201
|
Leidel S, Pedrioli PGA, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 2009; 458:228-32. [DOI: 10.1038/nature07643] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 11/14/2008] [Indexed: 11/09/2022]
|
202
|
Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 2009; 32:735-46. [PMID: 19061648 DOI: 10.1016/j.molcel.2008.11.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/20/2008] [Accepted: 11/13/2008] [Indexed: 01/11/2023]
Abstract
We used a quantitative, high-density genetic interaction map, or E-MAP (Epistatic MiniArray Profile), to interrogate the relationships within and between RNA-processing pathways. Due to their complexity and the essential roles of many of the components, these pathways have been difficult to functionally dissect. Here, we report the results for 107,155 individual interactions involving 552 mutations, 166 of which are hypomorphic alleles of essential genes. Our data enabled the discovery of links between components of the mRNA export and splicing machineries and Sem1/Dss1, a component of the 19S proteasome. In particular, we demonstrate that Sem1 has a proteasome-independent role in mRNA export as a functional component of the Sac3-Thp1 complex. Sem1 also interacts with Csn12, a component of the COP9 signalosome. Finally, we show that Csn12 plays a role in pre-mRNA splicing, which is independent of other signalosome components. Thus, Sem1 is involved in three separate and functionally distinct complexes.
Collapse
Affiliation(s)
- Gwendolyn M Wilmes
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Greenwood C, Selth LA, Dirac-Svejstrup AB, Svejstrup JQ. An Iron-Sulfur Cluster Domain in Elp3 Important for the Structural Integrity of Elongator. J Biol Chem 2009; 284:141-149. [DOI: 10.1074/jbc.m805312200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
204
|
Naumanen T, Johansen LD, Coffey ET, Kallunki T. Loss-of-function of IKAP/ELP1: could neuronal migration defect underlie familial dysautonomia? Cell Adh Migr 2008; 2:236-9. [PMID: 19262150 DOI: 10.4161/cam.2.4.6630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Familial dysautonomia (FD) is a hereditary neuronal disease characterized by poor development and progressive degeneration of the sensory and autonomic nervous system. Majority of FD (99.5%) results from a single nucleotide point mutation in the IKBKAP gene encoding IKAP, also known as elongation protein 1 (ELP1). The point mutation leads to variable, tissue specific expression of a truncated IKBKAP mRNA. The appearance of the truncated IKBKAP coincides with a marked reduction of its wild type mRNA leading to decreased IKAP protein levels especially in the sensory and autonomous nervous system. Recently, two independent studies were carried out to establish a cellular model system to study the loss-of-function of IKAP in mammalian cells. Both studies used RNA interference to deplete wild type IKAP from different mammalian cell types. In both studies the depletion of IKAP resulted in a cell migration defect, revealing the importance of IKAP in this process. These studies lead to a common conclusion according to which defective neuronal migration could underlie FD. They gave however two very different explanations of how IKAP would regulate cell migration: via transcriptional regulation and via cytosolic interactions.
Collapse
Affiliation(s)
- Tiina Naumanen
- Biotech Research and Innovation Centre, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
205
|
Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 2008; 9:470. [PMID: 18844986 PMCID: PMC2584109 DOI: 10.1186/1471-2164-9-470] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
Collapse
Affiliation(s)
- Henri Grosjean
- Department of Microbiology, University of Florida, Gainsville, FL 32611, Florida, USA.
| | | | | | | | | |
Collapse
|
206
|
Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 2008; 180:1661-70. [PMID: 18780730 DOI: 10.1534/genetics.108.092932] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several quantitative trait loci (QTL) mapping strategies can successfully identify major-effect loci, but often have poor success detecting loci with minor effects, potentially due to the confounding effects of major loci, epistasis, and limited sample sizes. To overcome such difficulties, we used a targeted backcross mapping strategy that genetically eliminated the effect of a previously identified major QTL underlying high-temperature growth (Htg) in yeast. This strategy facilitated the mapping of three novel QTL contributing to Htg of a clinically derived yeast strain. One QTL, which is linked to the previously identified major-effect QTL, was dissected, and NCS2 was identified as the causative gene. The interaction of the NCS2 QTL with the first major-effect QTL was background dependent, revealing a complex QTL architecture spanning these two linked loci. Such complex architecture suggests that more genes than can be predicted are likely to contribute to quantitative traits. The targeted backcrossing approach overcomes the difficulties posed by sample size, genetic linkage, and epistatic effects and facilitates identification of additional alleles with smaller contributions to complex traits.
