201
|
Ying B, Huang H, Li H, Song M, Wu S, Ying H. Procaine Inhibits Proliferation and Migration and Promotes Cell Apoptosis in Osteosarcoma Cells by Upregulation of MicroRNA-133b. Oncol Res 2017; 25:1463-1470. [PMID: 28251881 PMCID: PMC7841045 DOI: 10.3727/096504017x14878518291077] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Procaine (PCA) is a conventional chemotherapeutic agent for osteosarcoma. Recent studies have proposed that the growth-inhibitory effect of PCA is through regulation of microRNAs (miRNAs). miR-133b has been proven to be a tumor suppressor in osteosarcoma, but whether it is involved in the antitumor effects of PCA on osteosarcoma has not been investigated. In this study, we aimed to explore the effects of PCA on osteosarcoma MG63 cells by regulation of miR-133b, as well as its underlying mechanisms. MG63 cells were treated with different concentrations of PCA, and cell viability, apoptosis, and miR-133b expression were then detected by MTT, flow cytometry, and qRT-PCR, respectively. Cells were then transfected with the miR-133b inhibitor and treated with 2 μM PCA. Thereafter, cell viability, migration, and apoptosis were detected. Analysis of signaling pathways was detected by Western blot. Our results showed that PCA significantly inhibited cell viability and promoted apoptosis and the expression level of miR-133b in a dose-dependent manner (p < 0.05 or p < 0.01). Moreover, we observed that PCA + miR-133b inhibitor dramatically reversed the effects of PCA on cell viability, apoptosis, and migration (p < 0.05 or p < 0.01). In addition, PCA significantly decreased the levels of p/t-AKT (p308 or p473), p/t-ERK, and p/t-S6, whereas PCA + miR-133b inhibitor rescued these effects. Our results suggest that PCA inhibits proliferation and migration but promotes apoptosis in osteosarcoma cells by upregulation of miR-133b. These effects may be achieved by inactivation of the AKT/ERK pathways.
Collapse
Affiliation(s)
- Boda Ying
- *Norman Bethune Health Science Center of Jilin University, Changchun, P.R. China
| | - Hong Huang
- †Department of Orthopedics, China–Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hongfei Li
- *Norman Bethune Health Science Center of Jilin University, Changchun, P.R. China
| | - Meng Song
- *Norman Bethune Health Science Center of Jilin University, Changchun, P.R. China
| | - Sizhan Wu
- *Norman Bethune Health Science Center of Jilin University, Changchun, P.R. China
| | - Hongliang Ying
- †Department of Orthopedics, China–Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
202
|
Wen J, Quitadamo A, Hall B, Shi X. Epistasis analysis of microRNAs on pathological stages in colon cancer based on an Empirical Bayesian Elastic Net method. BMC Genomics 2017. [PMID: 29513198 PMCID: PMC5657052 DOI: 10.1186/s12864-017-4130-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Colon cancer is a leading cause of worldwide cancer death. It has become clear that microRNAs (miRNAs) play a role in the progress of colon cancer and understanding the effect of miRNAs on tumorigenesis could lead to better prognosis and improved treatment. However, most studies have focused on studying differentially expressed miRNAs between tumor and non-tumor samples or between stages in tumor tissue. Limited work has conducted to study the interactions or epistasis between miRNAs and how the epistasis brings about effect on tumor progression. In this study, we investigate the main and pair-wise epistatic effects of miRNAs on the pathological stages of colon cancer using datasets from The Cancer Genome Atlas. Results We develop a workflow composed of multiple steps for feature selection based on the Empirical Bayesian Elastic Net (EBEN) method. First, we identify the main effects using a model with only main effect on the phenotype. Second, a corrected