201
|
Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 2018; 17:547-558. [PMID: 29977051 PMCID: PMC6420209 DOI: 10.1038/nrd.2018.93] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have indicated the potential to develop small-molecule drugs that act on RNA targets, leading to burgeoning interest in the field. This article discusses general principles for discovering small-molecule drugs that target RNA and argues that the overarching challenge is to identify appropriate target structures in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. RNA molecules are essential for cellular information transfer and gene regulation, and RNAs have been implicated in many human diseases. Messenger and non-coding RNAs contain highly structured elements, and evidence suggests that many of these structures are important for function. Targeting these RNAs with small molecules offers opportunities to therapeutically modulate numerous cellular processes, including those linked to 'undruggable' protein targets. Despite this promise, there is currently only a single class of human-designed small molecules that target RNA used clinically — the linezolid antibiotics. However, a growing number of small-molecule RNA ligands are being identified, leading to burgeoning interest in the field. Here, we discuss principles for discovering small-molecule drugs that target RNA and argue that the overarching challenge is to identify appropriate target structures — namely, in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. If focus is placed on such druggable binding sites in RNA, extensive knowledge of the typical physicochemical properties of drug-like small molecules could then enable small-molecule drug discovery for RNA targets to become (only) roughly as difficult as for protein targets.
Collapse
Affiliation(s)
| | | | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
202
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
203
|
Abstract
Click chemistry has emerged as a powerful tool in our arsenal for unlocking new biology. This includes its utility in both chemical biology and drug discovery. An emerging application of click chemistry is in the development of biochemical assays for high-throughput screening to identify new chemical probes and drug leads. This Feature Article will discuss the advancements in click chemistry that were necessary for the development of a new class of biochemical assay, catalytic enzyme-linked click chemistry assay or cat-ELCCA. Inspired by enzyme immunoassays, cat-ELCCA was designed as a click chemistry-based amplification assay where bioorthogonally-tagged analytes and enzymes are used in place of the enzyme-linked secondary antibodies used in immunoassays. The result is a robust assay format with demonstrated applicability in several important areas of biology and drug discovery, including post-translational modifications, pre-microRNA maturation, and protein-protein and RNA-protein interactions. Through the use of cat-ELCCA and other related click chemistry-based assays, new chemical probes for interrogating promising drug targets have been discovered. These examples will be discussed, in addition to a future outlook on the impact of this approach in probe and drug discovery.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
204
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
205
|
Ganser LR, Lee J, Rangadurai A, Merriman DK, Kelly ML, Kansal AD, Sathyamoorthy B, Al-Hashimi HM. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat Struct Mol Biol 2018; 25:425-434. [PMID: 29728655 PMCID: PMC5942591 DOI: 10.1038/s41594-018-0062-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Dynamic ensembles hold great promise in advancing RNA-targeted drug discovery. Here we subjected the transactivation response element (TAR) RNA from human immunodeficiency virus type-1 to experimental high-throughput screening against ~100,000 drug-like small molecules. Results were augmented with 170 known TAR-binding molecules and used to generate sublibraries optimized for evaluating enrichment when virtually screening a dynamic ensemble of TAR determined by combining NMR spectroscopy data and molecular dynamics simulations. Ensemble-based virtual screening scores molecules with an area under the receiver operator characteristic curve of ~0.85-0.94 and with ~40-75% of all hits falling within the top 2% of scored molecules. The enrichment decreased significantly for ensembles generated from the same molecular dynamics simulations without input NMR data and for other control ensembles. The results demonstrate that experimentally determined RNA ensembles can significantly enrich libraries with true hits and that the degree of enrichment is dependent on the accuracy of the ensemble.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Janghyun Lee
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Aman D Kansal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
206
|
