201
|
Sun J, Sun R, Liu H, Chang L, Li S, Zhao M, Shennan C, Lei J, Dong J, Zhong C, Xue L, Gao Y, Wang G, Zhang Y. Complete chloroplast genome sequencing of ten wild Fragaria species in China provides evidence for phylogenetic evolution of Fragaria. Genomics 2021; 113:1170-1179. [PMID: 33705887 DOI: 10.1016/j.ygeno.2021.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/02/2021] [Accepted: 01/23/2021] [Indexed: 02/04/2023]
Abstract
Complete chloroplast genomes of ten wild Fragaria species native to China were sequenced. Phylogenetic analysis clustered Fragaria species into two clades: The south clade (F. iinumae, F. chinensis, F. pentaphylla, F. nilgerrensis, F. daltoniana, F. corymbosa, F. moupinensis, F. tibetica, F. nipponica, F. gracilis, and F. nubicola and north clade (F. viridis, F. orientalis, F. moschata, F. mandshurica, F. vesca, F. chiloensis, F. virginiana, and F. × ananassa), while F. iinumae is the oldest extant species. Molecular clock analysis suggested present Fragaria species share a common ancestor 3.57 million years ago (Ma), F. moschata and octoploid species evolve 0.89 and 0.97 Ma, respectively, but F. moschata be not directly involved in current octoploid species formation. Drastic global temperature change since the Palaeocene-Eocene, approx. 55 Ma, especially during uplifting of the Qinghai-Tibet plateau and quaternary glaciation may have driven the formation of Fragaria, separation of two groups and polyploidization.
Collapse
Affiliation(s)
- Jian Sun
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Rui Sun
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Huabo Liu
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Linlin Chang
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Shuangtao Li
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Carol Shennan
- Environmental Studies, University of California Santa Cruz, 95064 Santa Cruz, CA, USA.
| | - Jiajun Lei
- Department of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Jing Dong
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Chuanfei Zhong
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Li Xue
- Department of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Yongshun Gao
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China
| | - Guixia Wang
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China.
| | - Yuntao Zhang
- Beijing Academy of Forestry and Pomology Sciences; Beijing Engineering Research Center for Strawberry; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100093 Beijing, China.
| |
Collapse
|
202
|
Ye X, Hu H, Zhou H, Jiang Y, Gao S, Yuan Z, Stiller J, Li C, Chen G, Liu Y, Wei Y, Zheng YL, Wang YG, Liu C. Differences between diploid donors are the main contributing factor for subgenome asymmetry measured in either gene ratio or relative diversity in allopolyploids. Genome 2021; 64:847-856. [PMID: 33661713 DOI: 10.1139/gen-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subgenome asymmetry (SA) has routinely been attributed to different responses between the subgenomes of a polyploid to various stimuli during evolution. Here, we compared subgenome differences in gene ratio and relative diversity between artificial and natural genotypes of several allopolyploid species. Surprisingly, consistent differences were not detected between these two types of polyploid genotypes, although they differ in times exposed to evolutionary selection. The estimated ratio of shared genes between a subgenome and its diploid donor was invariably higher for the artificial allopolyploid genotypes than those for the natural genotypes, which is expected as it is now well-known that many genes in a species are not shared among all individuals. As the exact diploid parent for a given subgenome is unknown, the estimated ratios of shared genes for the natural genotypes would also include difference among individual genotypes of the diploid donor species. Further, we detected the presence of SA in genotypes before the completion of the polyploidization events as well as in those which were not formed via polyploidization. These results indicate that SA may, to a large degree, reflect differences between its diploid donors or that changes occurred during polyploid evolution are defined by their donor genomes.
Collapse
Affiliation(s)
- Xueling Ye
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Haiyan Hu
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Hong Zhou
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yunfeng Jiang
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Shang Gao
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Zhongwei Yuan
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Chengwei Li
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| |
Collapse
|
203
|
Braz GT, Yu F, Zhao H, Deng Z, Birchler JA, Jiang J. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. THE NEW PHYTOLOGIST 2021; 229:3294-3302. [PMID: 33222183 DOI: 10.1111/nph.17098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Meiotic chromosome pairing between homoeologous chromosomes was reported in many nascent allopolyploids. Homoeologous pairing is gradually eliminated and replaced by exclusive homologous pairing in well-established allopolyploids, an evolutionary process referred to as the diploidization of allopolyploids. A fundamental question of the diploidization of allopolyploids is whether and to what extent the DNA sequence variation among homoeologous chromosomes contribute to the establishment of exclusive homologous chromosome pairing. We developed aneuploid tetraploid maize lines that contain three copies of chromosome 10 derived from inbred lines B73 and H99. We were able to identify the parental origin of each copy of chromosome 10 in the materials using oligonucleotide-based haplotype-specific chromosome painting. We demonstrate that the two identical copies of chromosome 10 from H99 pair preferentially over chromosome 10 from B73 in different stages of prophase I and metaphase I during meiosis. Thus, homologous chromosome pairing is favored to partners with the most similar DNA sequences and can be discriminated based on cryptic sequence variation. We propose that innate preference of homologous chromosome pairing exists in nascent allopolyploids and serves as the first layer that would eventually block all homoeologous chromosome pairing in allopolyploids.
Collapse
Affiliation(s)
- Guilherme T Braz
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fan Yu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
204
|
Genesis, Evolution, and Genetic Diversity of the Hexaploid, Narrow Endemic Centaurea tentudaica. DIVERSITY 2021. [DOI: 10.3390/d13020072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Within the genus Centaurea L., polyploidy is very common, and it is believed that, as to all angiosperms, it was key in the history of its diversification and evolution. Centaurea tentudaica is a hexaploid from subsect. Chamaecyanus of unknown origin. In this study, we examined the possible autopolyploid or allopolyploid origin using allozymes and sequences of three molecular markers: nuclear-ribosomic region ETS, and low-copy genes AGT1 and PgiC. We also included three species geographically and morphologically close to C. tentudaica: C. amblensis, C. galianoi, and C. ornata. Neighbor-Net and Bayesian analyses show a close relationship between C. amblensis and C. tentudaica and no relationship to any of the other species, which suggest that C. tentudaica is an autopolyploid of C. amblensis. Allozyme banding pattern also supports the autopolyploidy hypothesis and shows high levels of genetic diversity in the polyploid, which could suggest multiple origins by recurrent crosses of tetraploid and diploid cytotypes of C. amblensis. Environmental niche modeling was used to analyze the distribution of the possible parental species during the present, Last Glacial Maximum (LGM), Last Interglacial Period (LIG), and Penultimate Glacial Maximum (PGM) environmental conditions. Supporting the molecular suggestions that C. tentudaica originated from C. amblensis, environmental niche modeling confirms that past distribution of C. amblensis overlapped with the distribution of C. tentudaica.
Collapse
|
205
|
Lopes JML, de Matos EM, de Queiroz Nascimento LS, Viccini LF. Validation of reference genes for quantitative gene expression in the Lippia alba polyploid complex (Verbenaceae). Mol Biol Rep 2021; 48:1037-1044. [PMID: 33547533 DOI: 10.1007/s11033-021-06183-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Lippia alba (Verbenaceae) is one of the most studied species of the genus Lippia, mainly due to its medicinal properties. The species was described as a polyploid complex with five cytotypes. The comparison of gene expression in species with several ploidal levels needs to be conducted carefully due to possible changes in gene regulation. Quantitative reverse transcription PCR (qRT-PCR) is a widely used method for transcript abundance analyses in plants. Besides being an extremely powerful technique, relative quantification by Real-Time quantitative PCR (RT-qPCR) needs the normalization with a stable reference gene. We evaluated the stability of nine candidate reference genes in Lippia alba with different ploidal levels using NormFinder, geNorm, and RefFinder software. The product of each primer showed a single peak in the melting curve. The R2 value ranged from 0.998 to 1000 and primers efficiency ranged from 98.95% to 129%. The CIT gene came up as a stable housekeeping gene, being appropriate for studies in polyploid accessions of Lippia alba. Considering that polyploidy is widely documented in Angiosperms, the results can be used not only for further gene expression studies in L. alba but also as a possible reference gene for other polyploid complexes. Differential stability among different genes highlights the importance of the validation of reference genes used for RT-qPCR approach in polyploid studies.