phenotype is calculated by removing the significant main effect from the original phenotype. Third, we select features with epistatic effect on the corrected phenotype. Finally, we run the full model with main and epistatic effects on the previously selected main and epistatic features. Using the multi-step workflow, we identify a set of miRNAs with main and epistatic effect on the pathological stages of colon cancer. Many of miRNAs with main effect on colon cancer have been previously reported to be associated with colon cancer, and the majority of the epistatic miRNAs share common target genes that could explain their epistasis effect on the pathological stages of colon cancer. We also find many of the target genes of detected miRNAs are associated with colon cancer. Go Ontology Enrichment Analysis of the experimentally validates targets of main and epistatic miRNAs, shows that these target genes are enriched for biological processes associated with cancer progression. Conclusion Our results provide a set of candidate miRNAs associated with colon cancer progression that could have potential translational and therapeutic utility. Our analysis workflow offers a new opportunity to efficiently explore epistatic interactions among genetic and epigenetic factors that could be associated with human diseases. Furthermore, our workflow is flexible and can be applied to analyze the main and epistatic effect of various genetic and epigenetic factors on a wide range of phenotypes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4130-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Wen
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Andrew Quitadamo
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Benika Hall
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xinghua Shi
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
203
|
Li Z, Meng Q, Pan A, Wu X, Cui J, Wang Y, Li L. MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Oncotarget 2017; 8:19455-19466. [PMID: 28038450 PMCID: PMC5386697 DOI: 10.18632/oncotarget.14307] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
Lacking of treatment methods for the patients with triple negative breast cancer (TNBC) underscores the pivotal needs to further understand its biology as well as to find better biomarkers and develop novel therapeutic strategies. Increasing evidences support that aberrantly expressed microRNAs (miRNAs) are involved in tumorigenesis and may serve as biomarkers for diagnostic and prognostic purposes of various cancers. In current study, we found that miR-455-3p and miR-196a-5p were intensively overexpressed in TNBC compared with the hormone receptor (HR) positive breast cancer whereas miR-425-5p was down-regulated by miRNA microarray analysis. qRT-PCR analysis confirmed that the expression of miR-455-3p in TNBC cell lines MDA-MB-231 and MDA-MB-468 was higher than that in HR positive breast cancer cell line MCF-7(p<0.01). Functional experiments in vitro showed that miR-455-3p enhanced cell proliferative, invasive and migrational abilities in TNBC cell lines. miRNA targets prediction showed SMAD2, LTBR and etoposide induced 2.4 (EI24) were potential target genes of miR-455-3p, and then it was confirmed by qRT-PCR assay. Dual luciferase reporter assay showed the specific binding of miR-455-3p to 3′ UTR of EI24 in TNBC. Then we found miR-455-3p inhibited the EI24 expression at the levels of mRNA and protein. Through small interfering RNA (siRNA) targeting EI24 gene, there were strengthened capabilities of invasion and migration of TNBC cells, and increased expression of EI24 had the inverse effects. In conclusion, the data suggest that miRNA455-3p promotes invasion and migration by targeting tumor suppressor EI24 and might be a potential prognostic biomarker and therapeutic target in TNBC.
