201
|
Tang H, Zheng Y, Chen Y. Materials Chemistry of Nanoultrasonic Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604105. [PMID: 27991697 DOI: 10.1002/adma.201604105] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Indexed: 06/06/2023]
Abstract
As a special cross-disciplinary research frontier, nanoultrasonic biomedicine refers to the design and synthesis of nanomaterials to solve some critical issues of ultrasound (US)-based biomedicine. The concept of nanoultrasonic biomedicine can also overcome the drawbacks of traditional microbubbles and promote the generation of novel US-based contrast agents or synergistic agents for US theranostics. Here, we discuss the recent developments of material chemistry in advancing the nanoultrasonic biomedicine for diverse US-based bio-applications. We initially introduce the design principles of novel nanoplatforms for serving the nanoultrasonic biomedicine, from the viewpoint of synthetic material chemistry. Based on these principles and diverse US-based bio-application backgrounds, the representative proof-of-concept paradigms on this topic are clarified in detail, including nanodroplet vaporization for intelligent/responsive US imaging, multifunctional nano-contrast agents for US-based multi-modality imaging, activatable synergistic agents for US-based therapy, US-triggered on-demand drug releasing, US-enhanced gene transfection, US-based synergistic therapy on combating the cancer and potential toxicity issue of screening various nanosystems suitable for nanoultrasonic biomedicine. It is highly expected that this novel nanoultrasonic biomedicine and corresponding high performance in US imaging and therapy can significantly promote the generation of new sub-discipline of US-based biomedicine by rationally integrating material chemistry and theranostic nanomedicine with clinical US-based biomedicine.
Collapse
Affiliation(s)
- Hailin Tang
- Department of Diagnostic Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated, Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
202
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
203
|
Wang R, Zhou Y, Zhang P, Chen Y, Gao W, Xu J, Chen H, Cai X, Zhang K, Li P, Wang Z, Hu B, Ying T, Zheng Y. Phase-transitional Fe 3O 4/perfluorohexane Microspheres for Magnetic Droplet Vaporization. Theranostics 2017; 7:846-854. [PMID: 28382158 PMCID: PMC5381248 DOI: 10.7150/thno.17251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Activating droplets vaporization has become an attractive strategy for ultrasound imaging and physical therapy due to the significant increase in ultrasound backscatter signals and its ability to physically damage the tumor cells. However, the current two types of transitional droplets named after their activation methods have their respective limitations. To circumvent the limitations of these activation methods, here we report the concept of magnetic droplet vaporization (MDV) for stimuli-responsive cancer theranostics by a magnetic-responsive phase-transitional agent. This magnetic-sensitive phase-transitional agent-perfluorohexane (PFH)-loaded porous magnetic microspheres (PFH-PMMs), with high magnetic-thermal energy-transfer capability, could quickly respond to external alternating current (AC) magnetic fields to produce thermal energy and trigger the vaporization of the liquid PFH. We systematically demonstrated MDV both in vitro and in vivo. This novel trigger method with deep penetration can penetrate the air-filled viscera and trigger the vaporization of the phase-transitional agent without the need of pre-focusing lesion. This unique MDV strategy is expected to substantially broaden the biomedical applications of nanotechnology and promote the clinical treatment of tumors that are not responsive to chemical therapies.
Collapse
|
204
|
Sheeran PS, Yoo K, Williams R, Yin M, Foster FS, Burns PN. More Than Bubbles: Creating Phase-Shift Droplets from Commercially Available Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:531-540. [PMID: 27727022 DOI: 10.1016/j.ultrasmedbio.2016.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 05/09/2023]
Abstract
Phase-shift perfluorocarbon droplets have been investigated for over 20 years as pre-clinical ultrasound contrast agents with distinctive advantages in imaging and therapy. A number of formulation strategies exist, each with inherent advantages and limitations. In this note, we demonstrate a unique opportunity: that phase-shift droplets can be generated directly from commercially available microbubbles. This may facilitate pre-clinical and translational development by reducing the in-house synthesis expertise and resources required to generate high concentration droplet emulsions. Proof-of-principle in vitro and in vivo is given using droplets created from Definity and MicroMarker. The results demonstrate the role of perfluorocarbon choice in the trade-off between thermal stability and vaporization threshold, and suggest that commercial microbubbles with decafluorobutane cores may be ideal for this approach.
Collapse
Affiliation(s)
- Paul S Sheeran
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Kimoon Yoo
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ross Williams
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melissa Yin
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - F Stuart Foster
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Peter N Burns
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
205
|
Ho YJ, Yeh CK. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization. Acta Biomater 2017; 49:472-485. [PMID: 27836803 DOI: 10.1016/j.actbio.2016.11.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. STATEMENT OF SIGNIFICANCE Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular and chemical therapy. The in vitro cytotoxicity, intravital imaging, and histological assessment were used to evaluate the temporal and spatial cooperation between physical and chemical effect. These results revealed some evidences for complementary action to explain the high efficacy of tumor inhibition by combined therapy.
Collapse
|
206
|
Sun L, Wan J, Schaefer CG, Zhang Z, Tan J, Guo J, Wu L, Wang C. Specific On-site Assembly of Multifunctional Magnetic Nanocargos Based on Highly Efficient and Parallelized Bioconjugation: Toward Personalized Cancer Targeting Therapy. ACS Biomater Sci Eng 2017; 3:381-391. [PMID: 33465935 DOI: 10.1021/acsbiomaterials.6b00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rational design of particle-based cancer theranostic agents, combining diagnostic and therapeutic features in a single entity, has emerged as an effective approach toward personalized cancer therapy; however, creating a flexible assembly of specific targeting ligands with regard to a broad range of tumor tissues and cells is still challenging. Here, we present a convenient and highly variable on-site assembly strategy for the preparation of multifunctional doxorubicin (DOX)-loaded nanocargos with magnetic supraparticles (MSPs) as a core and redox-degradable poly(methylacrylic acid-co-N,N-bis(acryloyl) cystamine) (P(MAA-co-Cy) as the shell, which could be simultaneously modified with multiple targeting ligands through parallelized bioconjugation on the basis of a streptavidin-biotin (SA-BT) interaction. Under physiological conditions similar to those of the cytoplasm of tumor cells, DOX could be released in a controlled manner from these nanocargos to specific tumor sites, while dual-ligand modified nanocargos showed remarkable proliferation inhibition for the HeLa cells and the SK-OV-3 cells that overexpressed both folate as well as integrin receptors. The experimental results demonstrated that the on-site assembly strategy described herein opens access to highly efficient targeting drug delivery systems toward personalized cancer targeting therapy by incorporating functional diversity, which can be easily achieved through highly efficient and parallelized one-step bioconjugation.
