201
|
Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison? Biomolecules 2021; 11:biom11020191. [PMID: 33573025 PMCID: PMC7911486 DOI: 10.3390/biom11020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023] Open
Abstract
Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.
Collapse
|
202
|
Wang DX, Yang Y, Huang XS, Tang JY, Zhang X, Huang HX, Zhou B, Liu B, Xiao HQ, Li XH, Yang P, Zou SC, Liu K, Wang XY, Li XS. Pramipexole attenuates neuronal injury in Parkinson's disease by targeting miR-96 to activate BNIP3-mediated mitophagy. Neurochem Int 2021; 146:104972. [PMID: 33493581 DOI: 10.1016/j.neuint.2021.104972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Parkinson's disease is a common neurodegenerative problem. Pramipexole (PPX) plays protective role in Parkinson's disease. Nevertheless, the mechanism of PPX in Parkinson's disease-like neuronal injury is largely uncertain. METHODS 1-methyl-4-phenylpyridinium (MPP+)-stimulated neuronal cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice were used as the model of Parkinson's disease. MPP+-induced neuronal injury was assessed via cell viability, lactic dehydrogenase (LDH) release and apoptosis. microRNA-96 (miR-96) and BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) abundances were examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or Western blotting. Mitophagy was tested by Western blotting and immunofluorescence staining. MPTP-induced neuronal injury in mice was investigated via behavioral tests and TUNEL. RESULTS PPX alleviated MPP+-induced neuronal injury via increasing cell viability and decreasing LDH release and apoptosis. PPX reversed MPP+-induced miR-96 expression and inhibition of mitophagy. miR-96 overexpression or BNIP3 interference weakened the suppressive role of PPX in MPP+-induced neuronal injury. miR-96 targeted BNIP3 to inhibit PTEN-induced putative kinase 1 (PINK1)/Parkin signals-mediated mitophagy. miR-96 overexpression promoted MPP+-induced neuronal injury via decreasing BNIP3. PPX weakened MPTP-induced neuronal injury in mice via regulating miR-96/BNIP3-mediated mitophagy. CONCLUSION PPX mitigated neuronal injury in MPP+-induced cells and MPTP-induced mice by activating BNIP3-mediated mitophagy via directly decreasing miR-96.
Collapse
Affiliation(s)
- Dong-Xin Wang
- The Research Institute of Mentality and Sanitation, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Ying Yang
- Medical Department of Neurology, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Xiao-Song Huang
- Medical Department of Neurology, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Jia-Yu Tang
- Medical Department of Neurology, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Xi Zhang
- Clinical Medical School, Hunan Traditional Chinese Medicine University, Changsha, 410006, Hunan Province, PR China
| | - Hong-Xing Huang
- Department of Neurosurgery, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Bin Zhou
- Department of Neurosurgery, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Bo Liu
- Department of Neurosurgery, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Hui-Qiong Xiao
- Department of Scientific Research, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Xiao-Hui Li
- Medical Department of Neurology, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Ping Yang
- Department of Psychology, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Shu-Cheng Zou
- Department of Neurosurgery, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Kun Liu
- Department of Neurosurgery, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China
| | - Xiao-Ye Wang
- The Institution of Clinical Trials on Drugs, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China.
| | - Xiao-Song Li
- The Research Institute of Mentality and Sanitation, Hunan Provincial Brain Hospital, Changsha, 410007, Hunan Province, PR China.
| |
Collapse
|
203
|
Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cell Mol Neurobiol 2021; 42:1283-1300. [PMID: 33387119 DOI: 10.1007/s10571-020-01027-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
Collapse
|
204
|
Mukherjee T, Ramaglia V, Abdel-Nour M, Bianchi AA, Tsalikis J, Chau HN, Kalia SK, Kalia LV, Chen JJ, Arnoult D, Gommerman JL, Philpott DJ, Girardin SE. The eIF2α kinase HRI triggers the autophagic clearance of cytosolic protein aggregates. J Biol Chem 2021; 296:100050. [PMID: 33168630 PMCID: PMC7948985 DOI: 10.1074/jbc.ra120.014415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Large cytosolic protein aggregates are removed by two main cellular processes, autophagy and the ubiquitin-proteasome system, and defective clearance of these protein aggregates results in proteotoxicity and cell death. Recently, we found that the eIF2α kinase heme-regulated inhibitory (HRI) induced a cytosolic unfolded protein response to prevent aggregation of innate immune signalosomes, but whether HRI acts as a general sensor of proteotoxicity in the cytosol remains unclear. Here we show that HRI controls autophagy to clear cytosolic protein aggregates when the ubiquitin-proteasome system is inhibited. We further report that silencing the expression of HRI resulted in decreased levels of BAG3 and HSPB8, two proteins involved in chaperone-assisted selective autophagy, suggesting that HRI may control proteostasis in the cytosol at least in part through chaperone-assisted selective autophagy. Moreover, knocking down the expression of HRI resulted in cytotoxic accumulation of overexpressed α-synuclein, a protein known to aggregate in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In agreement with these data, protein aggregate accumulation and microglia activation were observed in the spinal cord white matter of 7-month-old Hri-/- mice as compared with Hri+/+ littermates. Moreover, aged Hri-/- mice showed accumulation of misfolded α-synuclein in the lateral collateral pathway, a region of the sacral spinal cord horn that receives visceral sensory afferents from the bladder and distal colon, a pathological feature common to α-synucleinopathies in humans. Together, these results suggest that HRI contributes to a general cytosolic unfolded protein response that could be leveraged to bolster the clearance of cytotoxic protein aggregates.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mena Abdel-Nour
