201
|
Driscoll DF, Nicoli DF. Analytical Methods for Determining the Size (Distribution) in Parenteral Dispersions. NON-BIOLOGICAL COMPLEX DRUGS 2015. [DOI: 10.1007/978-3-319-16241-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
202
|
Abstract
This Review focusses on the recent surge in applied research using tunable resistive pulse sensing, a technique used to analyse submicron colloids in aqueous solutions on a particle-by-particle basis.
Collapse
Affiliation(s)
- Eva Weatherall
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- New Zealand
- Callaghan Innovation
| | - Geoff R. Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- New Zealand
- The Departments of Physics and Chemistry
| |
Collapse
|
203
|
Maas SLN, de Vrij J, van der Vlist EJ, Geragousian B, van Bloois L, Mastrobattista E, Schiffelers RM, Wauben MHM, Broekman MLD, Nolte-'t Hoen ENM. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release 2014; 200:87-96. [PMID: 25555362 PMCID: PMC4324667 DOI: 10.1016/j.jconrel.2014.12.041] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 12/02/2022]
Abstract
Nano-sized extracelullar vesicles (EVs) released by various cell types play important roles in a plethora of (patho)physiological processes and are increasingly recognized as biomarkers for disease. In addition, engineered EV and EV-inspired liposomes hold great potential as drug delivery systems. Major technologies developed for high-throughput analysis of individual EV include nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (tRPS) and high-resolution flow cytometry (hFC). Currently, there is a need for comparative studies on the available technologies to improve standardization of vesicle analysis in diagnostic or therapeutic settings. We investigated the possibilities, limitations and comparability of NTA, tRPS and hFC for analysis of tumor cell-derived EVs and synthetic mimics (i.e. differently sized liposomes). NTA and tRPS instrument settings were identified that significantly affected the quantification of these particles. Furthermore, we detailed the differences in absolute quantification of EVs and liposomes using the three technologies. This study increases our understanding of possibilities and pitfalls of NTA, tRPS and hFC, which will benefit standardized and large-scale clinical application of (engineered) EVs and EV-mimics in the future.
Collapse
Affiliation(s)
- Sybren L N Maas
- Department of Neurosurgery, University Medical Center Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Jeroen de Vrij
- Department of Neurosurgery, University Medical Center Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Els J van der Vlist
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Biaina Geragousian
- Department of Neurosurgery, University Medical Center Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, The Netherlands
| | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, University Medical Center Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| |
Collapse
|
204
|
van der Meel R, Krawczyk-Durka M, van Solinge WW, Schiffelers RM. Toward routine detection of extracellular vesicles in clinical samples. Int J Lab Hematol 2014; 36:244-53. [PMID: 24750670 DOI: 10.1111/ijlh.12247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023]
Abstract
The majority, if not all, of human cell types secrete extracellular vesicles (EVs) into their environment, at least partly as a means of intercellular communication. These secreted vesicles can be detected in most bodily fluids including blood, urine, and saliva. The number of secreted vesicles and their composition is altered in various pathological conditions, raising opportunities to exploit EVs as diagnostic and/or prognostic biomarkers. For this to become a reality, it is important to reach consensus regarding the standardization of protocols for sample collection, EV isolation, handling, and storage for valid comparison and interpretation of measurements. Depending on the information required, there are several detection options including EV number and size distribution, molecular surface markers, procoagulation activity, and RNA content. For these purposes, different techniques are currently utilized or under development. This review discusses the techniques that have the potential to become standard EV detection methods in a clinical diagnostic setting. In addition to the accuracy of the detection technique, other factors such as high-throughput, cost-effectiveness, time consumption, and required operator skill are important to consider. A combination of increasing fundamental knowledge, technological progress, standardization of sample collection, and processing protocols is required for EVs to become reliable predictors of altered physiology or development of disease suitable for routine clinical diagnostics. Cancer and (cardio)vascular disorders are examples of pathologies where EV detection may be applied in the near future for diagnosis and/or prognosis.