Collapse
Affiliation(s)
- Luyan Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Christian G Schaefer
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Jing Tan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Limin Wu
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
207
|
Liu J, Shang T, Wang F, Cao Y, Hao L, Ren J, Ran H, Wang Z, Li P, Du Z. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int J Nanomedicine 2017; 12:911-923. [PMID: 28184161 PMCID: PMC5291457 DOI: 10.2147/ijn.s122667] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1′-dioctadecyl-3,3,3′,3′ -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.
Collapse
Affiliation(s)
- Jianxin Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - JianLi Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Zhiyu Du
- Postgraduate Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
208
|
Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G. Complex interfaces in "phase-change" contrast agents. Phys Chem Chem Phys 2017; 18:8378-88. [PMID: 26931337 DOI: 10.1039/c5cp07538f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report on the study of the interface of hybrid shell droplets encapsulating decafluoropentane (DFP), which exhibit interesting potentialities for ultrasound (US) imaging. The fabrication of the droplets is based on the deposition of a dextran methacrylate layer onto the surface of surfactants. The droplets have been stabilized against coalescence by UV curing, introducing crosslinks in the polymer layer and transforming the shell into an elastomeric membrane with a thickness of about 300 nm with viscoelastic behaviour. US irradiation induces the evaporation of the DFP core of the droplets transforming the particles into microbubbles (MBs). The presence of a robust crosslinked polymer shell introduces an unusual stability of the droplets also during the core phase transition and allows the recovery of the initial droplet state after a few minutes from switching off US. The interfacial tension of the droplets has been investigated by two approaches, the pendant drop method and an indirect method, based on the determination of the liquid ↔ gas transition point of DFP confined in the droplet core. The re-condensation process has been followed by capturing images of single MBs by confocal microscopy. The time evolution of MB relaxation to droplets was analysed in terms of a modified Church model to account for the structural complexity of the MB shell, i.e. a crosslinked polymer layer over a layer of surfactants. In this way the microrheology parameters of the shell were determined. In a previous paper (Chem. Commun., 2013, 49, 5763-5765) we showed that these systems could be used as ultrasound contrast agents (UCAs). In this work we substantiate this view assessing some key features offered by the viscoelastic nature of the droplet shell.
Collapse
Affiliation(s)
- Sabrina Capece
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy. and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Brasili
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Angelico Bedini
- INAIL - Settore Ricerca Certificazione e Verifica - DITSIPIA, Via Fontana Candida, 1 Monteporzio Catone, 00040 Italy
| | - Federico Bordi
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
209
|
Xu Y, Niu C, An S, Tang S, Xiao P, Peng Q, Wang L. Thermal-sensitive magnetic nanoparticles for dual-modal tumor imaging and therapy. RSC Adv 2017. [DOI: 10.1039/c7ra07024a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
“Nanotheranostics” has attracted much attention due to the development of nanomaterials with integrated diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Yan Xu
- Department of Renal Medicine
- Xiangya Hospital
- Central South University
- Changsha
- China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Senbo An
- Department of Orthopedics
- Xiangya Hospital
- Central South University
- Changsha
- China
| | - Shixiong Tang
- Department of Radiology
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Ping Xiao
- Department of Renal Medicine
- Xiangya Hospital
- Central South University
- Changsha
- China
| | - Qinghai Peng
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Long Wang
- Department of Orthopedics
- Xiangya Hospital
- Central South University
- Changsha
- China
| |
Collapse
|
210
|
Manouras T, Vamvakaki M. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym Chem 2017. [DOI: 10.1039/c6py01455k] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in field-responsive polymers, which have emerged as highly promising materials for numerous applications, are highlighted.
Collapse
Affiliation(s)
- Theodore Manouras
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- University of Crete
| |
Collapse
|
211
|
Zhang P, Cao Y, Chen H, Zhou B, Hu W, Zhang L. Preparation and evaluation of glycyrrhetinic acid-modified and honokiol-loaded acoustic nanodroplets for targeted tumor imaging and therapy with low-boiling-point phase-change perfluorocarbon. J Mater Chem B 2017; 5:5845-5853. [DOI: 10.1039/c7tb01215b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycyrrhetinic acid-modified and honokiol-loaded acoustic nanodroplets for targeted tumor imaging and therapy with low-boiling-point phase-change perfluorocarbon.
Collapse
Affiliation(s)
- Ping Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Bo Zhou
- Department of Cardiology, The First Affiliated Hospital
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital
- Chongqing 400030
- P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
212
|
Sheeran PS, Matsuura N, Borden MA, Williams R, Matsunaga TO, Burns PN, Dayton PA. Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:252-263. [PMID: 27775902 PMCID: PMC5706463 DOI: 10.1109/tuffc.2016.2619685] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In this paper, part of a special issue on methods in biomedical ultrasonics, we survey current techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. We provide example protocols and discuss advantages and limitations of each approach. Finally, we discuss best practice in characterization of this class of contrast agents with respect to size distribution and ultrasound activation.
Collapse
|
213
|
Rojas JD, Dayton PA. Optimizing Acoustic Activation of Phase Change Contrast Agents With the Activation Pressure Matching Method: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:264-272. [PMID: 27740481 PMCID: PMC5270505 DOI: 10.1109/tuffc.2016.2616304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Submicrometer phase-change contrast agents (PCCAs) consist of a liquid perfluorocarbon (PFC) core that can be vaporized by ultrasound (acoustic droplet vaporization) to generate contrast with excellent spatial and temporal control. When these agents, commonly referred to as nanodroplets, are formulated with cores of low boiling-point PFCs such as decafluorobutane and octafluoropropane, they can be activated with low-mechanical-index (MI) imaging pulses for diagnostic applications. Since the utilization of minimum MI is often desirable to avoid unnecessary biological effects, enabling consistent activation of these agents in an acoustic field is a challenge because the energy that must be delivered to achieve the vaporization threshold increases with depth due to attenuation. A novel vaporization approach called activation pressure matching (APM) has been developed to deliver the same pressure throughout a field of view in order to produce uniform nanodroplet vaporization and to limit the amount of energy that is delivered. In this paper, we discuss the application of this method with a Verasonics V1 Research Ultrasound System to modulate the output pressure from an ATL L11-5 transducer. Vaporization-pulse spacing optimization can be used in addition to matching the activation pressure through depth, and we demonstrate the feasibility of this approach both in vivo and in vitro. The use of optimized vaporization parameters increases the amount of time a single bolus of nanodroplets can generate useful contrast and provides consistent image enhancement in vivo. Therefore, APM is a useful technique for maximizing the efficacy of PCCA while minimizing delivered acoustic energy.