Collapse
Affiliation(s)
- Juliana Mainenti Leal Lopes
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Elyabe Monteiro de Matos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Laís Stehling de Queiroz Nascimento
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Lyderson Facio Viccini
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
206
|
Borowska-Zuchowska N, Robaszkiewicz E, Mykhailyk S, Wartini J, Pinski A, Kovarik A, Hasterok R. To Be or Not to Be Expressed: The First Evidence of a Nucleolar Dominance Tissue-Specificity in Brachypodium hybridum. FRONTIERS IN PLANT SCIENCE 2021; 12:768347. [PMID: 34938308 PMCID: PMC8685274 DOI: 10.3389/fpls.2021.768347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, Brachypodium hybridum (genome composition DDSS), which is a polyphyletic species that arose from crosses between two putative ancestors that resembled the modern B. distachyon (DD) and B. stacei (SS). In this work, we investigated the developmental stability of ND in B. hybridum genotype 3-7-2 and compared it with the reference genotype ABR113. We addressed the question of whether the ND is established in generative tissues such as pollen mother cells (PMC). We examined condensation of rDNA chromatin by fluorescence in situ hybridization employing state-of-art confocal microscopy. The transcription of rDNA homeologs was determined by reverse-transcription cleaved amplified polymorphic sequence analysis. In ABR113, the ND was stable in all tissues analyzed (primary and adventitious root, leaf, and spikes). In contrast, the 3-7-2 individuals showed a strong upregulation of the S-genome units in adventitious roots but not in other tissues. Microscopic analysis of the 3-7-2 PMCs revealed extensive decondensation of the D-genome loci and their association with the nucleolus in meiosis. As opposed, the S-genome loci were always highly condensed and localized outside the nucleolus. These results indicate that genotype-specific loss of ND in B. hybridum occurs probably after fertilization during developmental processes. This finding supports our view that B. hybridum is an attractive model to study ND in grasses.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Natalia Borowska-Zuchowska,
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Wartini
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Pinski
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
207
|
Giraud D, Lima O, Huteau V, Coriton O, Boutte J, Kovarik A, Leitch AR, Leitch IJ, Aïnouche M, Salmon A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110671. [PMID: 33288000 DOI: 10.1016/j.plantsci.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Virginie Huteau
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Olivier Coriton
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Julien Boutte
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK.
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| |
Collapse
|
208
|
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol 2021; 5:1367-1381. [PMID: 34413506 PMCID: PMC8484011 DOI: 10.1038/s41559-021-01525-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Collapse
Affiliation(s)
- Robin Burns
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Terezie Mandáková
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joanna Gunis
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Luz Mayela Soto-Jiménez
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- grid.9464.f0000 0001 2290 1502Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Martin A. Lysak
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Polina Yu. Novikova
- grid.511033.5VIB-UGent Center for Plant Systems Biology, Ghent, Belgium ,grid.419498.90000 0001 0660 6765Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magnus Nordborg
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
209
|
Arakawa T, Kagami H, Katsuyama T, Kitazaki K, Kubo T. A Lineage-Specific Paralog of Oma1 Evolved into a Gene Family from Which a Suppressor of Male Sterility-Inducing Mitochondria Emerged in Plants. Genome Biol Evol 2020; 12:2314-2327. [PMID: 32853350 PMCID: PMC7846149 DOI: 10.1093/gbe/evaa186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Cytoplasmic male sterility (MS) in plants is caused by MS-inducing mitochondria, which have emerged frequently during plant evolution. Nuclear restorer-of-fertility (Rf)genes can suppress their cognate MS-inducing mitochondria. Whereas many Rfs encode a class of RNA-binding protein, the sugar beet (Caryophyllales) Rf encodes a protein resembling Oma1, which is involved in the quality control of mitochondria. In this study, we investigated the molecular evolution of Oma1 homologs in plants. We analyzed 37 plant genomes and concluded that a single copy is the ancestral state in Caryophyllales. Among the sugar beet Oma1 homologs, the orthologous copy is located in a syntenic region that is preserved in Arabidopsis thaliana. The sugar beet Rf is a complex locus consisting of a small Oma1 homolog family (RF-Oma1 family) unique to sugar beet. The gene arrangement in the vicinity of the locus is seen in some but not all Caryophyllalean plants and is absent from Ar. thaliana. This suggests a segmental duplication rather than a whole-genome duplication as the mechanism of RF-Oma1 evolution. Of thirty-seven positively selected codons in RF-Oma1, twenty-six of these sites are located in predicted transmembrane helices. Phylogenetic network analysis indicated that homologous recombination among the RF-Oma1 members played an important role to generate protein activity related to suppression. Together, our data illustrate how an evolutionarily young Rf has emerged from a lineage-specific paralog. Interestingly, several evolutionary features are shared with the RNA-binding protein type Rfs. Hence, the evolution of the sugar beet Rf is representative of Rf evolution in general.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan.,Gifu Prefectural Research Institute for Agricultural Technology in Hilly and Mountainous Areas, Nakatsugawa, Gifu, Japan
| | - Hiroyo Kagami
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takaya Katsuyama
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
210
|
Zhao Y, Dong L, Jiang C, Wang X, Xie J, Rashid MAR, Liu Y, Li M, Bu Z, Wang H, Ma X, Sun S, Wang X, Bo C, Zhou T, Kong L. Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization. BMC Biol 2020; 18:188. [PMID: 33267868 PMCID: PMC7713161 DOI: 10.1186/s12915-020-00917-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The speciation and fast global domestication of bread wheat have made a great impact on three subgenomes of bread wheat. DNA base composition is an essential genome feature, which follows the individual-strand base equality rule and [AT]-increase pattern at the genome, chromosome, and polymorphic site levels among thousands of species. Systematic analyses on base compositions of bread wheat and its wild progenitors could facilitate further understanding of the evolutionary pattern of genome/subgenome-wide base composition of allopolyploid species and its potential causes. RESULTS Genome/subgenome-wide base-composition patterns were investigated by using the data of polymorphic site in 93 accessions from worldwide populations of bread wheat, its diploid and tetraploid progenitors, and their corresponding reference genome sequences. Individual-strand base equality rule and [AT]-increase pattern remain in recently formed hexaploid species bread wheat at the genome, subgenome, chromosome, and polymorphic site levels. However, D subgenome showed the fastest [AT]-increase across polymorphic site from Aegilops tauschii to bread wheat than that on A and B subgenomes from wild emmer to bread wheat. The fastest [AT]-increase could be detected almost all chromosome windows on D subgenome, suggesting different mechanisms between D and other two subgenomes. Interestingly, the [AT]-increase is mainly contributed by intergenic regions at non-selective sweeps, especially the fastest [AT]-increase of D subgenome. Further transition frequency and sequence context analysis indicated that three subgenomes shared same mutation type, but D subgenome owns the highest mutation rate on high-frequency mutation type. The highest mutation rate on D subgenome was further confirmed by using a bread-wheat-private SNP set. The exploration of loci/genes related to the [AT] value of D subgenome suggests the fastest [AT]-increase of D subgenome could be involved in DNA repair systems distributed on three subgenomes of bread wheat. CONCLUSIONS The highest mutation rate is detected on D subgenome of bread wheat during domestication after allopolyploidization, leading to the fastest [AT]-increase pattern of D subgenome. The phenomenon may come from the joint action of multiple repair systems inherited from its wild progenitors.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Luhao Dong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Conghui Jiang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqiang Wang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianyin Xie
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | - Yanhe Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhimu Bu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Silong Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Cunyao Bo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tingting Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
211
|
Bhardwaj E, Lal M, Anand S, Das S. Independent recurrent evolution of MICRORNA genes converging onto similar non-canonical organisation across green plant lineages is driven by local and segmental duplication events in species, family and lineages. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110661. [PMID: 33218629 DOI: 10.1016/j.plantsci.2020.110661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The relationship between evolutionary history, organisation and transcriptional regulation of genes are intrinsically linked. These have been well studied in canonically organised protein-coding genes but not of MIRNAs. In the present study, we investigated the non-canonical arrangement of MIRNAs across taxonomic boundaries from algae to angiosperms employing a combination of genome organization, phylogeny and synteny. We retrieved the complete dataset of MIRNA from twenty-five species to identify and classify based on organisational patterns. The median size of cluster was between 2-5 kb and between 1-20 % of all MIRNAs are organized in head-to-head (with bidirectional promoter), head-to-tail (tandem), and overlapping manner. Although majority of the clusters are composed of MIRNA homologs, 25% of all clusters comprises of non-homologous genes with a potential of generating functional and regulatory complexity. A comparison of phylogeny and organizational patterns revealed that multiple independent events, some of which are species-specific, and some ancient, in different lineages, are responsible for non-canonical organization. Detailed investigation of MIR395 family across the plants revealed a complex origin of non-canonical arrangement through ancient and recent, segmental and local duplications; analysis of MIR399 family revealed major expansion occurred prior to monocot-dicot split, with few lineage-specific events. Evolution of "convergent" organization pattern of non-canonical arrangement originating from independent loci through recurrent event highlights our poor understanding of evolutionary process of MIRNA genes. The present investigation thus paves way for comparative functional genomics to understand the role of non-canonical organization on transcriptional regulation and regulatory diversity in MIRNA gene families.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - S Anand
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
212
|
Bell EA, Cable J, Oliveira C, Richardson DS, Yant L, Taylor MI. Help or hindrance? The evolutionary impact of whole-genome duplication on immunogenetic diversity and parasite load. Ecol Evol 2020; 10:13949-13956. [PMID: 33391693 PMCID: PMC7771170 DOI: 10.1002/ece3.6987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplication (WGD) events occur in all kingdoms and have been hypothesized to promote adaptability. WGDs identified in the early history of vertebrates, teleosts, and angiosperms have been linked to the large-scale diversification of these lineages. However, the mechanics and full outcomes of WGD regarding potential evolutionary impacts remain a topic of debate. The Corydoradinae are a diverse subfamily of Neotropical catfishes with over 170 species described and a history of WGDs. They are divided into nine mtDNA lineages, with species coexisting in sympatric-and often mimetic-communities containing representatives of two or more of the nine lineages. Given their similar life histories, coexisting species of Corydoras might be exposed to similar parasite loads and because of their different histories of WGD and genome size they provide a powerful system for investigating the impacts of WGD on immune diversity and function in an animal system. Here, we compared parasite counts and the diversity of the immune-related toll-like receptors (TLR) in two coexisting species of Corydoras catfish (C. maculifer and C. araguaiaensis), one diploid and one putative tetraploid. In the putative tetraploid C. araguaiaensis, we found significantly lower numbers of parasites and significantly higher diversity (measured by both synonymous and nonsynonymous SNP counts) in two TLR genes than in the diploid C. maculifer. These results provide insight into how WGD may impact evolution, in this case by providing greater immunogenetic diversity.