Collapse
Affiliation(s)
- R van der Meel
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
205
|
Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C. Critical experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal Chem 2014; 86:12143-51. [PMID: 25393334 DOI: 10.1021/ac503307r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Different analytical techniques, sedimentation flow field fractionation (SdFFF), asymmetrical flow field flow fractionation (AF4), centrifugal liquid sedimentation (CLS) and dynamic light scattering (DLS) have been used to give complementary size information about suspensions of silver nanoparticles (AgNPs) in the size range of 20-100 nm by taking advantage of the different physical principles on which are based. Particle morphology was controlled by TEM (Transmission Electron Microscopy). Both SdFFF and AF4 were able to accurately size all AgNPs; among sedimentation based techniques, CLS underestimated the average sizes of larger samples (70 and 100 nm), but it produced the best separation of bimodal mixtures Ag40/60 and Ag40/70 mix compared to SdFFF. On the contrary, DLS overestimated the average sizes of the smallest samples (20 and 30 nm) and it was unable to deal with bimodal mixtures. Quantitative mass and number particle size distributions were also calculated starting from UV-vis signals and ICP-MS data and the results evaluated as a means to address the issue of determining nanoparticle size distributions as required for implementation of European regulations relating to labeling of nanomaterials in consumer products. The results are discussed in light of possible particle aggregation state, analysis repeatability, size resolution and quantitative recoveries.
Collapse
Affiliation(s)
- Claudia Cascio
- Institute for Health and Consumer Protection, Joint Research Centre, European Commission , Via E. Fermi 2749, 21027 Ispra (VA), Italy
| | | | | | | | | |
Collapse
|
206
|
Tietje A, Maron KN, Wei Y, Feliciano DM. Cerebrospinal fluid extracellular vesicles undergo age dependent declines and contain known and novel non-coding RNAs. PLoS One 2014; 9:e113116. [PMID: 25420022 PMCID: PMC4242609 DOI: 10.1371/journal.pone.0113116] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023] Open
Abstract
Brain development requires precise orchestration of cellular events through the coordinate exchange of information between distally located cells. One mechanism by which intercellular communication is achieved is through the transfer of extracellular vesicles (EVs). Exosomes are EVs that carry lipids, nucleic acids, and proteins and are detectable in most biological fluids including cerebrospinal fluid (CSF). Here we report that CSF EV concentrations undergo age dependent fluctuations. We characterized EV RNA content by next generation small RNA sequencing and miRNA microarray analysis and identified a temporal shift in CSF EV content. CSF EVs encapsulated miRNAs that contain a conserved hnRNPA2/B1 recognition sequence. We found that hnRNPA2/B1-containing EVs were produced by choroid plexus epithelial cells and that hnRNPA2/B1 containing EVs decreased with age. These results provide insight into EV exchange of miRNAs within the central nervous system and a framework to understand how changes in EVs may have an important impact on brain development.
Collapse
Affiliation(s)
- Ashlee Tietje
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kourtney N. Maron
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
207
|
Qu H, Mudalige TK, Linder SW. Capillary electrophoresis/inductively-coupled plasma-mass spectrometry: development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements. Anal Chem 2014; 86:11620-7. [PMID: 25354835 DOI: 10.1021/ac5025655] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the development and optimization of a system consisting of capillary electrophoresis (CE) interfaced with inductively coupled plasma mass spectrometry (ICPMS) for rapid and high resolution speciation and characterization of metallic (e.g., gold, platinum, and palladium) nanoparticles in a dietary supplement. Multiple factors, including surfactant type and concentration, pH of running buffer, and applied voltage, were investigated to optimize the separation conditions. It was found that by using the anionic surfactant sodium dodecyl benzenesulfonate (SDBS) in the running buffer the separation resolution was significantly improved, allowing for easy distinction of adjacent size fractions in a gold nanoparticle mixture with very small size differences (e.g., 5, 15, 20, and 30 nm). The type and concentration of the surfactant was found to be