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol 2018; 28:287-301. [PMID: 29274663 PMCID: PMC5869122 DOI: 10.1016/j.tcb.2017.11.008] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are encoded by a vast less explored region of the human genome, may hold missing drivers of cancer and have gained attention recently as a potentially crucial layer of cancer cell regulation. lncRNAs are aberrantly expressed in a broad spectrum of cancers, and they play key roles in promoting and maintaining tumor initiation and progression, demonstrating their clinical potential as biomarkers and therapeutic targets. Recent discoveries have revealed that lncRNAs act as key signal transduction mediators in cancer signaling pathways by interacting with proteins, RNA, and lipids. Here, we review the mechanisms by which lncRNAs regulate cellular responses to extracellular signals and discuss their clinical potential as diagnostic indicators, stratification markers, and therapeutic targets of combinatorial treatments.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
207
|
Liu J, Li M, Liu X, Liu F, Zhu J. miR-27a-3p promotes the malignant phenotypes of osteosarcoma by targeting ten-eleven translocation 1. Int J Oncol 2018; 52:1295-1304. [PMID: 29484426 DOI: 10.3892/ijo.2018.4275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma has become one of the most common primary malignant tumors affecting children and adolescents. Although increasing evidence has indicated that microRNAs (miRNAs or miRs) play important roles in the development of osteosarcoma, the expression of miR‑27a‑3p and its effects on osteosarcoma are not yet fully understood. In the present study, our data demonstrated that the expression of miR‑27a‑3p in osteosarcoma cell lines was significantly higher than that in the normal human osteoblastic cell line, hFOB 1.19 cell (P<0.01). In order to explore the role of miR‑27a‑3p in the development and progression of osteosarcoma, the expression of miR‑27a‑3p was inhibited by transfection of the MG-63 cells with miR‑27a‑3p inhibitor. The results revealed that the cell proliferative ability significantly decreased (P<0.01), the number of apoptotic cells significantly increased (P<0.01) and the number of cells passing through the Transwell membrane was significantly reduced in the group transfected with the miR‑27a‑3p inhibitor (P<0.01). At the same time, the expression of E-cadherin and α-catenin was significantly upregulated (P<0.01), while the expression of vimentin was significantly downregulated in the group transfected with the miR‑27a‑3p inhibitor (P<0.01). Our results also revealed that the mRNA expression of ten-eleven translocation 1 (TET1) in the osteosarcoma cells was significantly downregulated compared with that in the hFOB 1.19 cells (P<0.01). Luciferase reporter system analysis indicated that miR‑27a‑3p recognized the TET1 3'-UTR. The protein expression of TET1 significantly increased in the group transfected with the miR‑27a‑3p inhibitor. The results from CCK-8 assay, flow cytometric assay and Transwell invasion analysis revealed that TET1 knockdown inhibited the biological effects induced by the downregulation of miR‑27a‑3p. Taken together, the findings of this study indicate that miR‑27a‑3p is upregulated, while TET1 is downregulated in human osteosarcoma cells. miR‑27a‑3p inhibition suppresses the proliferation and invasion of osteosarcoma cells, and promotes cell apoptosis via the negative regulation of TET1. miR‑27a‑3p/TET1 may thus be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jin Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingpeng Li
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiancheng Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
208
|
Moon MH, Hilimire TA, Sanders AM, Schneekloth JS. Measuring RNA-Ligand Interactions with Microscale Thermophoresis. Biochemistry 2018; 57:4638-4643. [PMID: 29327580 DOI: 10.1021/acs.biochem.7b01141] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, there has been dramatic growth in the study of RNA. RNA has gone from being known as an intermediate in the central dogma of molecular biology to a molecule with a large diversity of structure and function that is involved in all aspects of biology. As new functions are rapidly discovered, it has become clear that there is a need for RNA-targeting small molecule probes to investigate RNA biology and clarify the potential for therapeutics based on RNA-small molecule interactions. While a host of techniques exist to measure RNA-small molecule interactions, many of these have drawbacks that make them intractable for routine use and are often not broadly applicable. A newer technology called microscale thermophoresis (MST), which measures the directed migration of a molecule and/or molecule-ligand complex along a temperature gradient, can be used to measure binding affinities using very small amounts of sample. The high sensitivity of this technique enables measurement of affinity constants in the nanomolar and micromolar range. Here, we demonstrate how MST can be used to study a range of biologically relevant RNA interactions, including peptide-RNA interactions, RNA-small molecule interactions, and displacement of an RNA-bound peptide by a small molecule.