Collapse
Affiliation(s)
- Ellen A. Bell
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Jo Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Claudio Oliveira
- Departmento de MorfologiaInstituto de Biosiências/UNESPSão PauloBrazil
| | | | - Levi Yant
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
- Present address:
Future Food Beacon of Excellence and the School of Life SciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
213
|
Rodionov AV, Gnutikov AA, Nosov NN, Machs EM, Mikhaylova YV, Shneyer VS, Punina EO. Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species. PLANTS 2020; 9:plants9121647. [PMID: 33255786 PMCID: PMC7760792 DOI: 10.3390/plants9121647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022]
Abstract
Zingeria (Poaceae) is a small genus that includes Z. biebersteiniana, a diploid species with the lowest chromosome number known in plants (2n = 4) as well as hexaploid Z. kochii and tetraploid Z. pisidica, and/or Z. trichopoda species. The relationship between these species and the other low-chromosomes species Colpodium versicolor are unclear. To explore the intragenomic polymorphism and genome composition of these species we examined the sequences of the internal transcribed spacer 1 of the 35S rRNA gene via NGS approach. Our study revealed six groups of ribotypes in Zingeria species. Their distribution confirmed the allopolyploid nature of Z. kochii, whose probable ancestors were Colpodium versicolor and Z. pisidica. Z. pisidica has 98% of rDNA characteristic only for this species, and about 0.3% of rDNA related to that of Z. biebersteiniana. We assume that hexaploid Z. kochii is either an old allopolyploid or a homodiploid that has lost most of the rRNA genes obtained from Z. biebersteiniana. In Z. trichopoda about 81% of rDNA is related to rDNA of Z. biebersteiniana and 19% of rDNA is derived from Poa diaphora sensu lato. The composition of the ribotypes of the two plants determined by a taxonomy specialist as Z. pisidica and Z. trichopoda is very different. Two singleton species are proposed on this base with ribotypes as discriminative characters. So, in all four studied Zingeria species, even if the morphological difference among the studied species was modest, the genomic constitution was significantly different, which suggests that these are allopolyploids that obtained genomes from different ancestors.
Collapse
Affiliation(s)
- Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.V.R.); (N.N.N.); (E.M.M.); (Y.V.M.); (E.O.P.)
- Biological Faculty, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander A. Gnutikov
- Department of Genetic Resources of Oat, Barley, Rye, N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia;
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.V.R.); (N.N.N.); (E.M.M.); (Y.V.M.); (E.O.P.)
| | - Eduard M. Machs
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.V.R.); (N.N.N.); (E.M.M.); (Y.V.M.); (E.O.P.)
| | - Yulia V. Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.V.R.); (N.N.N.); (E.M.M.); (Y.V.M.); (E.O.P.)
| | - Victoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.V.R.); (N.N.N.); (E.M.M.); (Y.V.M.); (E.O.P.)
- Correspondence:
| | - Elizaveta O. Punina
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.V.R.); (N.N.N.); (E.M.M.); (Y.V.M.); (E.O.P.)
| |
Collapse
|
214
|
Meeus S, Šemberová K, De Storme N, Geelen D, Vallejo-Marín M. Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers. PLANT COMMUNICATIONS 2020; 1:100093. [PMID: 33367262 PMCID: PMC7747968 DOI: 10.1016/j.xplc.2020.100093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 05/15/2023]
Abstract
Hybridization is a creative evolutionary force, increasing genomic diversity and facilitating adaptation and even speciation. Hybrids often face significant challenges to establishment, including reduced fertility that arises from genomic incompatibilities between their parents. Whole-genome duplication in hybrids (allopolyploidy) can restore fertility, cause immediate phenotypic changes, and generate reproductive isolation. Yet the survival of polyploid lineages is uncertain, and few studies have compared the performance of recently formed allopolyploids and their parents under field conditions. Here, we use natural and synthetically produced hybrid and polyploid monkeyflowers (Mimulus spp.) to study how polyploidy contributes to the fertility, reproductive isolation, phenotype, and performance of hybrids in the field. We find that polyploidization restores fertility and that allopolyploids are reproductively isolated from their parents. The phenotype of allopolyploids displays the classic gigas effect of whole-genome duplication, in which plants have larger organs and are slower to flower. Field experiments indicate that survival of synthetic hybrids before and after polyploidization is intermediate between that of the parents, whereas natural hybrids have higher survival than all other taxa. We conclude that hybridization and polyploidy can act as sources of genomic novelty, but adaptive evolution is key in mediating the establishment of young allopolyploid lineages.
Collapse
Affiliation(s)
- Sofie Meeus
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| | - Kristýna Šemberová
- Department of Botany, Charles University, 128 43 Prague 2, Czech Republic
| | - Nico De Storme
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
215
|
Meerow AW, Gardner EM, Nakamura K. Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:582422. [PMID: 33250911 PMCID: PMC7674842 DOI: 10.3389/fpls.2020.582422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
One of the two major clades of the endemic American Amaryllidaceae subfam. Amaryllidoideae constitutes the tetraploid-derived (n = 23) Andean-centered tribes, most of which have 46 chromosomes. Despite progress in resolving phylogenetic relationships of the group with plastid and nrDNA, certain subclades were poorly resolved or weakly supported in those previous studies. Sequence capture using anchored hybrid enrichment was employed across 95 species of the clade along with five outgroups and generated sequences of 524 nuclear genes and a partial plastome. Maximum likelihood phylogenetic analyses were conducted on concatenated supermatrices, and coalescent-based species tree analyses were run on the gene trees, followed by hybridization network, age diversification and biogeographic analyses. The four tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae (sister to Clinantheae) are resolved in all analyses with > 90 and mostly 100% support, as are almost all genera within them. Nuclear gene supermatrix and species tree results were largely in concordance; however, some instances of cytonuclear discordance were evident. Hybridization network analysis identified significant reticulation in Clinanthus, Hymenocallis, Stenomesson and the subclade of Eucharideae comprising Eucharis, Caliphruria, and Urceolina. Our data support a previous treatment of the latter as a single genus, Urceolina, with the addition of Eucrosia dodsonii. Biogeographic analysis and penalized likelihood age estimation suggests an origin in the Cauca, Desert and Puna Neotropical bioprovinces for the complex in the mid-Oligocene, with more dispersals than vicariances in its history, but no extinctions. Hymenocallis represents the only instance of long-distance vicariance from the tropical Andean origin of its tribe Hymenocallideae. The absence of extinctions correlates with the lack of diversification rate shifts within the clade. The Eucharideae experienced a sudden lineage radiation ca. 10 Mya. We tie much of the divergences in the Andean-centered lineages to the rise of the Andes, and suggest that the Amotape-Huancabamba Zone functioned as both a corridor (dispersal) and a barrier to migration (vicariance). Several taxonomic changes are made. This is the largest DNA sequence data set to be applied within Amaryllidaceae to date.
Collapse
Affiliation(s)
- Alan W. Meerow
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| | - Elliot M. Gardner
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Institute of Environment, Florida International University, Miami, FL, United States
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| |
Collapse
|
216
|
Todd OE, Figueiredo MRA, Morran S, Soni N, Preston C, Kubeš MF, Napier R, Gaines TA. Synthetic auxin herbicides: finding the lock and key to weed resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110631. [PMID: 33180710 DOI: 10.1016/j.plantsci.2020.110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.
Collapse
Affiliation(s)
- Olivia E Todd
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Marcelo R A Figueiredo
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Sarah Morran
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Neeta Soni
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5005, Australia.
| | - Martin F Kubeš
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Todd A Gaines
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| |
Collapse
|
217
|
Moeglein MK, Chatelet DS, Donoghue MJ, Edwards EJ. Evolutionary dynamics of genome size in a radiation of woody plants. AMERICAN JOURNAL OF BOTANY 2020; 107:1527-1541. [PMID: 33079383 DOI: 10.1002/ajb2.1544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm clade Viburnum to examine the evolutionary associations, functional implications, and possible drivers of genome size. METHODS Chromosome counts and genome size estimates were mapped onto a Viburnum phylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function. RESULTS We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales. CONCLUSIONS Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply to Viburnum.