critical in obtaining sufficient separation while applied voltage and pH values of the running buffers largely affected the elution times by varying the electroosmotic flow. Quantum dots were used as mobility markers to eliminate the run-to-run variation. The diameters of the nanoparticles followed a linear relationship with their relative electrophoretic mobility, and size information on unknown samples could be extrapolated from a standard curve. The accuracy and precision of this method was confirmed using 10 and 30 nm gold nanoparticle standard reference materials. Furthermore, the method was successfully applied to the analysis of commercially available metallic nanoparticle-based dietary supplements, as evidenced by good agreement between the particle sizes calculated by CE/ICPMS and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Haiou Qu
- U.S. Food and Drug Administration , Office of Regulatory Affairs, Arkansas Regional Laboratory, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | | | | |
Collapse
|
208
|
Luo J, Cui X, Liu W, Li B. Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:243-248. [PMID: 24835732 DOI: 10.1016/j.saa.2014.04.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Homogeneous immunoassay is becoming more and more attractive for modern medical diagnosis because it is superior to heterogeneous immunoassay in sample and reagent consumption, analysis time, portability and disposability. Herein, a universal platform for homogeneous immunoassay, using human immunoglobulin G (IgG) as a model analyte, has been developed. This assay relies upon the catalytic activity of gold nanoparticles (AuNPs) on luminol-AgNO3 chemiluminescence (CL) reaction. The immunoreaction of antigen and antibody can induce the aggregation of antibody-functionalized AuNPs, and after aggregation the catalytic activity of AuNPs on luminol-AgNO3 CL reaction is greatly enhanced. Without any separation steps, a CL signal is generated upon addition of a trigger solution, and the CL intensity is directly correlated to the quantity of IgG. The detection limit of IgG was estimated to be as low as 3pg/mL, and the sensitivity was better than that of the reported AuNPs-based CL immunoassay for IgG.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiang Cui
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
209
|
Angelstorf JS, Ahlf W, von der Kammer F, Heise S. Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2288-2296. [PMID: 24943878 DOI: 10.1002/etc.2674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/21/2014] [Accepted: 06/13/2014] [Indexed: 05/29/2023]
Abstract
The increasing use of engineered nanoparticles in industrial and consumer products leads to a release of the anthropogenic contaminants to the aquatic environment. To obtain a better understanding of the environmental effects of these particles, the nematode Caenorhabditis elegans was used to investigate the organism-level effects and in vivo molecular responses. Toxicity of bulk-scale (∼160 nm) and nanoscale (21 nm) titanium dioxide (TiO2 ) was tested under dark and light conditions, following ISO 10872. The expression of sod-3, a mitochondrial superoxide dismutase, was quantified as an indicator for oxidative stress induced by the photocatalytically active material. Particle sizes were estimated using dynamic light scattering and scanning electron microscopy. Although both materials agglomerated to a comparable secondary particle size of 300 nm to 1500 nm and were ingested into the intestine, only nanoscale-TiO2 significantly inhibited reproduction (lowest-observed-effect-concentration [LOEC]: 10 mg/L). Light exposure induced the production of reactive oxygen species (ROS) by nanoscale-TiO2 and increased toxicity of the nanomaterial from a median effect concentration of more than 100 mg/L to 53 mg/L. No evidence was found for inner cellular photocatalytic activity of nanoscale-TiO2 . Therefore, oxidative damage of the membranes of intestinal cells is suggested as a potential mode of action. Results highlight the importance of primary particle size and environmental parameters on the toxicity of TiO2 .
Collapse
|
210
|
Pal AK, Aalaei I, Gadde S, Gaines P, Schmidt D, Demokritou P, Bello D. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology. ACS NANO 2014; 8:9003-15. [PMID: 25093451 PMCID: PMC4174089 DOI: 10.1021/nn502219q] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/05/2014] [Indexed: 05/25/2023]
Abstract
In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano-bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose-response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology.