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Athanasia A Bianchi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Tsalikis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hien N Chau
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jane-Jane Chen
- Institute of Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA
| | - Damien Arnoult
- INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, Villejuif Cedex, France; Université Paris-Saclay, Paris, France
| | | | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
205
|
Ren X, Chen JF. Caffeine and Parkinson's Disease: Multiple Benefits and Emerging Mechanisms. Front Neurosci 2020; 14:602697. [PMID: 33390888 PMCID: PMC7773776 DOI: 10.3389/fnins.2020.602697] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by dopaminergic neurodegeneration, motor impairment and non-motor symptoms. Epidemiological and experimental investigations into potential risk factors have firmly established that dietary factor caffeine, the most-widely consumed psychoactive substance, may exerts not only neuroprotective but a motor and non-motor (cognitive) benefits in PD. These multi-benefits of caffeine in PD are supported by convergence of epidemiological and animal evidence. At least six large prospective epidemiological studies have firmly established a relationship between increased caffeine consumption and decreased risk of developing PD. In addition, animal studies have also demonstrated that caffeine confers neuroprotection against dopaminergic neurodegeneration using PD models of mitochondrial toxins (MPTP, 6-OHDA, and rotenone) and expression of α-synuclein (α-Syn). While caffeine has complex pharmacological profiles, studies with genetic knockout mice have clearly revealed that caffeine’s action is largely mediated by the brain adenosine A2A receptor (A2AR) and confer neuroprotection by modulating neuroinflammation and excitotoxicity and mitochondrial function. Interestingly, recent studies have highlighted emerging new mechanisms including caffeine modulation of α-Syn degradation with enhanced autophagy and caffeine modulation of gut microbiota and gut-brain axis in PD models. Importantly, since the first clinical trial in 2003, United States FDA has finally approved clinical use of the A2AR antagonist istradefylline for the treatment of PD with OFF-time in Sept. 2019. To realize therapeutic potential of caffeine in PD, genetic study of caffeine and risk genes in human population may identify useful pharmacogenetic markers for predicting individual responses to caffeine in PD clinical trials and thus offer a unique opportunity for “personalized medicine” in PD.
Collapse
Affiliation(s)
- Xiangpeng Ren
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China.,Department of Biochemistry, Medical College, Jiaxing University, Jiaxing, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|
206
|
Viral Infection and Autophagy Dysregulation: The Case of HHV-6, EBV and KSHV. Cells 2020; 9:cells9122624. [PMID: 33297368 PMCID: PMC7762304 DOI: 10.3390/cells9122624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Human Herpes Virus-6 (HHV-6), Epstein-Barr Virus (EBV) and Kaposi Sarcoma Herpes Virus (KSHV) are viruses that share with other member of the Herpesvirus family the capacity to interfere with the autophagic process. In this paper, mainly based on the findings of our laboratory, we describe how, through different mechanisms, these viruses converge in reducing autophagy to impair DC immune function and how, by infecting and dysregulating autophagy in different cell types, they promote the pathologies associated with their infection, from the neurodegenerative diseases such Alzheimer’s disease to cancer.
Collapse
|
207
|
Wang Y, Wei N, Li X. Preclinical Evidence and Possible Mechanisms of Baicalein for Rats and Mice With Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2020; 12:277. [PMID: 33101006 PMCID: PMC7546397 DOI: 10.3389/fnagi.2020.00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Baicalein, a major bioactive flavone of Scutellaria baicalensis Georgi, has neuroprotective properties in several animal models of Parkinson's disease (PD). Here, we conducted a systematic review and meta-analysis to assess the available preclinical evidence and possible mechanisms of baicalein for animal models of PD. Ultimately, 20 studies were identified by searching 7 databases from inception to December 2019. Review Manager 5.3 was applied for data analysis. Meta-analyses showed baicalein can significantly improve neurobehavioral function in animal models with PD, including spontaneous motor activity test (n = 5), pole test (n = 2), rotarod test (n = 9), apomorphine-induced rotations test (n = 4), grid test (n = 2), and tremor test (n = 2). Compared with controls, the results of the meta-analysis showed baicalein exerted a significant effect in increasing the frequency of spontaneous activity, prolongating the total time for climbing down the pole, decreasing the number of rotations, prolongating the descent latency, reducing the amplitude, and the frequency in animal models with PD. The possible mechanisms of baicalein for PD are regulating neurotransmitters, adjusting enzyme activity, antioxidation, anti-inflammatory, inhibiting protein aggregation, restorating mitochondrial dysfunction, inhibiting apoptosis, and autophagy. In conclusion, these findings preliminarily demonstrated that baicalein exerts potential neuroprotective effects through multiple signaling pathways in animal models of PD.