Collapse
Affiliation(s)
- Morgan K Moeglein
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| |
Collapse
|
218
|
Evolutionary analysis of the Moringa oleifera genome reveals a recent burst of plastid to nucleus gene duplications. Sci Rep 2020; 10:17646. [PMID: 33077763 PMCID: PMC7573628 DOI: 10.1038/s41598-020-73937-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
It is necessary to identify suitable alternative crops to ensure the nutritional demands of a growing global population. The genome of Moringa oleifera, a fast-growing drought-tolerant orphan crop with highly valuable agronomical, nutritional and pharmaceutical properties, has recently been reported. We model here gene family evolution in Moringa as compared with ten other flowering plant species. Despite the reduced number of genes in the compact Moringa genome, 101 gene families, grouping 957 genes, were found as significantly expanded. Expanded families were highly enriched for chloroplastidic and photosynthetic functions. Indeed, almost half of the genes belonging to Moringa expanded families grouped with their Arabidopsis thaliana plastid encoded orthologs. Microsynteny analysis together with modeling the distribution of synonymous substitutions rates, supported most plastid duplicated genes originated recently through a burst of simultaneous insertions of large regions of plastid DNA into the nuclear genome. These, together with abundant short insertions of plastid DNA, contributed to the occurrence of massive amounts of plastid DNA in the Moringa nuclear genome, representing 4.71%, the largest reported so far. Our study provides key genetic resources for future breeding programs and highlights the potential of plastid DNA to impact the structure and function of nuclear genes and genomes.
Collapse
|
219
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
220
|
Characterization and Comparative Analysis of RWP-RK Proteins from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea. Int J Genomics 2020; 2020:2568640. [PMID: 32908854 PMCID: PMC7474775 DOI: 10.1155/2020/2568640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
RWP-RK proteins are important factors involved in nitrate response and gametophyte development in plants, and the functions of RWP-RK proteins have been analyzed in many species. However, the characterization of peanut RWP-RK proteins is limited. In this study, we identified 16, 19, and 32 RWP-RK members from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively, and investigated their evolution relationships. The RWP-RK proteins were classified into two groups, RWP-RK domain proteins and NODULE-INCEPTION-like proteins. Chromosomal distributions, gene structures, and conserved motifs of RWP-RK genes were compared among wild and cultivated peanuts. In addition, we identified 12 orthologous gene pairs from the two wild peanut species, 13 from A. duranensis and A. hypogaea, and 13 from A. ipaensis and A. hypogaea. One, one, and seventeen duplicated gene pairs were identified within the A. duranensis, A. ipaensis, and A. hypogaea genomes, respectively. Moreover, different numbers of cis-acting elements in the RWP-RK promoters were found in wild and cultivated species (87 in A. duranensis, 89 in A. ipaensis, and 92 in A. hypogaea), and as a result, many RWP-RK genes showed distinct expression patterns in different tissues. Our study will provide useful information for further functional and evolutionary analysis of the RWP-RK genes.
Collapse
|
221
|
Ye CY, Wu D, Mao L, Jia L, Qiu J, Lao S, Chen M, Jiang B, Tang W, Peng Q, Pan L, Wang L, Feng X, Guo L, Zhang C, Kellogg EA, Olsen KM, Bai L, Fan L. The Genomes of the Allohexaploid Echinochloa crus-galli and Its Progenitors Provide Insights into Polyploidization-Driven Adaptation. MOLECULAR PLANT 2020; 13:1298-1310. [PMID: 32622997 DOI: 10.1016/j.molp.2020.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 05/20/2023]
Abstract
The hexaploid species Echinochloa crus-galli is one of the most detrimental weeds in crop fields, especially in rice paddies. Its evolutionary history is similar to that of bread wheat, arising through polyploidization after hybridization between a tetraploid and a diploid species. In this study, we generated and analyzed high-quality genome sequences of diploid (E. haploclada), tetraploid (E. oryzicola), and hexaploid (E. crus-galli) Echinochloa species. Gene family analysis showed a significant loss of disease-resistance genes such as those encoding NB-ARC domain-containing proteins during Echinochloa polyploidization, contrary to their significant expansionduring wheat polyploidization, suggesting that natural selection might favor reduced investment in resistance in this weed to maximize its growth and reproduction. In contrast to the asymmetric patterns of genome evolution observed in wheat and other crops, no significant differences in selection pressure were detected between the subgenomes in E. oryzicola and E. crus-galli. In addition, distinctive differences in subgenome transcriptome dynamics during hexaploidization were observed between E. crus-galli and bread wheat. Collectively, our study documents genomic mechanisms underlying the adaptation of a major agricultural weed during polyploidization. The genomic and transcriptomic resources of three Echinochloa species and new insights into the polyploidization-driven adaptive evolution would be useful for future breeding cereal crops.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Lingfeng Mao
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Lei Jia
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Sangting Lao
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Meihong Chen
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Bowen Jiang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiong Peng
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Lang Pan
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Chulong Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China.
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
222
|
Hasterok R, Wang K, Jenkins G. Progressive refinement of the karyotyping of Brachypodium genomes. THE NEW PHYTOLOGIST 2020; 227:1668-1675. [PMID: 31774178 DOI: 10.1111/nph.16342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 05/23/2023]
Abstract
Brachypodium distachyon is a weedy grass species that is firmly established as a model for the comparative and functional genomics of temperate cereals and grasses. Its simple, nuclear genome of five chromosomes contrasts it with other relatives of the genus with different, and usually higher, basic chromosome numbers and ploidy levels. This variation in karyotypic structure affords the possibility of reconstructing evolutionary pathways that have shaped the genome structure of extant species. This Tansley insight documents how key refinements in molecular cytogenetic approaches, from simple fluorescence in situ hybridization to comparative chromosome barcoding, have enabled genome structure studies and yielded valuable information about the drivers of karyotypic reorganization and evolution in the model grass genus Brachypodium.
Collapse
Affiliation(s)
- Robert Hasterok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Edward Llwyd Building, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK
| |
Collapse
|
223
|
Gabaldón T. Patterns and impacts of nonvertical evolution in eukaryotes: a paradigm shift. Ann N Y Acad Sci 2020; 1476:78-92. [PMID: 32860228 PMCID: PMC7589212 DOI: 10.1111/nyas.14471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Evolution of eukaryotic species and their genomes has been traditionally understood as a vertical process in which genetic material is transmitted from parents to offspring along a lineage, and in which genetic exchange is restricted within species boundaries. However, mounting evidence from comparative genomics indicates that this paradigm is often violated. Horizontal gene transfer and mating between diverged lineages blur species boundaries and challenge the reconstruction of evolutionary histories of species and their genomes. Nonvertical evolution might be more restricted in eukaryotes than in prokaryotes, yet it is not negligible and can be common in certain groups. Recognition of such processes brings about the need to incorporate this complexity into our models, as well as to conceptually reframe eukaryotic diversity and evolution. Here, I review the recent work from genomics studies that supports the effects of nonvertical modes of evolution including introgression, hybridization, and horizontal gene transfer in different eukaryotic groups. I then discuss emerging patterns and effects, illustrated by specific examples, that support the conclusion that nonvertical processes are often at the root of important evolutionary transitions and adaptations. I will argue that a paradigm shift is needed to naturally accommodate nonvertical processes in eukaryotic evolution.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
224
|
Cancer regeneration: Polyploid cells are the key drivers of tumor progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188408. [PMID: 32827584 DOI: 10.1016/j.bbcan.2020.188408] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
In spite of significant advancements of therapies for initial eradication of cancers, tumor relapse remains a major challenge. It is for a long time known that polyploid malignant cells are a main source of resistance against chemotherapy and irradiation. However, therapeutic approaches targeting these cells have not been appropriately pursued which could partly be due to the shortage of knowledge on the molecular biology of cell polyploidy. On the other hand, there is a rising trend to appreciate polyploid/ multinucleated cells as key players in tissue regeneration. In this review, we suggest an analogy between the functions of polyploid cells in normal and malignant tissues and discuss the idea that cell polyploidy is an evolutionary conserved source of tissue regeneration also exploited by cancers as a survival factor. In addition, polyploid cells are highlighted as a promising therapeutic target to overcome drug resistance and relapse.