Collapse
|
214
|
Moncion A, Arlotta KJ, O’Neill EG, Lin M, Mohr LA, Franceschi RT, Kripfgans OD, Putnam AJ, Fabiilli ML. In vitro and in vivo assessment of controlled release and degradation of acoustically responsive scaffolds. Acta Biomater 2016; 46:221-233. [PMID: 27686040 DOI: 10.1016/j.actbio.2016.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
Spatiotemporally controlled release of growth factors (GFs) is critical for regenerative processes such as angiogenesis. A common strategy is to encapsulate the GF within hydrogels, with release being controlled via diffusion and/or gel degradation (i.e., hydrolysis and/or proteolysis). However, simple encapsulation strategies do not provide spatial or temporal control of GF delivery, especially non-invasive, on-demand controlled release post implantation. We previously demonstrated that fibrin hydrogels, which are widely used in tissue engineering and GF delivery applications, can be doped with perfluorocarbon emulsion, thus yielding an acoustically responsive scaffold (ARS) that can be modulated with focused ultrasound, specifically via a mechanism termed acoustic droplet vaporization. This study investigates the impact of ARS and ultrasound properties on controlled release of a surrogate payload (i.e., fluorescently-labeled dextran) and fibrin degradation in vitro and in vivo. Ultrasound exposure (2.5MHz, peak rarefactional pressure: 8MPa, spatial peak time average intensity: 86.4mW/cm2), generated up to 7.7 and 21.7-fold increases in dextran release from the ARSs in vitro and in vivo, respectively. Ultrasound also induced morphological changes in the ARS. Surprisingly, up to 2.9-fold greater blood vessel density was observed in ARSs compared to fibrin when implanted subcutaneously, even without delivery of pro-angiogenic GFs. The results demonstrate the potential utility of ARSs in generating controlled release for tissue regeneration. STATEMENT OF SIGNIFICANCE Simple encapsulation of a molecular payload within a conventional hydrogel scaffold does not provide spatial or temporal control of payload release. Yet, spatiotemporally controlled release of bioactive payloads is critical for tissue regeneration, which often utilizes hydrogel scaffolds to facilitate processes such as angiogenesis. This work investigates the design and performance (both in vitro and in vivo) of hydrogel scaffolds where release of a fluorescent payload is non-invasively and spatiotemporally-controlled using focused ultrasound. We also quantitatively characterize the degradation and vascularization of the scaffolds. Our results may be of interest to groups working on controlled release strategies for implants, especially within the field of tissue engineering.
Collapse
|
215
|
Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. Int J Biol Macromol 2016; 93:512-519. [DOI: 10.1016/j.ijbiomac.2016.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023]
|
216
|
Aliabouzar M, Zhang LG, Sarkar K. Lipid Coated Microbubbles and Low Intensity Pulsed Ultrasound Enhance Chondrogenesis of Human Mesenchymal Stem Cells in 3D Printed Scaffolds. Sci Rep 2016; 6:37728. [PMID: 27883051 PMCID: PMC5121887 DOI: 10.1038/srep37728] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Lipid-coated microbubbles are used to enhance ultrasound imaging and drug delivery. Here we apply these microbubbles along with low intensity pulsed ultrasound (LIPUS) for the first time to enhance proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in a 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) hydrogel scaffold. The hMSC proliferation increased up to 40% after 5 days of culture in the presence of 0.5% (v/v) microbubbles and LIPUS in contrast to 18% with LIPUS alone. We systematically varied the acoustic excitation parameters-excitation intensity, frequency and duty cycle-to find 30 mW/cm2, 1.5 MHz and 20% duty cycle to be optimal for hMSC proliferation. A 3-week chondrogenic differentiation results demonstrated that combining LIPUS with microbubbles enhanced glycosaminoglycan (GAG) production by 17% (5% with LIPUS alone), and type II collagen production by 78% (44% by LIPUS alone). Therefore, integrating LIPUS and microbubbles appears to be a promising strategy for enhanced hMSC growth and chondrogenic differentiation, which are critical components for cartilage regeneration. The results offer possibilities of novel applications of microbubbles, already clinically approved for contrast enhanced ultrasound imaging, in tissue engineering.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
217
|
Chattaraj R, Goldscheitter GM, Yildirim A, Goodwin AP. Phase Behavior of Mixed Lipid Monolayers on Perfluorocarbon Nanoemulsions and its Effect on Acoustic Contrast. RSC Adv 2016; 6:111318-111325. [PMID: 28603605 DOI: 10.1039/c6ra20328k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipid-stabilized nanoemulsions containing a volatile liquid perfluorocarbon core have been studied as ultrasound contrast agents owing to their ability to transform into high-contrast microbubbles when subjected to high intensity focused ultrasound (HIFU). However, while there have been several studies on the effect of acoustic parameters on contrast, the effect of the droplet's stabilizing shell has not been studied as extensively. Inspired by previous studies showing lateral phase separation in microbubbles and vesicles, nanodroplets were formulated with a perfluorohexane core and a shell composed of varying amounts of saturated (DPPC) phospholipids, unsaturated (DOPC) phospholipids, and cholesterol, which were fractionated to obtain nanodroplets of mean diameter 300-400 nm and were stable over one week. When the DOPC content was increased to 40 mol%, ultrasound contrast increased by about one order of magnitude over DPPC-only droplets. Based on fluorescence microscopy results of lateral lipid phase separation on the droplet surface, the various combinations of DPPC, DOPC, and cholesterol were assigned to three regimes on the ternary phase diagram: solid-liquid ordered (low contrast), liquid ordered-liquid disordered (medium contrast), and solid-liquid disordered (high contrast). These regimes were confirmed by TEM analysis of nanoscale droplets. Droplets containing mixed lipid monolayers were also found to produce a significantly greater yield than single-component droplets. The discovery of the dependence of acoustic response on lipid phase separation will help to understand the formulation, behavior, and vaporization mechanism of acoustically-responsive nanoemulsions.