Collapse
|
207
|
Nandakumar J, Schwer B, Schaffrath R, Shuman S. RNA repair: an antidote to cytotoxic eukaryal RNA damage. Mol Cell 2008; 31:278-86. [PMID: 18657509 DOI: 10.1016/j.molcel.2008.05.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/10/2008] [Accepted: 05/02/2008] [Indexed: 02/05/2023]
Abstract
RNA healing and sealing enzymes drive informational and stress response pathways entailing repair of programmed 2',3' cyclic PO(4)/5'-OH breaks. Fungal, plant, and phage tRNA ligases use different strategies to discriminate the purposefully broken ends of the anticodon loop. Whereas phage ligase recognizes the tRNA fold, yeast and plant ligases do not and are instead hardwired to seal only the tRNA 3'-OH, 2'-PO(4) ends formed by healing of a cyclic phosphate. tRNA anticodon damage inflicted by secreted ribotoxins such as fungal gamma-toxin underlies a rudimentary innate immune system. Yeast cells are susceptible to gamma-toxin because the sealing domain of yeast tRNA ligase is unable to rectify a break at the modified wobble base of tRNA(Glu(UUC)). Plant andphage tRNA repair enzymes protect yeast from gamma-toxin because they are able to reverse the damage. Our studies underscore how a ribotoxin exploits an Achilles' heel in the target cell's tRNA repair system.
Collapse
|
208
|
Nakai Y, Nakai M, Hayashi H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 2008; 283:27469-27476. [PMID: 18664566 DOI: 10.1074/jbc.m804043200] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The wobble uridine in yeast cytosolic tRNA(Lys2)(UUU) and tRNA(Glu3)(UUC) undergoes a thio-modification at the second position (s(2) modification) and a methoxycarbonylmethyl modification at the fifth position (mcm(5) modification). We previously demonstrated that the cytosolic and mitochondrial iron-sulfur (Fe/S) cluster assembly machineries termed CIA and ISC, including a cysteine desulfurase called Nfs1, were essential for the s(2) modification. However, the cytosolic component that directly participates in this process remains unclear. We found that ubiquitin-like protein Urm1 and ubiquitin-activating enzyme-like protein Uba4, as well as Tuc1 and Tuc2, were strictly required for the s(2) modification. The carboxyl-terminal glycine residue of Urm1 was critical for the s(2) modification, indicating direct involvement of the unique ubiquitin-related system in this process. We also demonstrated that the s(2) and mcm(5) modifications in cytosolic tRNAs influence each other's efficiency. Taken together, our data indicate that the s(2) modification of cytosolic tRNAs is a more complex process that requires additional unidentified components.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-8686.
| | - Masato Nakai
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hideyuki Hayashi
- Department of Biochemistry, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-8686
| |
Collapse
|
209
|
Bär C, Zabel R, Liu S, Stark MJR, Schaffrath R. A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 2008; 69:1221-33. [PMID: 18627462 DOI: 10.1111/j.1365-2958.2008.06350.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Kluyveromyces lactis killer toxin zymocin insensitive 11 (KTI11) gene from Saccharomyces cerevisiae is allelic with the diphthamide synthesis 3 (DPH3) locus. Here, we present evidence that the KTI11 gene product is a versatile partner of proteins and operates in multiple biological processes. Notably, Kti11 immune precipitates contain Elp2 and Elp5, two subunits of the Elongator complex which is involved in transcription, tRNA modification and zymocin toxicity. KTI11 deletion phenocopies Elongator-minus cells and causes antisuppression of nonsense and missense suppressor tRNAs (SUP4, SOE1), zymocin resistance and protection against the tRNase attack of zymocin. In addition and unlike Elongator mutants, kti11 mutants resist diphtheria toxin (DT), protect against ADP-ribosylation of eukaryotic translation elongation factor 2 (eEF2) by DT and induce resistance against sordarin, an eEF2 poisoning antifungal. The latter phenotype applies to all diphthamide mutants (dph1-dph5) tested and Kti11/Dph3 physically interacts with diphthamide synthesis factors Dph1 and Dph2, presumably as part of a trimeric complex. Moreover, we present a separation of function mutation in KTI11, kti11-1, which dissociates zymocin resistance from DT sensitivity. It encodes a C-terminal Kti11 truncation that almost entirely abolishes Elongator interaction without affecting association with Kti13, another Kti11 partner protein.