Collapse
|
225
|
Carretero‐Paulet L, Van de Peer Y. The evolutionary conundrum of whole-genome duplication. AMERICAN JOURNAL OF BOTANY 2020; 107:1101-1105. [PMID: 32815563 PMCID: PMC7540024 DOI: 10.1002/ajb2.1520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 05/07/2023]
Affiliation(s)
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaSouth Africa
| |
Collapse
|
226
|
Dong W, Xu C, Wen J, Zhou S. Evolutionary directions of single nucleotide substitutions and structural mutations in the chloroplast genomes of the family Calycanthaceae. BMC Evol Biol 2020; 20:96. [PMID: 32736519 PMCID: PMC7393888 DOI: 10.1186/s12862-020-01661-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloroplast genome sequence data is very useful in studying/addressing the phylogeny of plants at various taxonomic ranks. However, there are no empirical observations on the patterns, directions, and mutation rates, which are the key topics in chloroplast genome evolution. In this study, we used Calycanthaceae as a model to investigate the evolutionary patterns, directions and rates of both nucleotide substitutions and structural mutations at different taxonomic ranks. RESULTS There were 2861 polymorphic nucleotide sites on the five chloroplast genomes, and 98% of polymorphic sites were biallelic. There was a single-nucleotide substitution bias in chloroplast genomes. A → T or T → A (2.84%) and G → C or C → G (3.65%) were found to occur significantly less frequently than the other four transversion mutation types. Synonymous mutations kept balanced pace with nonsynonymous mutations, whereas biased directions appeared between transition and transversion mutations and among transversion mutations. Of the structural mutations, indels and repeats had obvious directions, but microsatellites and inversions were non-directional. Structural mutations increased the single nucleotide mutations rates. The mutation rates per site per year were estimated to be 0.14-0.34 × 10- 9 for nucleotide substitution at different taxonomic ranks, 0.64 × 10- 11 for indels and 1.0 × 10- 11 for repeats. CONCLUSIONS Our direct counts of chloroplast genome evolution events provide raw data for correctly modeling the evolution of sequence data for phylogenetic inferences.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
227
|
Singh P, Ballmer DN, Laubscher M, Schärer L. Successful mating and hybridisation in two closely related flatworm species despite significant differences in reproductive morphology and behaviour. Sci Rep 2020; 10:12830. [PMID: 32732887 PMCID: PMC7393371 DOI: 10.1038/s41598-020-69767-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Reproductive traits are some of the fastest diverging characters and can serve as reproductive barriers. The free-living flatworm Macrostomum lignano, and its congener M. janickei are closely related, but differ substantially in their male intromittent organ (stylet) morphology. Here, we examine whether these morphological differences are accompanied by differences in behavioural traits, and whether these could represent barriers to successful mating and hybridization between the two species. Our data shows that the two species differ in many aspects of their mating behaviour. Despite these differences, the species mate readily with each other in heterospecific pairings. Although both species have similar fecundity in conspecific pairings, the heterospecific pairings revealed clear postmating barriers, as few heterospecific pairings produced F1 hybrids. These hybrids had a stylet morphology that was intermediate between that of the parental species, and they were fertile. Finally, using a mate choice experiment, we show that the nearly two-fold higher mating rate of M. lignano caused it to mate more with conspecifics, leading to assortative mating, while M. janickei ended up mating more with heterospecifics. Thus, while the two species can hybridize, the mating rate differences could possibly lead to higher fitness costs for M. janickei compared to M. lignano.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Daniel N Ballmer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Max Laubscher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
228
|
Gordon SP, Contreras-Moreira B, Levy JJ, Djamei A, Czedik-Eysenberg A, Tartaglio VS, Session A, Martin J, Cartwright A, Katz A, Singan VR, Goltsman E, Barry K, Dinh-Thi VH, Chalhoub B, Diaz-Perez A, Sancho R, Lusinska J, Wolny E, Nibau C, Doonan JH, Mur LAJ, Plott C, Jenkins J, Hazen SP, Lee SJ, Shu S, Goodstein D, Rokhsar D, Schmutz J, Hasterok R, Catalan P, Vogel JP. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat Commun 2020; 11:3670. [PMID: 32728126 PMCID: PMC7391716 DOI: 10.1038/s41467-020-17302-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.
Collapse
Affiliation(s)
- Sean P Gordon
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Joshua J Levy
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Armin Djamei
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben. Stadt Seeland, Seeland, Germany
| | | | - Virginia S Tartaglio
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam Session
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Joel Martin
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | - Andrew Katz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | | | - Kerrie Barry
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vinh Ha Dinh-Thi
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
| | - Boulos Chalhoub
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, 310058, Hangzhou, China
| | - Antonio Diaz-Perez
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, 2102, Maracay, Venezuela
| | - Ruben Sancho
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Elzbieta Wolny
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - John H Doonan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Scott J Lee
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | | | - Daniel Rokhsar
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Pilar Catalan
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain.
- Institute of Biology, Tomsk State University, Tomsk, 634050, Russia.
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA.
- University California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
229
|
Genome-wide identification and characterization of nonspecific lipid transfer protein (nsLTP) genes in Arachis duranensis. Genomics 2020; 112:4332-4341. [PMID: 32717318 DOI: 10.1016/j.ygeno.2020.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) play vital roles in lipid metabolism, cell apoptosis and biotic and abiotic stresses in plants. However, the distribution of nsLTPs in Arachis duranensis has not been fully characterized. In this study, we identified 64 nsLTP genes in A. duranensis (designated AdLTPs), which were classified into six subfamilies and randomly distributed along nine chromosomes. Tandem and segmental duplication events were detected in the evolution of AdLTPs. The Ks and ω values differed significantly between Types 1 and D subfamilies, and eight AdLTPs were under positive selection. The expression levels of AdLTPs were changed after salinity, PEG, low-temperature and ABA treatments. Three AdLTPs were associated with resistance to nematode infection, and DOF and WRI1 transcription factors may regulate the AdLTP response to nematode infection. Our results may provide valuable genomic information for the breeding of peanut cultivars that are resistant to biotic and abiotic stresses.
Collapse
|
230
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
231
|
Barcaccia G, Palumbo F, Sgorbati S, Albertini E, Pupilli F. A Reappraisal of the Evolutionary and Developmental Pathway of Apomixis and Its Genetic Control in Angiosperms. Genes (Basel) 2020; 11:E859. [PMID: 32731368 PMCID: PMC7466056 DOI: 10.3390/genes11080859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Apomixis sensu stricto (agamospermy) is asexual reproduction by seed. In angiosperms it represents an easy byway of life cycle renewal through gamete-like cells that give rise to maternal embryos without ploidy reduction (meiosis) and ploidy restitution (syngamy). The origin of apomixis still represents an unsolved problem, as it may be either evolved from sex or the other way around. This review deals with a reappraisal of the origin of apomixis in order to deepen knowledge on such asexual mode of reproduction which seems mainly lacking in the most basal angiosperm orders (i.e., Amborellales, Nymphaeales and Austrobaileyales, also known as ANA-grade), while it clearly occurs in different forms and variants in many unrelated families of monocots and eudicots. Overall findings strengthen the hypothesis that apomixis as a whole may have evolved multiple times in angiosperm evolution following different developmental pathways deviating to different extents from sexuality. Recent developments on the genetic control of apomixis in model species are also presented and adequately discussed in order to shed additional light on the antagonist theories of gain- and loss-of-function over sexuality.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Sergio Sgorbati
- Department of Environmental and Territory Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Fulvio Pupilli
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council (CNR), Via Madonna Alta 130, 06128 Perugia, Italy;
| |
Collapse
|
232
|
Gabaldón T. Hybridization and the origin of new yeast lineages. FEMS Yeast Res 2020; 20:5870662. [PMID: 32658267 PMCID: PMC7394516 DOI: 10.1093/femsyr/foaa040] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Hybrids originate from the mating of two diverged organisms, resulting in novel lineages that have chimeric genomes. Hybrids may exhibit unique phenotypic traits that are not necessarily intermediate between those present in the progenitors. These unique traits may enable them to thrive in new environments. Many hybrid lineages have been discovered among yeasts in the Saccharomycotina, of which many have industrial or clinical relevance, but this might reflect a bias toward investigating species with relevance to humans. Hybridization has also been proposed to be at the root of the whole-genome duplication in the lineage leading to Saccharomyces cerevisiae. Thus, hybridization seems to have played a prominent role in the evolution of Saccharomycotina yeasts, although it is still unclear how common this evolutionary process has been during the evolution of this and other fungal clades. Similarly, the evolutionary aftermath of hybridization, including implications at the genomic, transcriptional, physiological or ecological levels, remains poorly understood. In this review, I survey recent findings from genomic analysis of yeast hybrids of industrial or clinical relevance, and discuss the evolutionary implications of genomic hybridization for the origin of new lineages, including when such hybridization results in a whole-genome duplication.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
233
|
Moharana KC, Venancio TM. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:726-741. [PMID: 32270526 DOI: 10.1111/tpj.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.