Collapse
Affiliation(s)
- Anoop K. Pal
- Biomedical Engineering and Biotechnology Program; Department of Work Environment, College of Health Sciences, Department of Biological Sciences, Department of Plastics Engineering; Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Iraj Aalaei
- Biomedical Engineering and Biotechnology Program; Department of Work Environment, College of Health Sciences, Department of Biological Sciences, Department of Plastics Engineering; Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Suresh Gadde
- Brigham and Women’s Hospital, 45 Francis Street, Boston, Massachusetts 02115, United States
| | - Peter Gaines
- Biomedical Engineering and Biotechnology Program; Department of Work Environment, College of Health Sciences, Department of Biological Sciences, Department of Plastics Engineering; Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Daniel Schmidt
- Biomedical Engineering and Biotechnology Program; Department of Work Environment, College of Health Sciences, Department of Biological Sciences, Department of Plastics Engineering; Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Dhimiter Bello
- Biomedical Engineering and Biotechnology Program; Department of Work Environment, College of Health Sciences, Department of Biological Sciences, Department of Plastics Engineering; Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
211
|
Tantra R, Oksel C, Puzyn T, Wang J, Robinson KN, Wang XZ, Ma CY, Wilkins T. Nano(Q)SAR: Challenges, pitfalls and perspectives. Nanotoxicology 2014; 9:636-42. [DOI: 10.3109/17435390.2014.952698] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
212
|
Terejánszky P, Makra I, Fürjes P, Gyurcsányi RE. Calibration-Less Sizing and Quantitation of Polymeric Nanoparticles and Viruses with Quartz Nanopipets. Anal Chem 2014; 86:4688-97. [DOI: 10.1021/ac500184z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Péter Terejánszky
- MTA-BME
“Lendület” Chemical Nanosensors Research Group,
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest, 1111 Hungary
| | - István Makra
- MTA-BME
“Lendület” Chemical Nanosensors Research Group,
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest, 1111 Hungary
| | - Péter Fürjes
- MEMS
Laboratory, HAS Research Centre for Natural Sciences, Konkoly-Thege
út 29-33, Budapest, 1121 Hungary
| | - Róbert E. Gyurcsányi
- MTA-BME
“Lendület” Chemical Nanosensors Research Group,
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest, 1111 Hungary
| |
Collapse
|
213
|
Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014; 28:155-66. [PMID: 24826991 DOI: 10.1016/j.blre.2014.04.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/25/2014] [Accepted: 04/14/2014] [Indexed: 02/06/2023]
Abstract
There is increasing research on and clinical interest in the physiological role played by platelet microparticles (PMPs). PMPs are 0.1-1-μm fragments shed from plasma membranes of platelets that are undergoing activation, stress, or apoptosis. They have a phospholipid-based structure and express functional receptors from platelet membranes. As they are the most abundant microparticles in the blood and they express the procoagulant phosphatidylserine, PMPs likely complement, if not amplify, the functions of platelets in hemostasis, thrombosis, cancer, and inflammation, but also act as promoters of tissue regeneration. Their size and structure make them instrumental in platelet-cell communications as a delivery tool of platelet-borne bioactive molecules including growth factors, other signaling molecules and micro (mi)RNA. PMPs can therefore be a pathophysiological threat or benefit to the cellular environment when interacting with the blood vasculature. There is also increasing evidence that PMP generation is triggered during blood collection, separation into components, and storage, a phenomenon potentially leading to thrombotic and inflammatory side effects in transfused patients. Evaluating PMPs requires strict pre-analytical and analytical procedures to avoid artifactual generation and ensure accurate assessment of the number, size repartitioning, and functional properties. This review describes the physical and functional methods developed for analyzing and quantifying PMPs. It then presents the functional roles of PMPs as markers or triggers of diseases like thrombosis, atherosclerosis, and cancer, and discusses the possible detrimental immunological impact of their generation in blood components. Finally we review the potential function of PMPs in tissue regeneration and the prospects for their use in therapeutic strategies for human health.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hadi Alphonse Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Ming-Li Chou
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Service de Pharmacologie Médicale, EA 1046, Faculté de Médecine de Lille, Service de Neurologie, CHRU de Lille, Université Lille Nord de France, Lille, France
| | | |
Collapse
|
214
|
Yang DT, Lu X, Fan Y, Murphy RM. Evaluation of Nanoparticle Tracking for Characterization of Fibrillar Protein Aggregates. AIChE J 2014; 60:1236-1244. [PMID: 25843955 DOI: 10.1002/aic.14349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyloidogenesis is the process of formation of protein aggregates with fibrillar morphology. Because amyloidogenesis is linked to neurodegenerative disease, there is interest in understanding the mechanism of fibril growth. Kinetic models of amyloidogenesis require data on the number concentration and size distribution of aggregates, but this information is difficult to obtain using conventional methods. Nanoparticle tracking analysis (NTA) is a relatively new technique that may be uniquely suited for obtaining these data. In NTA, the two-dimensional (2-D) trajectory of individual particles is tracked, from which the diffusion coefficient, and, hence, hydrodynamic radius is obtained. Here we examine the validity of NTA in tracking number concentration and size of DNA, as a model of a fibrillar macromolecule. We use NTA to examine three amyloidogenic materials: beta-amyloid, transthyretin, and polyglutamine-containing peptides. Our results are instructive in demonstrating the advantages and some limitations of single-particle diffusion measurements for investigating aggregation in protein systems.