Collapse
Affiliation(s)
- Rajarshi Chattaraj
- Department of Mechanical Engineering, University of Colorado Boulder. Boulder, CO 80309
| | - Galen M Goldscheitter
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303
| | - Adem Yildirim
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303
| |
Collapse
|
218
|
Zhang L, Tan L, Chen L, Chen X, Long C, Peng J, Qian Z. A simple method to improve the stability of docetaxel micelles. Sci Rep 2016; 6:36957. [PMID: 27833135 PMCID: PMC5105067 DOI: 10.1038/srep36957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023] Open
Abstract
Self-assembled polymeric micelles have been widely applied in drug delivery systems. In this study, we found that pH value of micellar system solution was the decisive factor of physical stability. Furthermore, the weak basic solution could maintain the solution clarification for a relative long time. To investigate the stability of polymeric micelles in different pH solutions, the micellar particle size and the docetaxel content remaining in solution were detected at predetermined time points. The crystallographic assay of freeze-drying powder was characterized by an X-ray diffractometer. In vitro release results indicated that the PBS had little influence on the sustained-release effect of docetaxel-loaded polymeric micelles (DPM). Besides, the safety of micellar formulation was determined by an MTT assay on HEK293 cells, and the anti-tumor activity was tested on MCF-7 cells. The results demonstrated that DPM adjusted with PBS (DPM (PBS)) was of low toxicity and maintained the effectiveness of docetaxel. In vivo antitumor results indicated that DPM (PBS) had better antitumor efficacy than common docetaxel injection (DTX). Thus it was concluded that regulation of micellar solution PH by PBS is a safe and effective method to improve the physical stability of DPM. It might promote the application of micellar formulation in clinical applications.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.,Research and Development Department, Guangdong Zhongsheng Pharmacy, Dongguan, 523325, China
| | - LiWei Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - LiJuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - XiaoXin Chen
- Research and Development Department, Guangdong Zhongsheng Pharmacy, Dongguan, 523325, China
| | - ChaoFeng Long
- Research and Development Department, Guangdong Zhongsheng Pharmacy, Dongguan, 523325, China
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
219
|
Mountford PA, Borden MA. On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents. Adv Colloid Interface Sci 2016; 237:15-27. [PMID: 27574721 DOI: 10.1016/j.cis.2016.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 11/24/2022]
Abstract
Superheated nanodrops are a new class of submicron-diameter liquid emulsion particles comprising perfluoropropane (C3F8), perfluorobutane (C4F10) and perfluoropentane (C5F12) that are being developed for ultrasound imaging and therapy. They can be formed by condensation of precursor lipid-coated, gas-filled microbubbles. Application of ultrasound or laser energy triggers the phase transformation back to a vapor bubble, and this process can be exploited for certain biomedical applications. The nanodrops are remarkably metastable in the liquid state under physiological conditions, even though they are highly superheated. In prior work, it was suggested that a high Laplace pressure in the lipid-coated nanodrop is responsible for its stability in the superheated state. Recent work by our group, however, points to the energy barrier for homogeneous nucleation as a more likely explanation. The purpose of this article is to review and discuss this mechanism in greater detail. We start with a brief description of basic fluorocarbon intermolecular forces. We then use the van der Waals equation of state to construct equilibrium phase diagrams and saturation curves. The effect of droplet Laplace pressure is superimposed onto these curves and compared to experimental data, where a poor correlation is observed. It is also shown that nanodrops with Laplace pressure are unstable to dissolution. The mechanism of homogeneous nucleation is then offered as an alternative explanation for the metastability of superheated nanodrops, with calculations that show good agreement with experimental data.
Collapse
|
220
|
Boissenot T, Bordat A, Fattal E, Tsapis N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release 2016; 241:144-163. [DOI: 10.1016/j.jconrel.2016.09.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
221
|
Zardad AZ, Choonara YE, Du Toit LC, Kumar P, Mabrouk M, Kondiah PPD, Pillay V. A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers (Basel) 2016; 8:E359. [PMID: 30974645 PMCID: PMC6431863 DOI: 10.3390/polym8100359] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022] Open
Abstract
There has been an exponential increase in research into the development of thermal- and ultrasound-activated delivery systems for cancer therapy. The majority of researchers employ polymer technology that responds to environmental stimuli some of which are physiologically induced such as temperature, pH, as well as electrical impulses, which are considered as internal stimuli. External stimuli include ultrasound, light, laser, and magnetic induction. Biodegradable polymers may possess thermoresponsive and/or ultrasound-responsive properties that can complement cancer therapy through sonoporation and hyperthermia by means of High Intensity Focused Ultrasound (HIFU). Thermoresponsive and other stimuli-responsive polymers employed in drug delivery systems can be activated via ultrasound stimulation. Polyethylene oxide/polypropylene oxide co-block or triblock polymers and polymethacrylates are thermal- and pH-responsive polymer groups, respectively but both have proven to have successful activity and contribution in chemotherapy when exposed to ultrasound stimulation. This review focused on collating thermal- and ultrasound-responsive delivery systems, and combined thermo-ultrasonic responsive systems; and elaborating on the advantages, as well as shortcomings, of these systems in cancer chemotherapy. The mechanisms of these systems are explicated through their physical alteration when exposed to the corresponding stimuli. The properties they possess and the modifications that enhance the mechanism of chemotherapeutic drug delivery from systems are discussed, and the concept of pseudo-ultrasound responsive systems is introduced.
Collapse
Affiliation(s)
- Az-Zamakhshariy Zardad
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa Claire Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials, National Research Centre, 33 El-Bohouth St. (former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt.
| | - Pierre Pavan Demarco Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
222
|
Song X, Feng L, Liang C, Yang K, Liu Z. Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. NANO LETTERS 2016; 16:6145-6153. [PMID: 27622835 DOI: 10.1021/acs.nanolett.6b02365] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tumor hypoxia is known to be one of critical reasons that limit the efficacy of cancer therapies, particularly photodynamic therapy (PDT) and radiotherapy (RT) in which oxygen is needed in the process of cancer cell destruction. Herein, taking advantages of the great biocompatibility and high oxygen dissolving ability of perfluorocarbon (PFC), we develop an innovative strategy to modulate the tumor hypoxic microenvironment using nano-PFC as an oxygen shuttle for ultrasound triggered tumor-specific delivery of oxygen. In our experiment, nanodroplets of PFC stabilized by albumin are intravenously injected into tumor-bearing mice under hyperoxic breathing. With a low-power clinically adapted ultrasound transducer applied on their tumor, PFC nanodroplets that adsorb oxygen in the lung would rapidly release oxygen in the tumor under ultrasound stimulation, and then circulate back into the lung for reoxygenation. Such repeated cycles would result in dramatically enhanced tumor oxygenation and thus remarkably improved therapeutic outcomes in both PDT and RT treatment of tumors. Importantly, our strategy may be applied for different types of tumor models. Hence, this work presents a simple strategy to promote tumor oxygenation with great efficiency using agents and instruments readily available in the clinic, so as to overcome the hypoxia-associated resistance in cancer treatment.