Collapse
Affiliation(s)
- Yu Wang
- Research Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Na Wei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xiaoliang Li
- Research Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
208
|
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem 2020; 402:73-88. [PMID: 33544491 DOI: 10.1515/hsz-2020-0231] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.
Collapse
Affiliation(s)
- Simone Wanderoy
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - J Tabitha Hees
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
209
|
Li X, Huang L, Lan J, Feng X, Li P, Wu L, Peng Y. Molecular mechanisms of mitophagy and its roles in neurodegenerative diseases. Pharmacol Res 2020; 163:105240. [PMID: 33053441 DOI: 10.1016/j.phrs.2020.105240] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases are the most common diseases of the nervous system in elderly people, which are currently incurable and cause great burden to families and societies. Mitochondria are the energy factory of the cell and have extremely important effects on neuronal function. The elimination of dysfunctional mitochondria is essential for the mitochondrial metabolic homeostasis, energy supply, and neuronal survival. Recent studies suggest that the impaired mitophagy may lead to the accumulation of damaged mitochondria and therefore contribute to the progression of neurodegenerative diseases. This review mainly focuses on mitophagy, mitochondrial dynamics, and their abnormal changes in neurodegenerative diseases, as well as the therapeutic strategies targeting mitophagy that have shown promise in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Xinnan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Longjian Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Pingping Li
- China National Center for Biotechnology Development, Beijing 100039, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
210
|
Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020; 8:564975. [PMID: 33015059 PMCID: PMC7509445 DOI: 10.3389/fcell.2020.564975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy has dual effects in human diseases: appropriate autophagy may protect cells from stress, while excessive autophagy may cause cell death. Additionally, close interactions exist between autophagy and the Golgi. This review outlines recent advances regarding the role of the Golgi apparatus in autophagy. The signaling processes of autophagy are dependent on the normal function of the Golgi. Specifically, (i) autophagy-related protein 9 is mainly located in the Golgi and forms new autophagosomes in response to stressors; (ii) Golgi fragmentation is induced by Golgi-related proteins and accompanied with autophagy induction; and (iii) the endoplasmic reticulum-Golgi intermediate compartment and the reticular trans-Golgi network play essential roles in autophagosome formation to provide a template for lipidation of microtubule-associated protein 1A/1B-light chain 3 and induce further ubiquitination. Golgi-related proteins regulate formation of autophagosomes, and disrupted formation of autophagy can influence Golgi function. Notably, aberrant autophagy has been demonstrated to be implicated in neurological diseases. Thus, targeted therapies aimed at protecting the Golgi or regulating Golgi proteins might prevent or ameliorate autophagy-related neurological diseases. Further studies are needed to investigate the potential application of Golgi therapy in autophagy-based neurological diseases.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
211
|
Aryal S, Skinner T, Bridges B, Weber JT. The Pathology of Parkinson's Disease and Potential Benefit of Dietary Polyphenols. Molecules 2020; 25:E4382. [PMID: 32987656 PMCID: PMC7582699 DOI: 10.3390/molecules25194382] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by a loss of dopaminergic neurons, leading to bradykinesia, rigidity, tremor at rest, and postural instability, as well as non-motor symptoms such as olfactory impairment, pain, autonomic dysfunction, impaired sleep, fatigue, and behavioral changes. The pathogenesis of PD is believed to involve oxidative stress, disruption to mitochondria, alterations to the protein α-synuclein, and neuroinflammatory processes. There is currently no cure for the disease. Polyphenols are secondary metabolites of plants, which have shown benefit in several experimental models of PD. Intake of polyphenols through diet is also associated with lower PD risk in humans. In this review, we provide an overview of the pathology of PD and the data supporting the potential neuroprotective capacity of increased polyphenols in the diet. Evidence suggests that the intake of dietary polyphenols may inhibit neurodegeneration and the progression of PD. Polyphenols appear to have a positive effect on the gut microbiome, which may decrease inflammation that contributes to the disease. Therefore, a diet rich in polyphenols may decrease the symptoms and increase quality of life in PD patients.
Collapse
Affiliation(s)
| | | | | | - John T. Weber
- School of Pharmacy, Memorial University, St. John’s, NL A1B 3V6, Canada; (S.A.); (T.S.); (B.B.)
| |
Collapse
|
212
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
213
|
Moore MN. Lysosomes, Autophagy, and Hormesis in Cell Physiology, Pathology, and Age-Related Disease. Dose Response 2020; 18:1559325820934227. [PMID: 32684871 PMCID: PMC7343375 DOI: 10.1177/1559325820934227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5'-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael N. Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, United Kingdom
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
- School of Biological & Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
214
|
Barthez M, Poplineau M, Elrefaey M, Caruso N, Graba Y, Saurin AJ. Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation. Sci Rep 2020; 10:9653. [PMID: 32541927 PMCID: PMC7296029 DOI: 10.1038/s41598-020-66377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.
Collapse
Affiliation(s)
- Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marwa Elrefaey
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Nathalie Caruso
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France.
| |
Collapse
|