Collapse
Affiliation(s)
- Dennis T. Yang
- Dept. of Chemical and Biological Engineering; University of Wisconsin; Madison WI 53706
| | - Xiaomeng Lu
- Biophysics Program; University of Wisconsin; Madison WI 53706
| | - Yamin Fan
- Dept. of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang P.R. China
| | - Regina M. Murphy
- Dept. of Chemical and Biological Engineering; University of Wisconsin; Madison WI 53706
| |
Collapse
|
215
|
Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. Biosens Bioelectron 2014; 57:262-8. [PMID: 24594593 DOI: 10.1016/j.bios.2014.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/23/2022]
Abstract
We demonstrate a simple new sensor design that exploits aptamer functionalized nanoparticles (NPs) to transduce the signal of aptamer receptors binding to target small molecules. An aptamer capable of binding to our target 17β-estradiol (E2) was isolated by SELEX with dissociation constant of 50 nM and tethered to the surface of carboxylated polystyrene NPs. Upon exposing the aptamer functionalized NPs to E2 in buffered water, we use dynamic light scattering (DLS) and resistive pulse sensing (TRPS) to observe a distinct reduction of the conjugated particle size and a less negative zeta potential, which can be correlated to the E2 concentration in the lower nanomolar range. The sensor showed similar affinity towards other hormones of the E2 steroidal family and excellent discrimination against potential non-steroidal interfering agents. The simplicity of the sensing scheme makes it readily applicable to other low molecular weight targets, as we further demonstrate using a known adenosine aptamer. In addition to sensing, our method shows potential to guide the synthetic evolution of aptamers with better binding affinity and specificity.
Collapse
|
216
|
Abstract
Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in solution. Suspended micro- and nanochannel resonators have opened up the possibility of achieving vacuum-level precision for samples in the aqueous environment and a noise equivalent mass resolution of 27 attograms in 1-kHz bandwidth was previously achieved by Lee et al. [(2010) Nano Lett 10(7):2537-2542]. Here, we report on a series of advancements that have improved the resolution by more than 30-fold, to 0.85 attograms in the same bandwidth, approaching the thermomechanical noise limit and enabling precise quantification of particles down to 10 nm with a throughput of more than 18,000 particles per hour. We demonstrate the potential of this capability by comparing the mass distributions of exosomes produced by different cell types and by characterizing the yield of self-assembled DNA nanoparticle structures.
Collapse
|
217
|
Newton JE, Preece JA, Rees NV, Horswell SL. Nanoparticle catalysts for proton exchange membrane fuel cells: can surfactant effects be beneficial for electrocatalysis? Phys Chem Chem Phys 2014; 16:11435-46. [DOI: 10.1039/c4cp00991f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
218
|
Billinge ER, Broom M, Platt M. Monitoring aptamer-protein interactions using tunable resistive pulse sensing. Anal Chem 2013; 86:1030-7. [PMID: 24380606 DOI: 10.1021/ac401764c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aptamers are short single-stranded pieces of DNA or RNA capable of binding to analytes with specificity and high affinity. Due to their comparable selectivity, stability, and cost, over the last two decades, aptamers have started to challenge antibodies in their use on many technology platforms. The binding event often leads to changes in the aptamer's secondary and tertiary structure; monitoring such changes has led to the creation of many new analytical sensors. Here, we demonstrate the use of a tunable resistive pulse sensing (TRPS) technology to monitor the interaction between several DNA aptamers and their target, thrombin. We immobilized the aptamers onto the surface of superparamagnetic beads, prior to their incubation with the thrombin protein. The protein binding to the aptamer caused a conformational change resulting in the shielding of the polyanion backbone; this was monitored by a change in the translocation time and pulse frequency of the particles traversing the pore. This signal was sensitive enough to allow the tagless detection of thrombin down to nanomolar levels. We further demonstrate the power of TRPS by performing real time detection and characterization of the aptamer-target interaction and measuring the association rates of the thrombin protein to the aptamer sequences.