Collapse
Affiliation(s)
- Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Medical College of Soochow University , Suzhou, Jiangsu 21513, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| |
Collapse
|
223
|
Affiliation(s)
- Yuqi Zhang
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jicheng Yu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hunter N. Bomba
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
224
|
Wang S, Huang P, Chen X. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7340-64. [PMID: 27255214 PMCID: PMC5014563 DOI: 10.1002/adma.201601498] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/14/2016] [Indexed: 05/04/2023]
Abstract
Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization.
Collapse
Affiliation(s)
- Sheng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
225
|
Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:696-716. [PMID: 26762467 PMCID: PMC4945487 DOI: 10.1002/wnan.1389] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Parham Sahandi-Zangabad
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Fereshteh Mirab
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Negar Farajisafiloo
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Shafaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Deepanjan Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical science, Tehran, Iran
| | - Mahnaz Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - Fariba Dashkhaneh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical Science, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
226
|
Ishijima A, Tanaka J, Azuma T, Minamihata K, Yamaguchi S, Kobayashi E, Nagamune T, Sakuma I. The lifetime evaluation of vapourised phase-change nano-droplets. ULTRASONICS 2016; 69:97-105. [PMID: 27082763 DOI: 10.1016/j.ultras.2016.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 05/20/2023]
Abstract
Phase-change nano-droplets (PCNDs) are sub-micron particles that are coated with phospholipid and contain liquid-state perfluorocarbons such as perfluoropentane (boiling point=29°C) and perfluorohexane (boiling point=57°C), which can vapourise upon application of ultrasound. The bubbles generated by such reactions can serve as ultrasound contrast agents or HIFU sensitisers. However, the lifetime of bubbles generated from PCNDs on μs-order is not well known. Knowledge of the condition of PCND-derived bubbles on μs-order is essential for producing bubbles customised for specific purposes. In this study, we use an optical measurement system to measure the vapourisation and stability of the bubbles (bubble-lifetime) as well as the stability-controlling method of the nucleated bubbles on μs-order while changing the internal composition of PCNDs and the ambient temperature. PCND-derived bubbles remain in a bubble state when the boiling point of the internal composition is lower than the ambient temperature, but lose their optical contrast after approximately 10μs by re-condensation or dissolution when the boiling point of the internal composition is higher than the ambient temperature. We reveal that the superheating condition significantly affects the fate of vapourised PCNDs and that the bubble-lifetime can be controlled by changing both the ambient temperature conditions and the internal composition of PCNDs.
Collapse
Affiliation(s)
- Ayumu Ishijima
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Jun Tanaka
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Takashi Azuma
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan.
| | - Kosuke Minamihata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, Japan
| | - Etsuko Kobayashi
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Sakuma
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| |
Collapse
|
227
|
Radhakrishnan K, Holland CK, Haworth KJ. Scavenging dissolved oxygen via acoustic droplet vaporization. ULTRASONICS SONOCHEMISTRY 2016; 31:394-403. [PMID: 26964964 PMCID: PMC4788814 DOI: 10.1016/j.ultsonch.2016.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 05/09/2023]
Abstract
Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5-6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications.
Collapse
Affiliation(s)
- Kirthi Radhakrishnan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
228
|
Li H, Wang P, Wang X, Yin T, Zhou G, Shuai X, Zheng R. Perfluorooctyl bromide traces self-assembled with polymeric nanovesicles for blood pool ultrasound imaging. Biomater Sci 2016; 4:979-88. [PMID: 27121357 DOI: 10.1039/c6bm00080k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel perfluorooctyl bromide (PFOB)-loaded nanovesicle with a size of about 500 nm was prepared by self-assembly of an amphiphilic block copolymer, poly(ethylene oxide)-b-poly(d,l-lactic acid) (PEG-PDLLA), for blood pool ultrasound imaging. The excellent compatibility of PFOB with the hydrophobic PDLLA block makes PFOB uniformly distribute and integrate well within the nanovesicle shell. In theory, both the compressibility and shell density of the nanovesicle as ultrasound scatterers are enhanced, resulting in much higher echo intensity compared to the other PFOB nanoparticles. In vitro and in vivo imaging results illustrate that these polymeric nanovesicles with extremely low content of PFOB show quite a good contrast-enhancing effect even if highly diluted in blood. Therefore this PFOB-loaded polymeric nanovesicle is anticipated to be applicable as an ultrasound contrast agent for normal angiography and specific imaging of capillary-abundant organs or tissues (e.g. tumors).
Collapse
Affiliation(s)
- Hao Li
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
229
|
Xue P, Liu D, Wang J, Zhang N, Zhou J, Li L, Guo W, Sun M, Han X, Wang Y. Redox-Sensitive Citronellol–Cabazitaxel Conjugate: Maintained in Vitro Cytotoxicity and Self-Assembled as Multifunctional Nanomedicine. Bioconjug Chem 2016; 27:1360-72. [DOI: 10.1021/acs.bioconjchem.6b00155] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peng Xue
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Dan Liu
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jing Wang
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Na Zhang
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiahua Zhou
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Lin Li
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Weiling Guo
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Mengchi Sun
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiangfei Han
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yongjun Wang
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
230
|
Vlaisavljevich E, Aydin O, Durmaz YY, Lin KW, Fowlkes B, Xu Z, ElSayed MEH. Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:931-46. [PMID: 26774470 DOI: 10.1016/j.ultrasmedbio.2015.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/15/2015] [Accepted: 11/30/2015] [Indexed: 05/15/2023]
Abstract
Nanodroplet-mediated histotripsy (NMH) is a targeted ablation technique combining histotripsy with nanodroplets that can be selectively delivered to tumor cells. In two previous studies, polymer-encapsulated perfluoropentane nanodroplets were used to generate well-defined ablation similar to that obtained with histotripsy, but at significantly lower pressure, when NMH therapy was applied at a pulse repetition frequency (PRF) of 10 Hz. However, cavitation was not maintained over multiple pulses when ultrasound was applied at a lower PRF (i.e., 1-5 Hz). We hypothesized that nanodroplets with a higher-boiling-point perfluorocarbon core would provide sustainable cavitation nuclei, allowing cavitation to be maintained over multiple pulses, even at low PRF, which is needed for efficient and complete tissue fractionation via histotripsy. To test this hypothesis, we investigated the effects of droplet composition on NMH therapy by applying histotripsy at various frequencies (345 kHz, 500 kHz, 1.5 MHz, 3 MHz) to tissue phantoms containing perfluoropentane (PFP, boiling point ∼29°C, surface tension ∼9.5 mN/m) and perfluorohexane (PFH, boiling point ∼56°C, surface tension ∼11.9 mN/m) nanodroplets. First, the effects of droplet composition on the NMH cavitation threshold were investigated, with results revealing a significant decrease (>10 MPa) in the peak negative pressure (p-) cavitation threshold for both types of nanodroplets compared with controls. A slight decrease (∼1-3 MPa) in threshold was observed for PFP phantoms compared with PFH phantoms. Next, the ability of nanodroplets to function as sustainable cavitation nuclei over multiple pulses was investigated, with results revealing that PFH nanodroplets were sustainable cavitation nuclei over 1,000 pulses, whereas PFP nanodroplets were destroyed during the first few pulses (<50 pulses), likely because of the lower boiling point. Finally, tissue phantoms containing a layer of embedded red blood cells were used to compare the damage generated for NMH treatments using PFP and PFH droplets, with results indicating that PFH nanodroplets significantly improved NMH ablation, allowing for well-defined lesions to be generated at all frequencies and PRFs tested. Overall, the results of this study provide significant insight into the role of droplet composition in NMH therapy and provide a rational basis to tailor droplet parameters to improve NMH tissue fractionation.