Collapse
Affiliation(s)
- Michelle H Moon
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Thomas A Hilimire
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Allix M Sanders
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - John S Schneekloth
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| |
Collapse
|
209
|
Modulation of oncogenic miRNA biogenesis using functionalized polyamines. Sci Rep 2018; 8:1667. [PMID: 29374231 PMCID: PMC5786041 DOI: 10.1038/s41598-018-20053-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs are key factors in the regulation of gene expression and their deregulation has been directly linked to various pathologies such as cancer. The use of small molecules to tackle the overexpression of oncogenic miRNAs has proved its efficacy and holds the promise for therapeutic applications. Here we describe the screening of a 640-compound library and the identification of polyamine derivatives interfering with in vitro Dicer-mediated processing of the oncogenic miR-372 precursor (pre-miR-372). The most active inhibitor is a spermine-amidine conjugate that binds to the pre-miR-372 with a KD of 0.15 µM, and inhibits its in vitro processing with a IC50 of 1.06 µM. The inhibition of miR-372 biogenesis was confirmed in gastric cancer cells overexpressing miR-372 and a specific inhibition of proliferation through de-repression of the tumor suppressor LATS2 protein, a miR-372 target, was observed. This compound modifies the expression of a small set of miRNAs and its selective biological activity has been confirmed in patient-derived ex vivo cultures of gastric carcinoma. Polyamine derivatives are promising starting materials for future studies about the inhibition of oncogenic miRNAs and, to the best of our knowledge, this is the first report about the application of functionalized polyamines as miRNAs interfering agents.
Collapse
|
210
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
211
|
McLoughlin NM, Mueller C, Grossmann TN. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein. Cell Chem Biol 2018; 25:19-29. [DOI: 10.1016/j.chembiol.2017.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
|
212
|
Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands. Angew Chem Int Ed Engl 2017; 56:13498-13502. [PMID: 28810078 PMCID: PMC5752130 DOI: 10.1002/anie.201707641] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 01/20/2023]
Abstract
While a myriad non-coding RNAs are known to be essential in cellular processes and misregulated in diseases, the development of RNA-targeted small molecule probes has met with limited success. To elucidate the guiding principles for selective small molecule/RNA recognition, we analyzed cheminformatic and shape-based descriptors for 104 RNA-targeted ligands with demonstrated biological activity (RNA-targeted BIoactive ligaNd Database, R-BIND). We then compared R-BIND to both FDA-approved small molecule drugs and RNA ligands without reported bioactivity. Several striking trends emerged for bioactive RNA ligands, including: 1) Compliance to medicinal chemistry rules, 2) distinctive structural features, and 3) enrichment in rod-like shapes over others. This work provides unique insights that directly facilitate the selection and synthesis of RNA-targeted libraries with the goal of efficiently identifying selective small molecule ligands for therapeutically relevant RNAs.
Collapse
Affiliation(s)
- Brittany S Morgan
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Jordan E Forte
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Rebecca N Culver
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| |
Collapse
|
213
|
Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jordan E. Forte
- Department of Chemistry; Duke University; Durham NC 27708-0346 USA
| | | | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla CA 92037 USA
| | | |
Collapse
|
214
|
Clay MC, Ganser LR, Merriman DK, Al-Hashimi HM. Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res 2017; 45:e134. [PMID: 28609788 PMCID: PMC5737546 DOI: 10.1093/nar/gkx525] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022] Open
Abstract
Recent studies have shown that RNAs exist in dynamic equilibrium with short-lived low-abundance 'excited states' that form by reshuffling base pairs in and around non-canonical motifs. These conformational states are proposed to be rich in non-canonical motifs and to play roles in the folding and regulatory functions of non-coding RNAs but their structure proves difficult to characterize given their transient nature. Here, we describe an approach for determining sugar pucker conformation in RNA excited states through nuclear magnetic resonance measurements of C1΄ and C4΄ rotating frame spin relaxation (R1ρ) in uniformly 13C/15N labeled RNA samples. Application to HIV-1 TAR exposed slow modes of sugar repuckering dynamics at the μs and ms timescale accompanying transitions between non-helical (C2΄-endo) to helical (C3΄-endo) conformations during formation of two distinct excited states. In contrast, we did not obtain any evidence for slow sugar repuckering dynamics for nucleotides in a variety of structural contexts that do not undergo non-helical to helical transitions. Our results outline a route for significantly improving the conformational characterization of RNA excited states and suggest that slow modes of repuckering dynamics gated by transient changes in secondary structure are quite common in RNA.
Collapse
Affiliation(s)
- Mary C. Clay
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura R. Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
215
|
Functional RNA structures throughout the Hepatitis C Virus genome. Curr Opin Virol 2017; 24:79-86. [PMID: 28511116 DOI: 10.1016/j.coviro.2017.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics.