Collapse
Affiliation(s)
- Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
234
|
Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:939. [PMID: 32670332 PMCID: PMC7330052 DOI: 10.3389/fpls.2020.00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/09/2020] [Indexed: 05/14/2023]
Abstract
The triploid 'Tahiti' lime (C. x latifolia (Yu. Tanaka) Tanaka) naturally originated from a merger between a haploid ovule of lemon (C. x limon (L.) Burm) and a diploid pollen from a 'Mexican' lime (C. x aurantiifolia (Christm.) Swing). The very limited natural inter-varietal diversity and gametic sterility of C. latifolia requires a phylogenomic based reconstruction breeding strategy to insure its diversification. We developed a strategy based on interploid hybridization between diploid lemon and the doubled diploid 'Giant Key' lime. This lime is a doubled diploid of 'Mexican' lime, itself a natural interspecific F1 hybrid between C. medica L. and C. micrantha Wester. For an optimized breeding program, we analyzed the meiotic behavior of the allotetraploid lime, the genetic structure of its diploid gametes, the interspecific recombination between C. medica and C. micrantha, and constructed its genetic map. A population of 272 triploid hybrids was generated using 'Giant Key' lime as pollinator. One hundred fifty-eight SNPs diagnostic of C. micrantha, regularly distributed throughout the citrus genome were successfully developed and applied. The genetic structure of the diploid gametes was examined based on C. micrantha doses along the genome. The diploid gametes transmitted in average 91.17% of the parental interspecific C. medica/C. micrantha heterozygosity. Three chromosomes (2, 8, and 9) showed disomic segregation with high preferential pairing values, while the remaining chromosomes showed an intermediate inheritance with a preferential disomic trend. A total of 131 SNPs were assigned to nine linkage groups to construct the genetic map. It spanned 272.8 cM with a low average recombination rate (0.99 cM Mb-1) and high synteny and colinearity with the reference clementine genome. Our results confirmed that an efficient reconstruction breeding strategy for 'Tahiti' lime is possible, based on interploid hybridization using a doubled diploid of C. aurantiifolia. The tetraploid parent should be selected for favorable agronomic traits and its genetic value should be efficiently inherited by the progeny thanks to transmission of the high level of parental heterozygosity. However, it would require developing numerous progeny to overcome the linkage drag caused by the limited interspecific recombination associated with the predominant disomic inheritance.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, San Giuliano, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
235
|
3-D Nucleus Architecture in Oat × Maize Addition Lines. Int J Mol Sci 2020; 21:ijms21124280. [PMID: 32560105 PMCID: PMC7352526 DOI: 10.3390/ijms21124280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
The nucleus architecture of hybrid crop plants is not a well-researched topic, yet it can have important implications for their genetic stability and usefulness in the successful expression of agronomically desired traits. In this work we studied the spatial distribution of introgressed maize chromatin in oat × maize addition lines with the number of added maize chromosomes varying from one to four. The number of chromosome additions was confirmed by genomic in situ hybridization (GISH). Maize chromosome-specific simple sequence repeat (SSR) markers were used to identify the added chromosomes. GISH on 3-D root and leaf nuclei was performed to assess the number, volume, and position of the maize-chromatin occupied regions. We revealed that the maize chromosome territory (CT) associations of varying degree prevailed in the double disomic lines, while CT separation was the most common distribution pattern in the double monosomic line. In all analyzed lines, the regions occupied by maize CTs were located preferentially at the nuclear periphery. A comparison between the tissues showed that the maize CTs in the leaf nuclei are positioned closer to the center of the nucleus than in the root nuclei. These findings shed more light on the processes that shape the nucleus architecture in hybrids.
Collapse
|
236
|
Lu M, Li XY, Li Z, Du WX, Zhou L, Wang Y, Zhang XJ, Wang ZW, Gui JF. Regain of sex determination system and sexual reproduction ability in a synthetic octoploid male fish. SCIENCE CHINA-LIFE SCIENCES 2020; 64:77-87. [PMID: 32529288 DOI: 10.1007/s11427-020-1694-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Polyploids in vertebrates are generally associated with unisexual reproduction, but the direct consequences of polyploidy on sex determination system and reproduction mode remain unknown. Here, we synthesized a group of artificial octoploids between unisexual gynogenetic hexaploid Carassius gibelio and sexual tetraploid Carassius auratus. The synthetic octoploids were revealed to have more than 200 chromosomes, in which 50 chromosomes including the X/Y sex determination system were identified to transfer from sexual tetraploid C. auratus into the unisexual gynogenetic hexaploid C. gibelio. Significantly, a few synthetic octoploid males were found to be fertile, and one octoploid male was confirmed to regain sexual reproduction ability, which exhibits characteristics that are the same to sexual reproduction tetraploid males, such as 1:1 sex ratio occurrence, meiosis completion and euploid sperm formation in spermatogenesis, as well as normal embryo development and gene expression pattern during embryogenesis. Therefore, the current finding provides a unique case to explore the effect of sex determination system incorporation on reproduction mode transition from unisexual gynogenesis to sexual reproduction along with genome synthesis of recurrent polyploidy in vertebrates.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
237
|
Lu H, Xue L, Cheng J, Yang X, Xie H, Song X, Qiang S. Polyploidization-driven differentiation of freezing tolerance in Solidago canadensis. PLANT, CELL & ENVIRONMENT 2020; 43:1394-1403. [PMID: 32092164 DOI: 10.1111/pce.13745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Solidago canadensis, originating from the temperate region of North America, has expanded southward to subtropical regions through polyploidization. Here we investigated whether freezing tolerance of S. canadensis was weakened during expansion. Measurement of the temperature causing 50% ruptured cells (LT50 ) in 35 S. canadensis populations revealed ploidy-related differentiation in freezing tolerance. Freezing tolerance was found to decrease with increasing ploidy. The polyploid populations of S. canadensis had lower ScICE1 gene expression levels but more ScICE1 gene copies than the diploids. Furthermore, more DNA methylation sites in the ScICE1 gene promoter were detected in the polyploids than in the diploids. The results suggest that promoter methylation represses the expression of multi-copy ScICE1 genes, leading to weaker freezing tolerance in polyploid S. canadensis compared to the diploids. The study provides empirical evidence that DNA methylation regulates expression of the gene copies and supports polyploidization-driven adaptation to new environments.
Collapse
Affiliation(s)
- Huan Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Lifang Xue
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Jiliang Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Xianghong Yang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Xie
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Xiaoling Song
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
238
|
Chen S, Huang X. DNA sequencing: the key to unveiling genome. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1593-1596. [DOI: 10.1007/s11427-020-1709-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
|
239
|
Koo N, Shin AY, Oh S, Kim H, Hong S, Park SJ, Sim YM, Byeon I, Kim KY, Lim YP, Kwon SY, Kim YM. Comprehensive analysis of Translationally Controlled Tumor Protein (TCTP) provides insights for lineage-specific evolution and functional divergence. PLoS One 2020; 15:e0232029. [PMID: 32374732 PMCID: PMC7202613 DOI: 10.1371/journal.pone.0232029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Translationally controlled tumor protein (TCTP) is a conserved, multifunctional protein involved in numerous cellular processes in eukaryotes. Although the functions of TCTP have been investigated sporadically in animals, invertebrates, and plants, few lineage-specific activities of this molecule, have been reported. An exception is in Arabidopsis thaliana, in which TCTP (AtTCTP1) functions in stomatal closuer by regulating microtubule stability. Further, although the development of next-generation sequencing technologies has facilitated the analysis of many eukaryotic genomes in public databases, inter-kingdom comparative analyses using available genome information are comparatively scarce. METHODOLOGY To carry out inter-kingdom comparative analysis of TCTP, TCTP genes were identified from 377 species. Then phylogenetic analysis, prediction of protein structure, molecular docking simulation and molecular dynamics analysis were performed to investigate the evolution of TCTP genes and their binding proteins. RESULTS A total of 533 TCTP genes were identified from 377 eukaryotic species, including protozoa, fungi, invertebrates, vertebrates, and plants. Phylogenetic and secondary structure analyses reveal lineage-specific evolution of TCTP, and inter-kingdom comparisons highlight the lineage-specific emergence of, or changes in, secondary structure elements in TCTP proteins from different kingdoms. Furthermore, secondary structure comparisons between TCTP proteins within each kingdom, combined with measurements of the degree of sequence conservation, suggest that TCTP genes have evolved to conserve protein secondary structures in a lineage-specific manner. Additional tertiary structure analysis of TCTP-binding proteins and their interacting partners and docking simulations between these proteins further imply that TCTP gene variation may influence the tertiary structures of TCTP-binding proteins in a lineage-specific manner. CONCLUSIONS Our analysis suggests that TCTP has undergone lineage-specific evolution and that structural changes in TCTP proteins may correlate with the tertiary structure of TCTP-binding proteins and their binding partners in a lineage-specific manner.