Collapse
Affiliation(s)
- Eli Vlaisavljevich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Omer Aydin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yasemin Yuksel Durmaz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, Schools of Engineering and Natural Science, Istanbul Medipol University, Istanbul, Turkey
| | - Kuang-Wei Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian Fowlkes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed E H ElSayed
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
231
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
232
|
Sheeran PS, Daghighi Y, Yoo K, Williams R, Cherin E, Foster FS, Burns PN. Image-Guided Ultrasound Characterization of Volatile Sub-Micron Phase-Shift Droplets in the 20-40 MHz Frequency Range. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:795-807. [PMID: 26725168 DOI: 10.1016/j.ultrasmedbio.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 05/09/2023]
Abstract
Phase-shift perfluorocarbon droplets are designed to convert from the liquid to the gas state by the external application of acoustic or optical energy. Although droplet vaporization has been investigated extensively at ultrasonic frequencies between 1 and 10 MHz, few studies have characterized performance at the higher frequencies commonly used in small animal imaging. In this study, we use standard B-mode imaging sequences on a pre-clinical ultrasound platform to both image and activate sub-micron decafluorobutane droplet populations in vitro and in vivo at center frequencies in the range of 20-40 MHz. Results show that droplets remain stable against vaporization at low imaging pressures but are vaporized at peak negative pressures near 3.5 MPa at the three frequencies tested. This study also found that a small number of size outliers present in the distribution can greatly influence droplet performance. Removal of these outliers results in a more accurate assessment of the vaporization threshold and produces free-flowing microbubbles upon vaporization in the mouse kidney.
Collapse
Affiliation(s)
- Paul S Sheeran
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Yasaman Daghighi
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kimoon Yoo
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ross Williams
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Emmanuel Cherin
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - F Stuart Foster
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter N Burns
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
233
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
234
|
Hua X, Ding J, Li R, Zhang Y, Huang Z, Guo Y, Chen Q. Anti-tumor effect of ultrasound-induced Nordy-loaded microbubbles destruction. J Drug Target 2016; 24:703-8. [PMID: 26811100 DOI: 10.3109/1061186x.2016.1144058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Synthesized dl-Nordihydroguaiaretic acid (dl-NGDA or "Nordy") can inhibit the growth of malignant human tumors, especially the tumor angiogenesis. However, its liposoluble nature limits its in vivo efficacy in the hydrosoluble circulation of human. PURPOSE We tried to use the ultrasonic microbubble as the carrier and the ultrasound-induced destruction for the targeted release of Nordy and evaluate its in vitro and in vivo anti-tumor effect. METHODS Nordy-loaded lipid microbubbles were prepared by mechanical vibration. Effects of ultrasound-induced Nordy-loaded microbubbles destruction on proliferation of human umbilical vein endothelial cells (HUVECs), tumor derived endothelial cells (Td-ECs), and rabbit transplanted VX2 tumor models were evaluated. RESULTS The ultrasound-induced Nordy-loaded microbubbles destruction inhibited the proliferations of HUVECs and Td-ECs in vitro, and inhibited the tumor growth and the microvasculature in vivo. Its efficacy was higher than those of Nordy used only and Nordy with ultrasound exposure. CONCLUSION Ultrasonic microbubbles can be used as the carrier of Nordy and achieve its targeted release with improved anti-tumor efficacy in the condition of ultrasound-induced microbubbles destruction.
Collapse
Affiliation(s)
- Xing Hua
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Jun Ding
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Rui Li
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Ying Zhang
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Zejun Huang
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Yanli Guo
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Qinghai Chen
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| |
Collapse
|
235
|
Meng Z, Wei F, Wang R, Xia M, Chen Z, Wang H, Zhu M. NIR-Laser-Switched In Vivo Smart Nanocapsules for Synergic Photothermal and Chemotherapy of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:245-53. [PMID: 26551334 DOI: 10.1002/adma.201502669] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/23/2015] [Indexed: 05/27/2023]
Abstract
In vivo MEO2 MA@MEO2 MA-co-OEGMA-CuS-DOX (G-CuS-DOX) nanocapsules increase the temperature of tumors from room temperature to 57 °C due to the photothermal effect under irradiation from a 915-nm laser. When the temperature exceeds 42 °C, photothermal therapy of G-CuS-DOX is switched on. Simultaneously, higher temperatures (>LCST, 42 °C) induce volume shrinkage of G-CuS-DOX in vivo, leading to the controllable release of the anticancer drug DOX. If the NIR laser is switched off, both therapy effects are interrupted immediately.
