201
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
202
|
Song W, Sun W, Chen L, Yuan Z. In vivo Biocompatibility and Bioactivity of Calcium Silicate-Based Bioceramics in Endodontics. Front Bioeng Biotechnol 2020; 8:580954. [PMID: 33195142 PMCID: PMC7658386 DOI: 10.3389/fbioe.2020.580954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endodontic therapy aims to preserve or repair the activity and function of pulp and periapical tissues. Due to their excellent biological features, a substantial number of calcium silicate-based bioceramics have been introduced into endodontics and simultaneously increased the success rate of endodontic treatment. The present manuscript describes the in vivo biocompatibility and bioactivity of four types of calcium silicate-based bioceramics in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
203
|
Aguilar-Rojas A, Olivo-Marin JC, Guillen N. Human intestinal models to study interactions between intestine and microbes. Open Biol 2020; 10:200199. [PMID: 33081633 PMCID: PMC7653360 DOI: 10.1098/rsob.200199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Implementations of suitable in vitro cell culture systems of the human intestine have been essential tools in the study of the interaction among organs, commensal microbiota, pathogens and parasites. Due to the great complexity exhibited by the intestinal tissue, researchers have been developing in vitro/ex vivo systems to diminish the gap between conventional cell culture models and the human intestine. These models are able to reproduce different structures and functional aspects of the tissue. In the present review, information is recapitulated on the most used models, such as cell culture, intestinal organoids, scaffold-based three-dimensional models, and organ-on-a-chip and their use in studying the interaction between human intestine and microbes, and their advantages and limitations are also discussed.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Unidad Médica de Alta Especialidad en Ginecología y Obstetricia No. 4 ‘Dr. Luis Castelazo Ayala’, Av. Río Magdalena No. 289, Col. Tizapán San Ángel, C.P. 01090 Ciudad de México, México
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, UMR3691, 25 Rue du Dr Roux, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, ERL9195, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
204
|
Woolley SA, Hayes SE, Shariflou MR, Nicholas FW, Willet CE, O'Rourke BA, Tammen I. Molecular basis of a new ovine model for human 3M syndrome-2. BMC Genet 2020; 21:106. [PMID: 32933480 PMCID: PMC7493961 DOI: 10.1186/s12863-020-00913-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS, OMIA 001595–9940) is a previously reported recessively inherited disorder in Australian Poll Merino/Merino sheep. Affected lambs are stillborn with various congenital defects as reflected in the name of the disease, as well as short stature, a short and broad cranium, a small thoracic cavity, thin ribs and brachysternum. The BCRHS phenotype shows similarity to certain human short stature syndromes, in particular the human 3M syndrome-2. Here we report the identification of a likely disease-causing variant and propose an ovine model for human 3M syndrome-2. Results Eight positional candidate genes were identified among the 39 genes in the approximately 1 Mb interval to which the disease was mapped previously. Obscurin like cytoskeletal adaptor 1 (OBSL1) was selected as a strong positional candidate gene based on gene function and the resulting phenotypes observed in humans with mutations in this gene. Whole genome sequencing of an affected lamb (BCRHS3) identified a likely causal variant ENSOARG00000020239:g.220472248delC within OBSL1. Sanger sequencing of seven affected, six obligate carrier, two phenotypically unaffected animals from the original flock and one unrelated control animal validated the variant. A genotyping assay was developed to genotype 583 animals from the original flock, giving an estimated allele frequency of 5%. Conclusions The identification of a likely disease-causing variant resulting in a frameshift (p.(Val573Trpfs*119)) in the OBSL1 protein has enabled improved breeding management of the implicated flock. The opportunity for an ovine model for human 3M syndrome and ensuing therapeutic research is promising given the availability of carrier ram semen for BCRHS.