Collapse
Affiliation(s)
- Zhishuang Li
- Department of Pathology, Shandong University, School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Qingyong Meng
- The No. 2 People's Hospital of Jinan, Jinan, Shandong, 250001, P.R. China
| | - Aifeng Pan
- Department of Pathology, Shandong University, School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Xiaojuan Wu
- Department of Pathology, Shandong University, School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Jingjing Cui
- Department of Thoracic Surgery, Shandong University, Qilu Hospital, Jinan, Shandong, 250012, P.R. China
| | - Yan Wang
- Department of Pathology, Shandong University, School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Li Li
- Department of Pathology, Shandong University, School of Medicine, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
204
|
Effects of microRNA-136 on melanoma cell proliferation, apoptosis, and epithelial-mesenchymal transition by targetting PMEL through the Wnt signaling pathway. Biosci Rep 2017; 37:BSR20170743. [PMID: 28724603 PMCID: PMC5587917 DOI: 10.1042/bsr20170743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The study aims to evaluate the effects of miR-136 on the proliferation, apoptosis, and epithelial–mesenchymal transition (EMT) of melanoma cells by targetting premelanosome protein (PMEL) through the Wnt signaling pathway. After establishment of melanoma mouse models, melanoma (model group) and normal tissues (normal group) were collected. Immunohistochemistry was performed to determine PMEL protein concentration. Mouse melanoma cells were assigned into control, blank, negative control (NC), miR-136 mimics, miR-136 inhibitors, siRNA-PMEL, and miR-136 inhibitors + siRNA-PMEL, LiC1 (Wnt signaling pathway activator), and siRNA-PMEL+ LiCl groups. MTT, Scratch test, Transwell assay, and flow cytometry were performed to measure cell proliferation, migration, invasion, and apoptosis. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to evaluate miR-136, PMEL, β-catenin, Wnt3a, Bcl-2, Bax, Caspase, E-cadherin, and N-cadherin expressions. PMEL is highly expressed in melanoma tissues. MiR-136, Bax, Caspase, and E-cadherin expressions decreased in the model group, whereas PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions increased. Bax, Caspase, and E-cadherin expressions increased in the miR-136 mimics and siRNA-PMEL groups, whereas the expressions decreased in the miR-136 inhibitors group and LiC1 group. PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions, cell proliferation, migration, and invasion decreased, and the apoptosis rate inceased in the miR-136 mimics and siRNA-PMEL groups; whereas the tendencies were opposite to those in the miR-136 inhibitors group and LiC1 group. In the siRNA-PMEL+ LiCl group, PMEL expression decreased. These findings indicated that overexpression of miR-136 inhibits melanoma cell EMT, proliferation, migration, invasion, and promotes apoptosis by targetting PMEL through down-regulation of the Wnt signaling pathway.
Collapse
|
205
|
Chang YJ, Tseng CY, Lin PY, Chuang YC, Chao MW. Acute exposure to DEHP metabolite, MEHP cause genotoxicity, mutagenesis and carcinogenicity in mammalian Chinese hamster ovary cells. Carcinogenesis 2017; 38:336-345. [PMID: 28426879 DOI: 10.1093/carcin/bgx009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), the common plasticizer used in the production of polyvinyl chloride, can be converted to the more potent metabolite mono-ethylhexyl phthalate (MEHP). Epidemiological studies have shown an association with elevated induction of rat hepatic cancer and reproductive toxicity in response to MEHP exposure. However, the mechanism of genotoxicity and carcinogenicity induced by MEHP treatment remains unclear. As a means to elucidate the mechanisms of action, lethality and mutagenicity in the adenine phosphoribosyltransferase (aprt+/-) gene induced in several CHO cell types by MEHP were assessed. Dose-response relationships were determined in the parental AA8 cell line, its nucleotide repair-deficient UV5 and base repair-deficient EM9 subclones, and also in AS52 cells harboring the bacterial guanine-hypoxanthine phosphoribosyltransferase (gpt) gene and its derived AS52-XPD-knockdown and AS52-PARP-1-knockdown cells. Treatment of AS52 with MEHP led to intracellular production of reactive oxygen species (ROS) and DNA strand breaks in a dose-dependent manner. Separately, mutations in the gpt gene of AS52 cells were characterized and found to be dominated by G:C to A:T and A:T to G:C transitions. Independent AS52-mutant cell (ASMC) clones were collected for the sequential in vivo xenograft tumorigenic studies, 4 of total 20 clones had aggressive tumor growth. Moreover, microarray analysis indicated miR-let-7a and miR-125b downregulated in ASMC, which might raise oncogenic MYC and RAS level and activate ErbB pathway. Comparative evaluation of the results indicates that the principal mechanism of this mutagenic action is probably to be through generation of ROS, causing base excision damage resulting in carcinogenicity.