Collapse
Affiliation(s)
- Zhouqi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Wei
- Experimental Research Center, The First People's Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Ronghua Wang
- Experimental Research Center, The First People's Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Mengge Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huiping Wang
- Experimental Research Center, The First People's Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
236
|
Ho YJ, Chang YC, Yeh CK. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization. Theranostics 2016; 6:392-403. [PMID: 26909113 PMCID: PMC4737725 DOI: 10.7150/thno.13727] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022] Open
Abstract
Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs) induced by ultrasound sonication can overcome the limitations of the EPR effect to allow drug diffusion into extensive regions. The intravital penetration of DiI-labeled liposomes (as a drug model with red fluorescence) was observed using an acousto-optical integrated system comprising a 2-MHz focused ultrasound transducer (transmitting a three-cycle single pulse and a peak negative pressure of 10 MPa) in a window-chamber mouse model. Histology images of the solid tumor were also used to quantify and demonstrate the locations where DiI-labeled liposomes accumulated. In the intravital image analyses, the cumulative diffusion area and fluorescence intensity at 180 min were 0.08±0.01 mm(2) (mean±standard deviation) and 8.5±0.4%, respectively, in the EPR group, 0.33±0.01 mm(2) and 13.1±0.4% in the MD group (p<0.01), and 0.63±0.01 mm(2) and 18.9±1.1% in the ND group (p<0.01). The intratumoral accumulations of DiI-labeled liposomes were 1.7- and 2.3-fold higher in the MD and ND groups, respectively, than in the EPR group. These results demonstrate that vascular disruption induced by acoustic droplet vaporization can improve drug penetration more than utilizing the EPR effect. The NDs showed longer lifetime in vivo than MDs and provided potential abilities of long periods of treatment, intertissue ND vaporization, and intertissue NDs-converted bubble cavitation to improve the drug penetration and transport distance.
Collapse
|
237
|
Lu S, Ding Y, Wu Y, Wang R, Pan R, Wan Z, Xu W, Zhang L, Yuan YF, Chen P. An amphipathic lytic peptide for enhanced and selective delivery of ellipticine. J Mater Chem B 2016; 4:4348-4355. [DOI: 10.1039/c6tb00529b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic lytic peptides (CLPs) have shown promise in treating bacterial infection and cancer via selective membrane disruption but are seldom studied for drug delivery potential.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yong Ding
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yan Wu
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Rong Wang
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Ran Pan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Zizhen Wan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Wen Xu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
- College of Biological and Pharmaceutical Engineering
| | - Yong-fang Yuan
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
238
|
Moncion A, Arlotta KJ, Kripfgans OD, Fowlkes JB, Carson PL, Putnam AJ, Franceschi RT, Fabiilli ML. Design and Characterization of Fibrin-Based Acoustically Responsive Scaffolds for Tissue Engineering Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:257-71. [PMID: 26526782 PMCID: PMC4666743 DOI: 10.1016/j.ultrasmedbio.2015.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 05/11/2023]
Abstract
Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors. Spatiotemporal patterns of growth factor signaling are critical for tissue regeneration, yet most scaffolds afford limited control of growth factor release, especially after implantation. We previously found that acoustic droplet vaporization can control growth factor release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, acoustic droplet vaporization and inertial cavitation thresholds ranged from 1.5 to 3.0 MPa and from 2.0 to 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying composition. Viability of C3H/10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus those with perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporally controlled release.
Collapse
Affiliation(s)
- Alexander Moncion
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | - Keith J Arlotta
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Oliver D Kripfgans
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul L Carson
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
239
|
Sun T, Shu L, Shen J, Ruan C, Zhao Z, Jiang C. Photo and redox-responsive vesicles assembled from Bola-type superamphiphiles. RSC Adv 2016. [DOI: 10.1039/c6ra05808f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Photo and redox-responsive vesicles assembled from “Bola-type” superamphiphiles were developed.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Lan Shu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Jian Shen
- School of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- PR China
| | - Chunhui Ruan
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Zhifeng Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| |
Collapse
|
240
|
Suzuki R, Klibanov AL. Co-administration of Microbubbles and Drugs in Ultrasound-Assisted Drug Delivery: Comparison with Drug-Carrying Particles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:205-20. [PMID: 26486340 DOI: 10.1007/978-3-319-22536-4_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two alternative approaches to ultrasound-assisted drug delivery. First, the drug can be entrapped into or attached onto the ultrasound-responsive particles and administered in the vasculature, to achieve ultrasound-triggered drug release from the particles and localized tissue deposition in response to ultrasound treatment of the target zone. Second, the drug can be co-administered with the microbubbles or other sonosensitive particles. In this case, the action of ultrasound on the particles (which act as cavitation nuclei) results in the transient improvement of permeability of the physiological barriers, so that the circulating drug can exit the bloodstream and get into the target tissues and cells. We discuss and compare both of these approaches, their characteristic advantages and disadvantages for the specific drug delivery scenarios. Clearly, the system based on the off-label use of the existing approved microbubbles and drugs (or drug carriers) will have a chance of getting to clinical trials faster and with lesser resources spent. However, if a superior curative potential of a sonosensitive drug carrier is proven, and formulation stability problems are addressed properly, this approach may find its way to practical use, especially for nucleic acid delivery scenarios.
Collapse
Affiliation(s)
- Ryo Suzuki
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.,Department of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Alexander L Klibanov
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.
| |
Collapse
|
241
|
Zhu Z, Wu Q, Li G, Han S, Si T, Xu RX. Microfluidic fabrication of stimuli-responsive microdroplets for acoustic and optical droplet vaporization. J Mater Chem B 2016; 4:2723-2730. [DOI: 10.1039/c5tb02402a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We developed a flow-focusing microfluidic assay for fabricating stimuli-responsive microdroplets (SRMs) for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Qiang Wu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Guangbin Li
- Department of Modern Mechanics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Shuya Han
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Ting Si
- Department of Modern Mechanics
- University of Science and Technology of China
- Hefei
- P. R. China
- Department of Biomedical Engineering
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
- Department of Biomedical Engineering
| |
Collapse
|
242
|
Droplets, Bubbles and Ultrasound Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:157-74. [DOI: 10.1007/978-3-319-22536-4_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
243
|
Saftoiu A, Vilmann P, Bhutani MS. The role of contrast-enhanced endoscopic ultrasound in pancreatic adenocarcinoma. Endosc Ultrasound 2016; 5:368-372. [PMID: 28000627 PMCID: PMC5206824 DOI: 10.4103/2303-9027.190932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Contrast-enhanced endoscopic ultrasound (CE-EUS) allows characterization, differentiation, and staging of focal pancreatic masses. The method has a high sensitivity and specificity for the diagnosis of pancreatic adenocarcinoma which is visualized as hypo-enhanced as compared to the rest of the parenchyma while chronic pancreatitis and neuroendocrine tumors are generally either iso-enhanced or hyper-enhanced. The development of contrast-enhanced low mechanical index harmonic imaging techniques used in real time during endoscopic ultrasound (EUS) allowed perfusion imaging and the quantification of intensity of the contrast signal through time-intensity curve analysis. Thus, contrast harmonic imaging-EUS has been used to differentiate pancreatic adenocarcinoma based on lower values of the peak enhancement. Future applications of CE-EUS in pancreatic adenocarcinoma include not only use of targeted contrast agents for early detection, tridimensional and fusion techniques for enhanced staging and resectability assessment but also novel applications of perfusion imaging for monitoring ablative therapy, improved local detection through EUS-guided sampling of portal vein flow or enhanced drug delivery through sonoporation and ultrasound-induced release of the drugs locally.