Collapse
Affiliation(s)
- S A Woolley
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - S E Hayes
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - M R Shariflou
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - F W Nicholas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - C E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, 2006, Australia
| | - B A O'Rourke
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - I Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
205
|
Genovés P, Arias-Mutis ÓJ, Parra G, Such-Miquel L, Zarzoso M, Del Canto I, Soler C, Díaz A, Blanch E, Alberola A, Such L, Chorro FJ. Development and Long-Term Follow-Up of an Experimental Model of Myocardial Infarction in Rabbits. Animals (Basel) 2020; 10:ani10091576. [PMID: 32899601 PMCID: PMC7552163 DOI: 10.3390/ani10091576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Ischemic heart disease is one of the leading causes of death. A series of processes occur during acute myocardial infarction that contribute to the development of ventricular dysfunction, with subsequent heart failure and ventricular arrhythmias, which account for most episodes of sudden cardiac death in these patients. These complications are associated with the adverse cardiac remodeling that occurs during the healing process following an acute episode. The remodeling causes the appearance of a substrate that can trigger life-threatening arrhythmias, such as tachycardia and/or ventricular fibrillation. The development of experimental models for analyzing the basic mechanisms involved in the pathophysiology of myocardial infarction enables the study of different therapeutic approaches aimed at improving the patient´s prognosis. The present study describes the methodology and the results obtained in a 5-week chronic infarction (one hour followed by reperfusion) in a rabbit model. The viability of the model, the care provided, the characteristics and extent of the lesions, the inducibility of arrhythmias, and the reproducibility of the methods and results have been analyzed. Abstract A chronic model of acute myocardial infarction was developed to study the mechanisms involved in adverse postinfarction ventricular remodeling. In an acute myocardial infarction (AMI), the left circumflex coronary artery of New Zealand White rabbits (n = 9) was occluded by ligature for 1 h, followed by reperfusion. A specific care protocol was applied before, during, and after the intervention, and the results were compared with those of a sham operated group (n = 7). After 5 weeks, programmed stimulation and high-resolution mapping were performed on isolated and perfused hearts using the Langendorff technique. The infarct size determined by 2,3,5-triphenyltetrazolium chloride inside of the area at risk (thioflavin-S) was then determined. The area at risk was similar in both groups (54.33% (experimental infarct group) vs. 58.59% (sham group), ns). The infarct size was 73.16% as a percentage of the risk area. The experimental infarct group had a higher inducibility of ventricular arrhythmias (100% vs. 43% in the sham group, p = 0.009). A reproducible chronic experimental model of myocardial infarction is presented in which the extent and characteristics of the lesions enable the study of the vulnerability to develop ventricular arrhythmias because of the remodeling process that occurs during cardiac tissue repair.
Collapse
Affiliation(s)
- Patricia Genovés
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Óscar J. Arias-Mutis
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Germán Parra
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Luis Such-Miquel
- Department of Physiotherapy, Universitat de València, 46010 Valencia, Spain; (L.S.-M.); (M.Z.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
| | - Manuel Zarzoso
- Department of Physiotherapy, Universitat de València, 46010 Valencia, Spain; (L.S.-M.); (M.Z.)
| | - Irene Del Canto
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
- Electronic Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Carlos Soler
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Ana Díaz
- UCIM, Universitat de València, 46010 Valencia, Spain; (A.D.); (E.B.)
| | - Eva Blanch
- UCIM, Universitat de València, 46010 Valencia, Spain; (A.D.); (E.B.)
| | - Antonio Alberola
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
| | - Luis Such
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
| | - Francisco J. Chorro
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
- Cardiology Department, Hospital Clinico Universitario, Universitat de València, Avda. Blasco Ibañez 17, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
206
|
Bezerra-Karounis MA, Krahe TE, Maisonnette S, Landeira-Fernandez J. Alcohol intake in Carioca High- and Low-conditioned Freezing rats. Pharmacol Biochem Behav 2020; 197:173019. [PMID: 32827503 DOI: 10.1016/j.pbb.2020.173019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022]
Abstract
Evidence from clinical and epidemiological studies point towards an association between generalized anxiety disorder (GAD) and alcohol abuse. In the present study we investigated whether a similar relationship could be observed in an animal model of GAD. Specifically, we evaluated the alcohol intake of Carioca High- and Low-conditioned Freezing rats (CHF and CLF, respectively). Sex differences in alcohol drinking behavior were also studied. Male and female rats from randomized crossbreeding populations served as controls (CTL). Free- and forced-choice protocols were used to measure alcohol consumption, and quinine and saccharin were used as taste control solutions. Our results indicate that CHF rats consumed more alcohol than CLF and CTL ones in both the free-choice (6 and 10% concentrations) and the forced-choice (10% concentration) conditions. CHF female rats exhibited the highest amount of alcohol intake in the forced-choice condition. CHF females also consumed more quinine than CHF male rats. Finally, CHF rats exhibited lower saccharin consumption compared to CLF and CTL animals. Altogether, these results support the hypothesis that there is a positive relationship between anxiety and alcohol intake, and provide further evidence for the use of CHF rats as a model of GAD.
Collapse
Affiliation(s)
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
207
|
Zidde DH, Sampaio FJB, de Souza-Junior P, de Souza DB, Pereira-Sampaio MA. Anatomical background of ovine kidney for use as animal model: analysis of arterial segmentation, proportional volume of each segment and arterial injury after cranial pole partial nephrectomy. Int Braz J Urol 2020; 46:1021-1028. [PMID: 32822132 PMCID: PMC7527108 DOI: 10.1590/s1677-5538.ibju.2019.0842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To study the arterial segments of ovine kidney, present a proportional volume analysis of each kidney arterial segment, and analyze arterial injuries caused by simulated partial nephrectomy of cranial pole. MATERIALS AND METHODS Forty-eight ovine kidneys injected with polyester resin into the renal arteries and collecting system were used in this study. Eighteen kidneys were used to study the arterial segments and the proportional volume of each renal segment. Other 30 kidneys were submitted to superior pole resection at a distance of 1.0cm, 0.5cm, or exactly at the cranial hilar edge, just before the resin hardening. These endocasts were used to evaluate the arterial injuries caused by these different resection planes. RESULTS Ovine renal artery divided into two (ventral and dorsal) or three segmental arteries. Dorsal segment presented higher proportional volume than ventral segment. For kidneys with three segments, the third segment was on the caudal region (caudo-ventral or caudo-dorsal segment) and presented the lowest proportional volume. None of the resected kidneys (at 1.0, 0.5 or at the cranial hilar edge) presented injury of arterial branches that irrigate non-resected region. CONCLUSION The segmental distribution of renal artery, the proportional volume of each segment and arterial injuries after cranial pole resection in ovine kidneys are different from what is observed in human kidneys. Meanwhile, ovine kidneys show a primary segmental division on anterior and posterior, as in humans, but different from swine. These anatomical characteristics should be considered when using ovine as animal models for renal experimental and/or training procedures.