Collapse
Affiliation(s)
- Yu-Jung Chang
- Department of Bioscience Technology, College of Science
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering and.,Center of Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Pei-Ying Lin
- Department of Bioscience Technology, College of Science
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, College of Engineering and
| | - Ming-Wei Chao
- Department of Bioscience Technology, College of Science.,Center of Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
206
|
Yeung CLA, Tsang TY, Yau PL, Kwok TT. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget 2017; 8:12158-12173. [PMID: 28077801 PMCID: PMC5355333 DOI: 10.18632/oncotarget.14555] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.
Collapse
Affiliation(s)
- Chi Lam Au Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tsun Yee Tsang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pak Lun Yau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tim Tak Kwok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
207
|
A New Network-Based Strategy for Predicting the Potential miRNA-mRNA Interactions in Tumorigenesis. Int J Genomics 2017; 2017:3538568. [PMID: 28831388 PMCID: PMC5558674 DOI: 10.1155/2017/3538568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023] Open
Abstract
MicroRNA (miRNA) plays an important role in the degradation and inhibition of mRNAs and is a kind of essential drug targets for cancer therapy. To facilitate the clinical cancer research, we proposed a network-based strategy to identify the cancer-related miRNAs and to predict their targeted genes based on the gene expression profiles. The strategy was validated by using the data sets of acute myeloid leukemia (AML), breast invasive carcinoma (BRCA), and kidney renal clear cell carcinoma (KIRC). The results showed that in the top 20 miRNAs ranked by their degrees, 90.0% (18/20), 70.0% (14/20), and 70.0% (14/20) miRNAs were found to be associated with the cancers for AML, BRCA, and KIRC, respectively. The KEGG pathways and GO terms enriched with the genes that were predicted as the targets of the cancer-related miRNAs were significantly associated with the biological processes of cancers. In addition, several genes, which were predicted to be regulated by more than three miRNAs, were identified to be the potential drug targets annotated by using the human protein atlas database. Our results demonstrated that the proposed strategy can be helpful for predicting the miRNA-mRNA interactions in tumorigenesis and identifying the cancer-related miRNAs as the potential drug targets.
Collapse
|
208
|
Wang Y, Zhang Y, Yang T, Zhao W, Wang N, Li P, Zeng X, Zhang W. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget 2017; 8:59417-59434. [PMID: 28938647 PMCID: PMC5601743 DOI: 10.18632/oncotarget.19727] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various biological processes and diseases including osteosarcoma. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overly expressed in osteosarcoma. But the function and mechanism it works on in osteosarcoma proliferation and metastasis mediated by Rho associated coiled-coil containing protein kinase 1 (ROCK1) and Rho associated coiled-coil containing protein kinase 2 (ROCK2) remain unclear. In the present study, an elevated MALAT1 was found in osteosarcoma tissues and cell lines, and the elevated MALAT1 was correlated with a poor prognosis in osteosarcoma patients. The functional experiments show that a decreased MALAT1 could remarkably inhibit osteosarcoma cell metastasis and proliferation but induce cell cycle arrest, indicating that MALAT1 functioned as an oncogene in osteosarcoma. Furthermore, we confirmed that MALAT1 and ROCK1/ROCK2 which were targeted by microRNA-144-3p (miR-144-3p) shared the same miR-144-3p combining site. Furthermore, the constructed luciferase assay verified that MALAT1 was a target of miR-144-3p. Additionally, the results of a qRT-PCR demonstrated that MALAT1 and miR-144-3p repressed each other's expression in a reciprocal manner. Finally, we affirmed that an overexpression of MALAT1 inhibited ROCK1/ROCK2 expression and its mediated metastasis and proliferation by working as a competitive endogenous RNA (ceRNA) via miR-144-3p. In summary, the findings of this study based on the ceRNA theory, combining the research foundation of miR-144-3p, ROCK1 and ROCK2, taking MALAT1 as a new point of study, provided new insights into molecular level proliferation reversal and metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Yong Wang