Collapse
Affiliation(s)
- Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Craiova, Romania; Division of Endoscopy, Gastro Unit, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Peter Vilmann
- Division of Endoscopy, Gastro Unit, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
244
|
Design of Microbubbles for Gene/Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:191-204. [PMID: 26486339 DOI: 10.1007/978-3-319-22536-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of ultrasound contrast agents (UCA) initially designed for diagnosis has evolved towards a therapeutic use. Ultrasound (US) for triggered drug delivery has many advantages. In particular, it enables a high spatial control of drug release, thus potentially allowing activation of drug delivery only in the targeted region, and not in surrounding healthy tissue. Moreover, UCA imaging can also be used firstly to precisely locate the target region to, and then used to monitor the drug delivery process by tracking the location of release occurrence. All these features make UCA and ultrasound attractive means to mediate drug delivery. The three main potential clinical indications for drug/gene US delivery are (i) the cardiovascular system, (ii) the central nervous system for small molecule delivery, and (iii) tumor therapy using cytotoxic drugs. Although promising results have been achieved in preclinical studies in various animal models, still very few examples of clinical use have been reported. In this chapter will be addressed the aspects pertaining to UCA formulation (chemical composition, mode of preparation, analytical methods…) and the requirement for a potential translation into the clinic following approval by regulatory authorities.
Collapse
|
245
|
Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:221-41. [DOI: 10.1007/978-3-319-22536-4_13] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
246
|
Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 2015; 95:40-9. [PMID: 26434537 PMCID: PMC4663124 DOI: 10.1016/j.addr.2015.09.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022]
Abstract
Nanoparticles that respond to internal and external stimuli to carry out controlled release of anticancer drugs have been developed. In this review, we focus on the development of mesoporous silica based nanoparticles, as this type of materials provides a relatively stable material that is amenable to various chemical modifications. We first provide an overview of various designs employed to construct MSN-based controlled release systems. These systems respond to internal stimuli such as pH, redox state and the presence of biomolecules as well as to external stimuli such as light and magnetic field. They are at a different stage of development; depending on the system, their operation has been demonstrated in aqueous solution, in cancer cells or in animal models. Efforts to develop MSNs with multi-functionality will be discussed. Safety and biodegradation of MSNs, issues that need to be overcome for clinical development of MSNs, will be discussed. Advances in the synthesis of mechanized theranostic nanoparticles open up the possibility to start envisioning future needs for medical equipment.
Collapse
Affiliation(s)
- Harutaka Mekaru
- Dept. of Microbio., Immunol. & Molec. Genet. Jonsson Comprehensive Cancer Center Molecular Biology Institute , University of California, Los Angeles, CA, United States
| | - Jie Lu
- Dept. of Microbio., Immunol. & Molec. Genet. Jonsson Comprehensive Cancer Center Molecular Biology Institute , University of California, Los Angeles, CA, United States
| | - Fuyuhiko Tamanoi
- Dept. of Microbio., Immunol. & Molec. Genet. Jonsson Comprehensive Cancer Center Molecular Biology Institute , University of California, Los Angeles, CA, United States.
| |
Collapse
|
247
|
Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii24-ii36. [PMID: 25746089 DOI: 10.1093/neuonc/nou355] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and "intelligent" carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists.
Collapse
Affiliation(s)
- J Robert Kane
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jason Miska
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jacob S Young
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Deepak Kanojia
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Julius W Kim
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Maciej S Lesniak
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
248
|
Wang H, Wang P, Li L, Zhang K, Wang X, Liu Q. Microbubbles Enhance the Antitumor Effects of Sinoporphyrin Sodium Mediated Sonodynamic Therapy both In Vitro and In Vivo. Int J Biol Sci 2015; 11:1401-9. [PMID: 26681919 PMCID: PMC4671997 DOI: 10.7150/ijbs.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022] Open
Abstract
Objectives: To evaluate the anti-cancer effect of sonodynamic therapy combined with microbubbles both in vitro and in vivo. Methods: Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide and guava viacount assays. Annexin V-FITC/PI staining was adopted to analyze cell apoptosis rate. FD500 uptake assay was performed to assess cell membrane permeability changes. Tumor weight, mice weight and the visual image of tumor size were used to reflect the anti-tumor effect of this combined method. Histological change of tumor tissue after different treatments was measured through hematoxylin and eosin (H&E) staining. Results: Microbubbles can significantly enhance the cytotoxicity and necrocytosis rate induced by SDT treatment. Increased cell membrane permeability and more uptake of DVDMS were founded in SDT combined with microbubbles group. For in vivo experiments, SDT with microbubbles can significantly reduce tumor weight and size with pimping difference of mice weight compare with other treatment groups. In addition, microbubbles notably improved tumor tissue destruction caused by ultrasound and SDT treatment. Conclusion: The results suggest that microbubbles can markedly improve the anti-cancer effect of DVDMS mediate sonodynamic therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Li Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
249
|
Zhou Y. Application of acoustic droplet vaporization in ultrasound therapy. J Ther Ultrasound 2015; 3:20. [PMID: 26566442 PMCID: PMC4642755 DOI: 10.1186/s40349-015-0041-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022] Open
Abstract
Microbubbles have been used widely both in the ultrasonic diagnosis to enhance the contrast of vasculature and in ultrasound therapy to increase the bioeffects induced by bubble cavitation. However, due to their large size, the lifetime of microbubbles in the circulation system is on the order of minutes, and they cannot penetrate through the endothelial gap to enter the tumor. In an acoustic field, liquefied gas nanoparticles may be able to change the state and become the gas form in a few cycles of exposure without significant heating effects. Such a phenomenon is called as acoustic droplet vaporization (ADV). This review is intended to introduce the emerging application of ADV. The physics and the theoretical model behind it are introduced for further understanding of the mechanisms. Current manufacturing approaches are provided, and their differences are compared. Based on the characteristic of phase shift, a variety of therapeutic applications have been carried out both in vitro and in vivo. The latest progress and interesting results of vessel occlusion, thermal ablation using high-intensity focused ultrasound (HIFU), localized drug delivery to the tumor and cerebral tissue through the blood-brain barrier, localized tissue erosion by histotripsy are summarized. ADV may be able to overcome some limitations of microbubble-mediated ultrasound therapy and provide a novel drug and molecular targeting carrier. More investigation will help progress this technology forward for clinical translation.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|
250
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|