Collapse
Affiliation(s)
- Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sangho Oh
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyeongmin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do, Republic of Korea
| | - Seongmin Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Seong-Jin Park
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Mi Sim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Iksu Byeon
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kye Young Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
240
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
241
|
Li M, Wang R, Wu X, Wang J. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC Genomics 2020; 21:330. [PMID: 32349676 PMCID: PMC7191788 DOI: 10.1186/s12864-020-6747-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background Allopolyploidy is widespread in angiosperms, and they can coordinate two or more different genomes through genetic and epigenetic modifications to exhibit stronger vigor and adaptability. To explore the changes in homologous gene expression patterns in the natural allotetraploid Brassica napus (AnAnCnCn) relative to its two diploid progenitors, B. rapa (ArAr) and B. oleracea (CoCo), after approximately 7500 years of domestication, the global gene pair expression patterns in four major tissues (stems, leaves, flowers and siliques) of these three species were analyzed using an RNA sequencing approach. Results The results showed that the ‘transcriptomic shock’ phenomenon was alleviated in natural B. napus after approximately 7500 years of natural domestication, and most differentially expressed genes (DEGs) in B. napus were downregulated relative to those in its two diploid progenitors. The KEGG analysis indicated that three pathways related to photosynthesis were enriched in both comparison groups (AnAnCnCn vs ArAr and AnAnCnCn vs CoCo), and these pathways were all downregulated in four tissues of B. napus. In addition, homoeolog expression bias and expression level dominance (ELD) in B. napus were thoroughly studied through analysis of expression levels of 27,609 B. rapa-B. oleracea orthologous gene pairs. The overwhelming majority of gene pairs (an average of 86.7%) in B. napus maintained their expression pattern in two diploid progenitors, and approximately 78.1% of the gene pairs showed expression bias with a preference toward the A subgenome. Overall, an average of 48, 29.7 and 22.3% homologous gene pairs exhibited additive expression, ELD and transgressive expression in B. napus, respectively. The ELD bias varies from tissue to tissue; specifically, more gene pairs in stems and siliques showed ELD-A, whereas the opposite was observed in leaves and flowers. More transgressive upregulation, rather than downregulation, was observed in gene pairs of B. napus. Conclusions In general, these results may provide a comprehensive understanding of the changes in homologous gene expression patterns in natural B. napus after approximately 7500 years of evolution and domestication and may enhance our understanding of allopolyploidy.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
242
|
Godden GT, Kinser TJ, Soltis PS, Soltis DE. Phylotranscriptomic Analyses Reveal Asymmetrical Gene Duplication Dynamics and Signatures of Ancient Polyploidy in Mints. Genome Biol Evol 2020; 11:3393-3408. [PMID: 31687761 PMCID: PMC7145710 DOI: 10.1093/gbe/evz239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Ancient duplication events and retained gene duplicates have contributed to the evolution of many novel plant traits and, consequently, to the diversity and complexity within and across plant lineages. Although mounting evidence highlights the importance of whole-genome duplication (WGD; polyploidy) and its key role as an evolutionary driver, gene duplication dynamics and mechanisms, both of which are fundamental to our understanding of evolutionary process and patterns of plant diversity, remain poorly characterized in many clades. We use newly available transcriptomic data and a robust phylogeny to investigate the prevalence, occurrence, and timing of gene duplications in Lamiaceae (mints), a species-rich and chemically diverse clade with many ecologically, economically, and culturally important species. We also infer putative WGDs—an extreme mechanism of gene duplication—using large-scale data sets from synonymous divergence (KS), phylotranscriptomic, and divergence time analyses. We find evidence for widespread but asymmetrical levels of gene duplication and ancient polyploidy in Lamiaceae that correlate with species richness, including pronounced levels of gene duplication and putative ancient WGDs (7–18 events) within the large subclade Nepetoideae and up to 10 additional WGD events in other subclades. Our results help disentangle WGD-derived gene duplicates from those produced by other mechanisms and illustrate the nonuniformity of duplication dynamics in mints, setting the stage for future investigations that explore their impacts on trait diversity and species diversification. Our results also provide a practical context for evaluating the benefits and limitations of transcriptome-based approaches to inferring WGD, and we offer recommendations for researchers interested in investigating ancient WGDs in other plant groups.
Collapse
Affiliation(s)
- Grant T Godden
- Florida Museum of Natural History, University of Florida
| | - Taliesin J Kinser
- Florida Museum of Natural History, University of Florida.,Department of Biology, University of Florida
| | | | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida.,Department of Biology, University of Florida
| |
Collapse
|
243
|
Barrington DS, Patel NR, Southgate MW. Inferring the impacts of evolutionary history and ecological constraints on spore size and shape in the ferns. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11339. [PMID: 32351800 PMCID: PMC7186895 DOI: 10.1002/aps3.11339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 05/27/2023]
Abstract
PREMISE In the ferns, cell size has been explored with spores, which are largely uniform within species, produced in abundance, and durable. However, spore size and shape have been variously defined, and the relationship of these traits to genome size has not been well established. Here, we explore the variation in fern spore size and shape by ploidy level and genome size. METHODS Measurements of spore dimensions for two study sets of ferns, Polystichum and Adiantum, both including diploid and tetraploid taxa, provided the basis for computing estimates of shape and size as defined here. These traits were compared between and within ploidy levels and regressed with genome size estimates from flow cytometry analysis. RESULTS All size traits were strongly correlated with genome size; the shape trait was weakly correlated. Tetraploids were larger than diploids as expected; the spores of some closely related diploid species were also significantly different in size. DISCUSSION Researchers with access to a student-grade compound microscope can develop a valid estimate of relative genome size for ferns. These estimates provide enough resolution to infer ploidy level and explore the relationship between genome size, habitat, and physiological constraints for species within ploidy level.
Collapse
Affiliation(s)
- David S. Barrington
- Pringle HerbariumUniversity of Vermont111 Jeffords HallBurlingtonVermont05405‐1737USA
| | - Nikisha R. Patel
- Ecology and Evolutionary BiologyUniversity of Connecticut75 North Eagleville RoadStorrsConnecticut06269USA
| | - Morgan W. Southgate
- Pringle HerbariumUniversity of Vermont111 Jeffords HallBurlingtonVermont05405‐1737USA
| |
Collapse
|
244
|
Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). ANNALS OF BOTANY 2020; 125:611-623. [PMID: 31697800 PMCID: PMC7103019 DOI: 10.1093/aob/mcz183] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Changes in the amount of repetitive DNA (dispersed and tandem repeats) are considered the main contributors to genome size variation across plant species in the absence of polyploidy. However, the study of repeatome dynamism in groups showing contrasting genomic features and complex evolutionary histories is needed to determine whether other processes underlying genome size variation may have been overlooked. The main aim here was to elucidate which mechanism best explains genome size evolution in Anacyclus (Asteraceae). METHODS Using data from Illumina sequencing, we analysed the repetitive DNA in all species of Anacyclus, a genus with a reticulate evolutionary history, which displays significant genome size and karyotype diversity albeit presenting a stable chromosome number. KEY RESULTS By reconstructing ancestral genome size values, we inferred independent episodes of genome size expansions and contractions during the evolution of the genus. However, analysis of the repeatome revealed a similar DNA repeat composition across species, both qualitative and quantitative. Using comparative methods to study repeatome dynamics in the genus, we found no evidence for repeat activity causing genome size variation among species. CONCLUSIONS Our results, combined with previous cytogenetic data, suggest that genome size differences in Anacyclus are probably related to chromosome rearrangements involving losses or gains of chromosome fragments, possibly associated with homoploid hybridization. These could represent balanced rearrangements that do not disrupt gene dosage in merged genomes, for example via chromosome segment exchanges.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
- For correspondence. Email
| | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Jaume Pellicer
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Joan Vallès
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
245
|
Levin DA. Has the Polyploid Wave Ebbed? FRONTIERS IN PLANT SCIENCE 2020; 11:251. [PMID: 32211006 PMCID: PMC7077508 DOI: 10.3389/fpls.2020.00251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 05/13/2023]
Abstract
There was a wave of whole genome duplications (WGD) during and subsequent to the K-Pg interface, which was followed by an increase in the proportion of species that were polyploid. I consider why this wave of polyploid speciation has continued to rise through the divergent evolution of polyploid lineages, and through rounds of homoploid and heteroploid chromosomal change. I also consider why the polyploid speciation wave is likely to rise in the next millennium. I propose that the speed of polyploid genesis through ploidal increase and through diversification among polyploids likely will be greater than the speed of diploid speciation. The increase in polyploid diversity is expected to lag well behind episodes of WGD, owing to the very long period required for species diversification either by lineage splitting or additional rounds of polyploidy, in addition to the long period of genomic adjustment to higher ploidal levels in neopolyploids.
Collapse
Affiliation(s)
- Donald A. Levin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
246
|
Wang H, Li Y, Wang S, Kong D, Sahu SK, Bai M, Li H, Li L, Xu Y, Liang H, Liu H, Wu H. Comparative transcriptomic analyses of chlorogenic acid and luteolosides biosynthesis pathways at different flowering stages of diploid and tetraploid Lonicera japonica. PeerJ 2020; 8:e8690. [PMID: 32185107 PMCID: PMC7061910 DOI: 10.7717/peerj.8690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/05/2020] [Indexed: 01/20/2023] Open
Abstract
The Flos Lonicerae Japonicae (FLJ), Lonicera japonica Thunb, belonging to the Caprifoliaceae family, is an economically important plant that is highly utilized in traditional Chinese medicine as well as in Japanese medicine. The flowers of these plants are rich in chlorogenic acid (CGA) and luteoloside. Our previous study revealed that tetraploid L. japonica has higher fresh/dry weight, phenolic acids and flavonoids contents than those of diploid plants. However, why tetraploid L. japonica can yield higher CGA and luteolosides than that in diploid and what is the difference in the molecular regulatory mechanism of these pathways between diploid and tetraploids remained unclear. Therefore, in the present study, we performed comprehensive transcriptome analyses of different flowering stages of diploid and tetraploid L. japonica. The CGA content of tetraploid was found higher than that of diploid at all the growth stages. While the luteoloside content of diploid was higher than that of tetraploid at S4 and S6 growth stages. We obtained a high-quality transcriptome assembly (N50 = 2,055 bp; Average length = 1,331 bp) compared to earlier studies. Differential expression analysis revealed that several important genes involving in plant hormone signal transduction, carbon metabolism, starch/sucrose metabolism and plant-pathogen interaction were upregulated in tetraploid compared with the diploid L. japonica, reflecting the higher adaptability and resistance of tetraploid species. Furthermore, by associating the phenotypic data and gene expression profiles, we were able to characterize the potential molecular regulatory mechanism of important biosynthetic pathways at different flowering stages. Overall, our work provides a foundation for further research on these important secondary metabolite pathways and their implications in traditional Chinese/Japanese medicine.