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Yueyang Zhang
- Department of Pathology, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Ningning Wang
- The 2nd Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Pengcheng Li
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Xiandong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| |
Collapse
|
209
|
Yue Z, Zhou Y, Zhao P, Chen Y, Yuan Y, Jing Y, Wang X. p53 Deletion promotes myeloma cells invasion by upregulating miR19a/CXCR5. Leuk Res 2017; 60:115-122. [PMID: 28783539 DOI: 10.1016/j.leukres.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 01/07/2023]
Abstract
P53 deletion has been identified as one of the few factors that defined high risk and poor prognosis in MM. It has been reported p53 deletion is associated with resistance to chemotherapy and organ infiltrations of MM. However, p53 deletion in the migration and dissemination of MM cells has not been totally elucidated. In this research, first, we investigated whether p53 is associated with migration of MM cells. We found that p53 regulates the migration of NCI-H929 cells with wild-type p53 but not U266 cells with mutated-type p53. Next, we investigated the related mechanism by which p53 regulates the migration. We found that down-regulation of p53 reduced adhesion of NCI-H929 cells to the BM stroma via decreased expression of E-cadherin and increased EMT-regulating proteins. Further study have identified the miR-19a/CXCR5 pathway as a candidate p53-induced migration mechanism. In conclusion, we have demonstrated for the first time the critical value of p53 deletion in MM cell migration and dissemination, as well as the acquisition of an EMT-like phenotype. Our research provides new insights into the function of p53 in migration of MM and suggests p53/miRNA19a/CXCR5 may provide potentially therapeutic targets for the treatment of myeloma with p53 deletion.
Collapse
Affiliation(s)
- Zhijie Yue
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yongxia Zhou
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Pan Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yafang Chen
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Ying Yuan
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yaoyao Jing
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China.
| |
Collapse
|
210
|
Zheng W, Zhou Y, Lu J, Xu H, Lei L, Chen C, Zhao J, Xu L. The prognostic value of miR-126 expression in non-small-cell lung cancer: a meta-analysis. Cancer Cell Int 2017; 17:71. [PMID: 28725162 PMCID: PMC5513344 DOI: 10.1186/s12935-017-0440-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death. Growing evidence from recent studies have shown indicated that microRNA-126 (miR-126) played an important role in the progression of NSCLC. However, the potential value of miR-126 expression in prognosis of NSCLC remains to be fully elucidated. Here, we carried out a meta-analysis to assess the potential prognostic value of miR-126 for NSCLC. METHODS PubMed, Embase, the Cochrane library, Web of Science, CNKI and WanFang database, as well as the reference of included studies, were searched to recognize pertinent studies until April 30, 2017. New castle-Ottawa scale was used to evaluate the quality of studies. Pooled hazard ratio (HR) with 95% confidence interval (CI) for overall survival (OS) was extracted by using a fixed-effects or a random-effects model on the basis of heterogeneity. Publication bias was evaluated by using Begg's tests. RESULTS We identified four eligible trials involving 666 non-small-cell lung cancer patients in this meta-analysis. The results indicated that a high level of miR-126 played a favorable role in the overall survival (HR 0.73, 95% CI 0.61-0.86, fixed-effects model). There was no bias existed in this study. CONCLUSIONS Our study showed that high expression level of miR-126 was a promising positive factor for OS for non-small cell lung cancer patients, and miR-126 might be a potential target for non-small-cell lung cancer therapy in the future.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, 563000 China
| | - Jia Lu
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Liangyu Lei
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| |
Collapse
|
211
|