Collapse
Affiliation(s)
- Emily R Billinge
- Department of Chemistry, Centre for Analytical Science, Loughborough University , Loughborough, Leicestershire LE11 3TU, United Kingdom
| | | | | |
Collapse
|
219
|
Willmott GR, Fisk MG, Eldridge J. Magnetic microbead transport during resistive pulse sensing. BIOMICROFLUIDICS 2013; 7:64106. [PMID: 24396540 PMCID: PMC3855170 DOI: 10.1063/1.4833075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/11/2013] [Indexed: 05/24/2023]
Abstract
Tunable resistive pulse sensing (TRPS) experiments have been used to quantitatively study the motion of 1 μm superparamagnetic beads in a variable magnetic field. Closed-form theory has been developed to interpret the experiments, incorporating six particle transport mechanisms which depend on particle position in and near a conical pore. For our experiments, calculations indicate that pressure-driven flow dominates electrophoresis and magnetism by a factor of ∼100 in the narrowest part of the pore, but that magnetic force should dominate further than ∼1 mm from the membrane. As expected, the observed resistive pulse rate falls as the magnet is moved closer to the pore, while the increase in pulse duration suggests that trajectories in the half space adjacent to the pore opening are important. Aggregation was not observed, consistent with the high hydrodynamic shear near the pore constriction and the high magnetization of aggregates. The theoretical approach is also used to calculate the relative importance of transport mechanisms over a range of geometries and experimental conditions extending well beyond our own experiments. TRPS is emerging as a versatile form of resistive pulse sensing, while magnetic beads are widely used in biotechnology and sensing applications.
Collapse
Affiliation(s)
- Geoff R Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand ; Callaghan Innovation, 69 Gracefield Rd., Lower Hutt, New Zealand
| | - Matthew G Fisk
- Callaghan Innovation, 69 Gracefield Rd., Lower Hutt, New Zealand ; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - James Eldridge
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand ; Callaghan Innovation, 69 Gracefield Rd., Lower Hutt, New Zealand ; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
220
|
Silver nanoparticles induce cytotoxicity, but not cell transformation or genotoxicity on Balb3T3 mouse fibroblasts. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2013-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSilver nanoparticles (Ag NPs) are one of the most common nanomaterials present in nanotechnology-based products. Here, the physical chemical properties of Ag NPs suspensions of 44 nm, 84 nm and 100 nm sizes synthesized in our laboratory were characterized. The NM-300 material (average size of 17 nm), supplied by the Joint Research Centre Nanomaterials Repository was also included in the present study. The Ag NPs potential cytotoxicity was tested on the Balb3T3 cell line by the Colony Forming Efficiency assay, while their potential morphological neoplastic transformation and genotoxicity were tested by the Cell Transformation Assay and the micronucleus test, respectively. After 24 h of exposure, NM-300 showed cytotoxicity with an IC50 of 8 µM (corresponding to 0.88 µg/mL) while for the other nanomaterials tested, values of IC50 were higher than 10 µM (1.10 µg/mL). After 72 h of exposure, Ag NPs showed size-dependent cytotoxic effect with IC50 values of 1.5 µM (1.16 µg/mL) for NM-300, 1.7 µM (1.19 µg/mL) for Ag 44 nm, 1.9 µM (0.21 µg/mL) for Ag 84 nm and 3.2 µM (0.35 µg/mL) for Ag 100 nm. None of the Ag NPs tested was able to induce either morphological neoplastic transformation or micronuclei formation.
Collapse
|