Collapse
|
216
|
Patwardhan NN, Ganser LR, Kapral GJ, Eubanks CS, Lee J, Sathyamoorthy B, Al-Hashimi HM, Hargrove AE. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MEDCHEMCOMM 2017; 8:1022-1036. [PMID: 28798862 PMCID: PMC5546750 DOI: 10.1039/c6md00729e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 12/23/2022]
Abstract
Diversification of RNA-targeted scaffolds offers great promise in the search for selective ligands of therapeutically relevant RNA such as HIV-1 TAR. We herein report the establishment of amiloride as a novel RNA-binding scaffold along with synthetic routes for combinatorial C(5)- and C(6)-diversification. Iterative modifications at the C(5)- and C(6)- positions yielded derivative 24, which demonstrated a 100-fold increase in activity over the parent dimethylamiloride in peptide displacement assays. NMR chemical shift mapping was performed using the 2D SOFAST- [1H-13C] HMQC NMR method, which allowed for facile and rapid evaluation of binding modes for all library members. Cheminformatic analysis revealed distinct differences between selective and non-selective ligands. In this study, we evolved dimethylamiloride from a weak TAR ligand to one of the tightest binding selective TAR ligands reported to date through a novel combination of synthetic methods and analytical techniques. We expect these methods to allow for rapid library expansion and tuning of the amiloride scaffold for a range of RNA targets and for SOFAST NMR to allow unprecedented evaluation of small molecule:RNA interactions.
Collapse
Affiliation(s)
- Neeraj N. Patwardhan
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Laura R. Ganser
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Gary J. Kapral
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Christopher S. Eubanks
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Janghyun Lee
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Bharathwaj Sathyamoorthy
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Hashim M. Al-Hashimi
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Amanda E. Hargrove
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| |
Collapse
|
217
|
Connelly CM, Boer RE, Moon MH, Gareiss P, Schneekloth JS. Discovery of Inhibitors of MicroRNA-21 Processing Using Small Molecule Microarrays. ACS Chem Biol 2017; 12:435-443. [PMID: 27959491 DOI: 10.1021/acschembio.6b00945] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of small molecules that bind to and perturb the function of microRNAs is an attractive approach for the treatment for microRNA-associated pathologies. However, there are only a few small molecules known to interact directly with microRNAs. Here, we report the use of a small molecule microarray (SMM) screening approach to identify low molecular weight compounds that directly bind to a pre-miR-21 hairpin. Compounds identified using this approach exhibit good affinity for the RNA (ranging from 0.8-2.0 μM) and are not composed of a polycationic scaffold. Several of the highest affinity compounds inhibit Dicer-mediated processing, while in-line probing experiments indicate that the compounds bind to the apical loop of the hairpin, proximal to the Dicer site. This work provides evidence that small molecules can be developed to bind directly to and inhibit miR-21.
Collapse
Affiliation(s)
- Colleen M. Connelly
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Robert E. Boer
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Michelle H. Moon
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Peter Gareiss
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - John S. Schneekloth
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
218
|
Eubanks CS, Forte JE, Kapral GJ, Hargrove AE. Small Molecule-Based Pattern Recognition To Classify RNA Structure. J Am Chem Soc 2017; 139:409-416. [PMID: 28004925 PMCID: PMC5465965 DOI: 10.1021/jacs.6b11087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three-dimensional RNA structures are notoriously difficult to determine, and the link between secondary structure and RNA conformation is only beginning to be understood. These challenges have hindered the identification of guiding principles for small molecule:RNA recognition. We herein demonstrate that the strong and differential binding ability of aminoglycosides to RNA structures can be used to classify five canonical RNA secondary structure motifs through principal component analysis (PCA). In these analyses, the aminoglycosides act as receptors, while RNA structures labeled with a benzofuranyluridine fluorophore act as analytes. Complete (100%) predictive ability for this RNA training set was achieved by incorporating two exhaustively guanidinylated aminoglycosides into the receptor library. The PCA was then externally validated using biologically relevant RNA constructs. In bulge-stem-loop constructs of HIV-1 transactivation response element (TAR) RNA, we achieved nucleotide-specific classification of two independent secondary structure motifs. Furthermore, examination of cheminformatic parameters and PCA loading factors revealed trends in aminoglycoside:RNA recognition, including the importance of shape-based discrimination, and suggested the potential for size and sequence discrimination within RNA structural motifs. These studies present a new approach to classifying RNA structure and provide direct evidence that RNA topology, in addition to sequence, is critical for the molecular recognition of RNA.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jordan E Forte
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Gary J Kapral
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Amanda E Hargrove
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
219
|
Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|