages. We uncover previously hidden discrete transcriptional signatures during the pathogenic part of the life cycle, suggesting that expression over development is not as continuous as commonly thought. In transmission stages, we find novel, sex-specific roles for differential expression of contingency gene families that are usually associated with immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Adam J Reid
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Arthur M Talman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Hayley M Bennett
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Ana R Gomes
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mandy J Sanders
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Oliver Billker
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Matthew Berriman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mara Kn Lawniczak
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
212
|
Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past and predicting the future. Science 2018; 358:69-75. [PMID: 28983045 DOI: 10.1126/science.aan6826] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-cell multi-omics has recently emerged as a powerful technology by which different layers of genomic output-and hence cell identity and function-can be recorded simultaneously. Integrating various components of the epigenome into multi-omics measurements allows for studying cellular heterogeneity at different time scales and for discovering new layers of molecular connectivity between the genome and its functional output. Measurements that are increasingly available range from those that identify transcription factor occupancy and initiation of transcription to long-lasting and heritable epigenetic marks such as DNA methylation. Together with techniques in which cell lineage is recorded, this multilayered information will provide insights into a cell's past history and its future potential. This will allow new levels of understanding of cell fate decisions, identity, and function in normal development, physiology, and disease.
Collapse
Affiliation(s)
- Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK. .,European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.,Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
213
|
Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Sci Rep 2018; 8:1801. [PMID: 29379062 PMCID: PMC5789065 DOI: 10.1038/s41598-018-20131-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM-/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation.
Collapse
|
214
|
Kinoshita M, Smith A. Pluripotency Deconstructed. Dev Growth Differ 2018; 60:44-52. [PMID: 29359419 DOI: 10.1111/dgd.12419] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Pluripotency denotes the flexible capacity of single cells to give rise to all somatic lineages and typically also the germline. Mouse ES cells and post-implantation epiblast-derived stem cells (EpiSC) are widely used pluripotent cell culture systems. These two in vitro stem cell types have divergent characteristics. They are considered as representative of distinct developmental stages, distinguished by using the terms "naïve" and "primed". A binary description is an over-simplification, however. Here, we discuss an intermediate stage of pluripotency that we term "formative". Formative pluripotency features a gene regulatory network switch from the naïve state and comprises capacitation of enhancers, signaling pathways and epigenetic machinery in order to install competence for lineage specification.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
215
|
Stower MJ, Srinivas S. The Head's Tale: Anterior-Posterior Axis Formation in the Mouse Embryo. Curr Top Dev Biol 2017; 128:365-390. [PMID: 29477169 DOI: 10.1016/bs.ctdb.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.
Collapse
|
216
|
Ruden DM, Gurdziel K, Aschner M. Frontiers in Toxicogenomics in the Twenty-First Century-the Grand Challenge: To Understand How the Genome and Epigenome Interact with the Toxic Environment at the Single-Cell, Whole-Organism, and Multi-Generational Level. Front Genet 2017; 8:173. [PMID: 29170679 PMCID: PMC5684185 DOI: 10.3389/fgene.2017.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Douglas M. Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
217
|
Yang J, Liu P. Cell lineage specification at single cell resolution. Stem Cell Investig 2017; 4:76. [PMID: 29057248 DOI: 10.21037/sci.2017.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| |
Collapse
|