Collapse
Affiliation(s)
- Daniel H Zidde
- Unidade de Pesquisa Urogenital, Universidade Estadual do Rio de Janeiro - Uerj, Rio de Janeiro, RJ, Brasil
| | - Francisco J B Sampaio
- Unidade de Pesquisa Urogenital, Universidade Estadual do Rio de Janeiro - Uerj, Rio de Janeiro, RJ, Brasil
| | - Paulo de Souza-Junior
- Laboratório de Anatomia Animal, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - Diogo B de Souza
- Unidade de Pesquisa Urogenital, Universidade Estadual do Rio de Janeiro - Uerj, Rio de Janeiro, RJ, Brasil
| | - Marco A Pereira-Sampaio
- Unidade de Pesquisa Urogenital, Universidade Estadual do Rio de Janeiro - Uerj, Rio de Janeiro, RJ, Brasil.,Departamento de Morfologia, Universidade Federal Fluminense - UFF, Niterói, RJ, Brasil
| |
Collapse
|
208
|
Santer D, Chambers DJ, Podesser BK. "The use of animals in research will …. be necessary to help drive scientific discovery in" (cardiac surgery)! J Thorac Cardiovasc Surg 2020; 160:e35-e36. [PMID: 32576374 DOI: 10.1016/j.jtcvs.2020.03.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022]
Affiliation(s)
- David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria; Department of Cardiac Surgery, University Hospital of Basel, Basel, Switzerland
| | - David J Chambers
- Cardiac Surgical Research, The Rayne Institute (King's College London), Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, United Kingdom
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria; Department of Cardiac Surgery, Universitätsklinikum St. Poelten, St. Poelten, Austria
| |
Collapse
|
209
|
Falavigna M, Pattacini M, Wibel R, Sonvico F, Škalko-Basnet N, Flaten GE. The Vaginal-PVPA: A Vaginal Mucosa-Mimicking In Vitro Permeation Tool for Evaluation of Mucoadhesive Formulations. Pharmaceutics 2020; 12:pharmaceutics12060568. [PMID: 32575388 PMCID: PMC7355897 DOI: 10.3390/pharmaceutics12060568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Drug administration to the vaginal site has gained increasing attention in past decades, highlighting the need for reliable in vitro methods to assess the performance of novel formulations. To optimize formulations destined for the vaginal site, it is important to evaluate the drug retention within the vagina as well as its permeation across the mucosa, particularly in the presence of vaginal fluids. Herewith, the vaginal-PVPA (Phospholipid Vesicle-based Permeation Assay) in vitro permeability model was validated as a tool to evaluate the permeation of the anti-inflammatory drug ibuprofen from liposomal formulations (i.e., plain and chitosan-coated liposomes). Drug permeation was assessed in the presence and absence of mucus and simulated vaginal fluid (SVF) at pH conditions mimicking both the healthy vaginal premenopausal conditions and vaginal infection/pre-puberty/post-menopause state. The permeation of ibuprofen proved to depend on the type of formulation (i.e., chitosan-coated liposomes exhibited lower drug permeation), the mucoadhesive formulation properties and pH condition. This study highlights both the importance of mucus and SVF in the vaginal model to better understand and predict the in vivo performance of formulations destined for vaginal administration, and the suitability of the vaginal-PVPA model for such investigations.
Collapse
Affiliation(s)
- Margherita Falavigna
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| | - Martina Pattacini
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Richard Wibel
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Fabio Sonvico
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Natasa Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| |
Collapse
|
210
|
Costa Teixeira RK. Animals and research: Why not protect them? A commentary on "the current state of animal models in research: A review". Int J Surg 2020; 74:100. [PMID: 31953050 DOI: 10.1016/j.ijsu.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022]
|
211
|
Zarrintan S, Shahnaee A. A commentary on "The current state of animal models in research: A review" (Int J Surg 2019; Epub ahead of Print). Int J Surg 2019; 72:154-155. [PMID: 31712053 DOI: 10.1016/j.ijsu.2019.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Sina Zarrintan
- Division of Vascular & Endovascular Surgery, Department of General & Vascular Surgery, Shohada-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Annis Shahnaee
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|