Collapse
Affiliation(s)
- Christian Bär
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
210
|
Lill R, Mühlenhoff U. Maturation of Iron-Sulfur Proteins in Eukaryotes: Mechanisms, Connected Processes, and Diseases. Annu Rev Biochem 2008; 77:669-700. [DOI: 10.1146/annurev.biochem.76.052705.162653] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps Universität Marburg, Marburg D-35033, Germany;
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps Universität Marburg, Marburg D-35033, Germany;
| |
Collapse
|
211
|
Zabel R, Bär C, Mehlgarten C, Schaffrath R. Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 2008; 69:175-87. [PMID: 18466297 DOI: 10.1111/j.1365-2958.2008.06273.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-tubulin suppressor 1 (ATS1) gene and the killer toxin-insensitive 13 (KTI13) locus from Saccharomyces cerevisiae are allelic. The Ats1/Kti13 gene product interacts with the cell polarity factor Nap1 and promotes growth inhibition of S. cerevisiae by zymocin, a tRNAse toxin complex from Kluyveromyces lactis. Kti13 removal causes zymocin resistance, a trait that is typical of defects in the Elongator complex. Here, we show that Kti13 co-purifies with the Elongator partner protein Kti11 and that the Kti11 interaction, not the Nap1 partnership, requires the C-terminus of Kti13. Moreover, Kti13 functionally relates to roles of the Elongator complex in tRNA wobble uridine modification, tRNA suppression of nonsense (SUP4) and missense (SOE1) mutations and tRNA restriction by zymocin. Also, inactivation of Kti13 or Elongator rescues the thermosensitive growth defect of secretory mutants (sec2-59(ts), sec12-4(ts)), suggesting that Kti13 and Elongator affect secretion processes that depend on the GTP exchange factors Sec2 and Sec12 respectively. Distinct from tandem deletions in KTI13 and Elongator genes, a kti13Delta kti11Delta double deletion induces synthetic sickness or lethality. In sum, our data suggest that Kti13 and Kti11 support Elongator functions and that they both share Elongator-independent role(s) that are important for cell viability.
Collapse
Affiliation(s)
- René Zabel
- Biologicum, Institut für Biologie, Institutsbereich Genetik, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
212
|
The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci U S A 2008; 105:5459-64. [PMID: 18391219 DOI: 10.1073/pnas.0709404105] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modified nucleosides close to the anticodon are important for the proper decoding of mRNA by the ribosome. Particularly, the uridine at the first anticodon position (U34) of glutamate, lysine, and glutamine tRNAs is universally thiolated (S(2)U34), which is proposed to be crucial for both restriction of wobble in the corresponding split codon box and efficient codon-anticodon interaction. Here we show that the highly conserved complex Ctu1-Ctu2 (cytosolic thiouridylase) is responsible for the 2-thiolation of cytosolic tRNAs in the nematode and fission yeast. In both species, inactivation of the complex leads to loss of thiolation on tRNAs and to a thermosensitive decrease of viability associated with marked ploidy abnormalities and aberrant development. Increased level of the corresponding tRNAs suppresses the fission yeast defects, and our data suggest that these defects could result from both misreading and frame shifting during translation. Thus, a translation defect due to unmodified tRNAs results in severe genome instability.
Collapse
|
213
|
Abstract
Growth inhibition of Saccharomyces cerevisiae by the plasmid-encoded trimeric (alphabetagamma) zymocin toxin from dairy yeast, Kluyveromyces lactis, depends on a multistep response pathway in budding yeast. Following early processes that mediate cell-surface contact by the chitinase alpha-subunit of zymocin, later steps enable import of the gamma-toxin tRNase subunit and cleavage of target tRNAs that carry modified U34 (wobble uridine) bases. With the emergence of zymocin-like toxins, continued zymocin research is expected to yield new insights into the evolution of yeast pathosystems and their lethal modes of action.
Collapse
|
214
|
Deregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells. Biochem Pharmacol 2008; 75:2122-34. [PMID: 18430410 DOI: 10.1016/j.bcp.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/06/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis.
Collapse
|
215
|
Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 2008; 28:3301-12. [PMID: 18332122 DOI: 10.1128/mcb.01542-07] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translational decoding properties of tRNAs are modulated by naturally occurring modifications of their nucleosides. Uridines located at the wobble position (nucleoside 34 [U(34)]) in eukaryotic cytoplasmic tRNAs often harbor a 5-methoxycarbonylmethyl (mcm(5)) or a 5-carbamoylmethyl (ncm(5)) side chain and sometimes an additional 2-thio (s(2)) or 2'-O-methyl group. Although a variety of models explaining the role of these modifications have been put forth, their in vivo functions have not been defined. In this study, we utilized recently characterized modification-deficient Saccharomyces cerevisiae cells to test the wobble rules in vivo. We show that mcm(5) and ncm(5) side chains promote decoding of G-ending codons and that concurrent mcm(5) and s(2) groups improve reading of both A- and G-ending codons. Moreover, the observation that the mcm(5)U(34)- and some ncm(5)U(34)-containing tRNAs efficiently read G-ending codons challenges the notion that eukaryotes do not use U-G wobbling.