Collapse
Affiliation(s)
- Hongli Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yanqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sibo Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haoyuan Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Linzhou Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yan Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Liang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
247
|
Hexaploid sweetpotato (Ipomoea batatas (L.) Lam.) may not be a true type to either auto- or allopolyploid. PLoS One 2020; 15:e0229624. [PMID: 32126067 PMCID: PMC7053752 DOI: 10.1371/journal.pone.0229624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
To better define the sweetpotato polyploidy, we sought to reconstruct phylogenies of its subgenomes based on hybridization networks that could trace reticulate lineages of differentiated homoeolog triplets of multiple single-copy genes. In search of such homoeolog triplets, we distinguished cDNA variants of 811 single-copy Conserved Ortholog Set II (COSII) genes from two sweetpotato clones into variation partitions specified by corresponding homologs from two I. trifida lines, I. tenuissima and I. littoralis using a phylogenetic partition method, and amplicon variants of the COSII-marker regions from 729 of these genes from two sweetpotato clones into putative homoeoallele groups using haplotype tree and the partition methods referenced by corresponding homologs from I. tenuissima. These analyses revealed partly or completely differentiated expressed-homoeologs and homoeologs from a majority of these genes with three important features. 1. Two variation types: the predominant interspecific variations (homoeoalleles), which are non-randomly clustered, differentially interspecifically conserved or sweetpotato-specific, and the minor intraspecific ones (alleles), which are randomly distributed mostly at non-interspecifically variable sites, and usually sweetpotato-specific. 2. A clear differentiation of cDNA variants of many COSII genes into the variation partition specified by I. tenuissima or I. littoralis from that by I. trifida. 3. Three species-homolog-specified and one sweetpotato-specific variation partitions among 293 different COSII cDNAs, and two or three out of the four partitions among cDNA variants of 306 COSII genes. We then constructed hybridization networks from two concatenations of 16 and 4 alignments of 8 homologous COSII cDNA regions each, which included three taxa of expressed homoeologs in a triple-partition combination from the 16 or 4 sweetpotato COSII genes and 5 taxa each of respective cDNA homologs from the three sweetpotato relatives and I. nil, and inferred a species tree embodying both networks. The species tree predicted close-relative origins of three partly differentiated sweetpotato subgenomes.
Collapse
|
248
|
Polyploidy in gymnosperms - Insights into the genomic and evolutionary consequences of polyploidy in Ephedra. Mol Phylogenet Evol 2020; 147:106786. [PMID: 32135310 DOI: 10.1016/j.ympev.2020.106786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
While polyploidization is recognized as a major evolutionary driver for ferns and angiosperms, little is known about its impact in gymnosperms, where polyploidy is much less frequent. We explore Ephedra to evaluate (i) the extent of genome size diversity in the genus and the influence polyploidy has had on the evolution of nuclear DNA contents, and (ii) identify where shifts in genome size and polyploidy have occurred both temporally and spatially. A phylogenetic framework of all Ephedra species together with genome sizes and karyotypes for 87% and 67% of them respectively, were used to explore ploidy evolution and its global distribution patterns. Polyploidy was shown to be extremely common, with 41 species (83%) being polyploid (up to 8×) or having polyploid cytotypes - the highest frequency and level reported for any gymnosperm. Genome size was also diverse, with values ranging ~5-fold (8.09-38.34 pg/1C) - the largest range for any gymnosperm family - and increasing in proportion to ploidy level (i.e. no genome downsizing). Our findings provide novel data which support the view that gymnosperms have a more conserved mode of genomic evolution compared with angiosperms.
Collapse
|
249
|
Peng Z, Cheng H, Sun G, Pan Z, Wang X, Geng X, He S, Du X. Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton (Gossypium hirsutum L.). SCIENCE CHINA-LIFE SCIENCES 2020; 63:1565-1579. [PMID: 32112269 DOI: 10.1007/s11427-019-1618-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Naturally allotetraploid cotton has been widely used as an ideal model to investigate gene expression remodeling as a consequence of polyploidization. However, the global gene pattern variation during early fiber development was unknown. In this study, through RNA-seq technology, we comprehensively investigated the expression patterns of homologous genes between allotetraploid cotton (G. hirsutum) and its diploid progenitors (G. arboreum and G. raimondii) at the fiber early development stage. In tetraploid cotton, genes showed expression level dominance (ELD) bias toward the A genome. This phenomenon was explained by the up-/downregulation of the homologs from the nondominant progenitor (D genome). Gene ontology (GO) enrichment results indicated that the ELD-A genes might be a prominent cause responsible for fiber property change through regulating the fatty acid biosynthesis/metabolism and microtubule procession, and the ELD-D genes might be involved in transcription regulation and stress inducement. In addition, the number and proportion of completely A- and D-subfunctionalized gene were similar at different fiber development stages. However, for neofunctionalization, the number and proportion of reactivated D-derived genes were greater than those of A at 3 and 5 DPA. Eventually, we found that some homologous genes belonging to several specific pathways might create novel asymmetric transcripts between two subgenomes during polyploidization and domestication process, further making the fiber property meet the human demands. Our study identified determinate pathways and their involved genes between allotetraploid cotton and their progenitors at early fiber development stages, providing new insights into the mechanism of cotton fiber evolution.
Collapse
Affiliation(s)
- Zhen Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Cheng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China.,Anyang Institute of Technology, Anyang, 455000, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Zhaoe Pan
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xiao Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xiaoli Geng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Shoupu He
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiongming Du
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
250
|
Sri T, Gupta B, Tyagi S, Singh A. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Mol Phylogenet Evol 2020; 147:106777. [PMID: 32126279 DOI: 10.1016/j.ympev.2020.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
Evolution of Brassica genome post-polyploidization reveals asymmetrical genome fractionation and copy number variation. Herein, we describe the impact of promoter divergence among SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) homeologs on expression and function in Brassica spp. SOC1, a regulated floral pathway integrator, is conserved as 3 redundant homeologs in diploid Brassicas. Even with high sequence identity within coding regions (92.8-100%), the spatio-temporal expression patterns of 9 SOC1 homologs in B. juncea and B. nigra indicates regulatory divergence. While LF and MF2 SOC1 homeologs are upregulated during floral transition, MF1 is barely expressed. Also, MF2 homeolog levels do not decline post-flowering, unlike LF. To investigate the underlying source of divergence, we analyzed the sequence and phylogeny of all reported (22) and isolated (21) upstream regions of Brassica SOC1. Full length upstream regions (4712-19189 bp) reveal 5 ubiquitously conserved ancestral Blocks, harboring binding sites of 18 TFs (TFBSs) characterized in Arabidopsis thaliana. The orthologs of these TFBSs are differentially conserved among Brassica SOC1 homeologs, imparting expression divergence. No crucial TFBSs are exclusively lost from LF_SOC1 promoter, while MF1_SOC1 has lost NF-Y binding site crucial for SOC1 activation by CONSTANS. MF2_SOC1 homeologs have lost important TFBSs (SEP3, AP1 and SMZ), responsible for SOC1 repression post-flowering. BjuAALF_SOC1 promoter (proximal 2 kb) shows ubiquitous reporter expression in B. juncea cv. Varuna transgenics, while BjuAAMF1_SOC1 promoter shows absence of reporter expression, validating the impact of TFBS divergence. Conservation of the original primary protein sequence is discovered in B. rapa homeologs (46) of 18 TFs. Co-regulation pattern of these TFs appeared similar for B. rapa LF and MF2 SOC1 homeologs; MF1 shows significant variation. Strong regulatory association is recorded for AP1, AP2, SEP3, FLC and CONSTANS/NF-Y, highlighting their importance in homeolog-specific SOC1 regulation. Correlation of B. juncea AP1, AP2 and FLC expression with SOC1 homeologs also complies with the TFBS differences. We thus conclude that redundant SOC1 loci contribute differentially to cumulative expression of SOC1 due to divergent selection of ancestral TFBSs.
Collapse
Affiliation(s)
- Tanu Sri
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Bharat Gupta
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| |
Collapse
|