Collapse
|
216
|
Johansen LD, Naumanen T, Knudsen A, Westerlund N, Gromova I, Junttila M, Nielsen C, Bøttzauw T, Tolkovsky A, Westermarck J, Coffey ET, Jäättelä M, Kallunki T. IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 2008; 121:854-64. [PMID: 18303054 DOI: 10.1242/jcs.013722] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects could be rescued by reintroduction of wild-type IKAP but not by FD-IKAP, a truncated form of IKAP constructed according to the mutation found in the majority of FD patients. Cytosolic IKAP co-purified with proteins involved in cell migration, including filamin A, which is also involved in neuronal migration. Immunostaining of IKAP and filamin A revealed a distinct co-localization of these two proteins in membrane ruffles. Depletion of IKAP resulted in a significant decrease in filamin A localization in membrane ruffles and defective actin cytoskeleton organization, which both could be rescued by the expression of wild-type IKAP but not by FD-IKAP. No downregulation in the protein levels of paxillin or beclin 1, which were recently described as specific transcriptional targets of IKAP, was detected. These results provide evidence for the role of the cytosolic interactions of IKAP in cell adhesion and migration, and support the notion that cell-motility deficiencies could contribute to FD.
Collapse
Affiliation(s)
- Lars Dan Johansen
- Apoptosis Department and Center for Genotoxic Stress, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P. A genetic screen forSaccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 2008; 25:199-217. [DOI: 10.1002/yea.1579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
218
|
Rubin BY, Anderson SL. The molecular basis of familial dysautonomia: overview, new discoveries and implications for directed therapies. Neuromolecular Med 2007; 10:148-56. [PMID: 17985250 DOI: 10.1007/s12017-007-8019-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 01/05/2023]
Abstract
Familial dysautonomia (FD) is a sensory and autonomic neuropathy that affects the development and survival of sensory, sympathetic, and some parasympathetic neurons. It is autosomally inherited and occurs almost exclusively among individuals of Ashkenazi Jewish descent. The pathological and clinical manifestations of FD have been extensively studied and therapeutic modalities have, until recently, focused primarily on addressing the symptoms experienced by those with this fatal disorder. The primary FD-causing mutation is an intronic nucleotide substitution that alters the splicing of the IKBKAP-derived transcript. Recent efforts have resulted in the development of new therapeutic modalities that facilitate the increased production of the correctly spliced transcript and mitigate the symptoms of those with FD. Furthermore, the recent demonstration of the reduced presence of monoamine oxidase A in cells and tissues of individuals with FD has provided new insight into the cause of hypertensive crises experienced by these patients.
Collapse
Affiliation(s)
- Berish Y Rubin
- Department of Biological Sciences, Laboratory for Familial Dysautonomia Research, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA.
| | | |
Collapse
|
219
|
Björk GR, Huang B, Persson OP, Byström AS. A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA (NEW YORK, N.Y.) 2007; 13:1245-55. [PMID: 17592039 PMCID: PMC1924908 DOI: 10.1261/rna.558707] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
220
|
Gardiner J, Barton D, Marc J, Overall R. Potential Role of Tubulin Acetylation and Microtubule-Based Protein Trafficking in Familial Dysautonomia. Traffic 2007; 8:1145-9. [PMID: 17605759 DOI: 10.1111/j.1600-0854.2007.00605.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Familial dysautonomia (FD), a disease of the autonomic and sensory nervous systems, involves mutations in the protein IkappaB kinase complex-associated protein, which is a component of the human Elongator acetylase complex. We suggest a hypothesis in which defects in tubulin acetylation and impairment of microtubule-based protein trafficking may be an underlying cause of FD. In addition, an Arabidopsis homolog of the Elongator subunit ELP3 has been found to bind to the alphabeta-tubulin heterodimer, suggesting that alpha-tubulin may be a cytoplasmic target of Elongator acetylase activity. Studies of synergistic double mutants in yeast indicate a novel role for Elongator in cytoskeletal dynamics, although this is probably because of an effect on actin rather than microtubules. Finally, we suggest that tubulin deacetylase inhibitors may prove useful in the treatment of FD.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, Macleay Building (A12), Science Road, The University of Sydney, Camperdown 2006, Australia.
| | | | | | | |
Collapse
|
221
|
Svejstrup JQ. Elongator complex: how many roles does it play? Curr Opin Cell Biol 2007; 19:331-6. [PMID: 17466506 DOI: 10.1016/j.ceb.2007.04.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/12/2007] [Indexed: 11/29/2022]
Abstract
The multi-subunit Elongator complex was first identified by its association with an RNA polymerase II holoenzyme engaged in transcriptional elongation, and subsequent data have provided further evidence that the complex is involved in histone acetylation and transcription. However, most Elongator is cytoplasmic, and recent data has indicated a role in processes as diverse as exocytosis and tRNA modification. One of the subunits of Elongator is encoded by a gene that is mutated in patients suffering from the severe neurodevelopmental disorder familial dysautonomia.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
222
|
Stark MJR, Stansfield I. 26 Yeast Gene Analysis: The Remaining Challenges. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|