Zheng J, Ge P, Liu X, Wei J, Wu G, Li X. MiR-136 inhibits gastric cancer-specific peritoneal metastasis by targeting HOXC10. Tumour Biol 2017; 39:1010428317706207. [PMID: 28656883 DOI: 10.1177/1010428317706207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Functions of microRNAs have been characterized in the embryologic, physiologic, and oncogenic processes, but the role of microRNAs in mediating tumor-specific organ metastasis was addressed only recently and still absent in gastric cancer peritoneal metastasis. Here, we used the microarray analysis to define the gastric cancer peritoneal metastasis-related microRNAs from highly peritoneal metastatic derivatives (GC-9811P cells) and the parental GC-9811 human gastric cancer cells. MiR-136 was found to be decreased in all peritoneal metastatic sublines when compared with that in the parental line. We further confirmed that miR-136 expression is frequently downregulated in gastric cancer peritoneal metastasis cells and tissues and its low expression is significantly associated with more peritoneal metastasis and worse prognosis. Moreover, restoring the expression of miR-136 could inhibit gastric cancer peritoneal metastasis in vitro and in vivo. Subsequent investigation characterized HOXC10 as a direct target of miR-136. In addition, knockdown of HOXC10 reduced GC-9811P cell migration and invasion, similar to the phenotype observed with miR-136 restoration in these cells, indicating that HOXC10 functions as a metastasis promoter in gastric cancer peritoneal metastasis. Upregulation of HOXC10 in parental GC-9811 cells resulted in a dramatic reduction of in vitro migration, invasion, and in vivo peritoneal metastasis. Furthermore, our results showed that ectopic expression of HOXC10 could reverse inhibition of metastasis by overexpressed miR-136 in GC-9811P cells. Our findings provide new insights into the role of miR-136 in the gastric cancer-specific peritoneal metastasis and implicate the potential application of miR-136 in gastric cancer peritoneal metastasis therapy.
Collapse
Affiliation(s)
- Jianyong Zheng
- 1 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Peng Ge
- 1 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China.,2 Xi'an Central Hospital, Xi'an, China
| | - Xiaonan Liu
- 1 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jiangpeng Wei
- 1 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Guosheng Wu
- 1 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xiaohua Li
- 1 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
212
|
Different levels of let-7d expression modulate response of FaDu cells to irradiation and chemotherapeutics. PLoS One 2017; 12:e0180265. [PMID: 28665983 PMCID: PMC5493379 DOI: 10.1371/journal.pone.0180265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
The implication of the let-7 family in cancer development is multifaceted. The family acts as tumor suppressor miRNA although overexpression of let-7 has also been described in many types of cancer, including head and neck squamous cell carcinoma (HNSCC). The aim of this study includes whether different expression levels of let-7d has an influence on chemo- and radiosensitivity. FaDu cell line models with a gradually increased level of let-7d (models from A to E) were generated with the lentiviral system. Expression levels of pluripotency, chemo-radioresistance/apoptosis, and targets of mRNAs were analyzed by real-time reverse transcription-PCR (qRT-PCR). Radiosensitivity was analyzed using a clonogenic assay after irradiation. Response to cisplatin, 5-FU, doxorubicin, and paclitaxel was done with MTT assay. Statistically significant decrease of K-RAS (p = 0.0369) and CASPASE3 (p = 0.0342) were observed with the growing expression level of let-7d. Cisplatin, 5-FU and doxorubicin caused similar decreased of cell survival with the increase of let-7d level (p = 0.004, post-trend p = 0.046; p = 0.004, post trend p = 0.0005 and p<0.0001, post trend p = 0.0001, respectively). All models were resistant to paclitaxel, irrespective of let-7d expression levels. Only two of the generated models (A and C) were radiosensitive (p = 0.0002). Conclusion: the above results indicated that the level of let-7d expression is an important factor for cell response to irradiation and chemotherapeutics.
Collapse
|
213
|
Cao X, Cai Z, Liu J, Zhao Y, Wang X, Li X, Xia H. miRNA‑504 inhibits p53‑dependent vascular smooth muscle cell apoptosis and may prevent aneurysm formation. Mol Med Rep 2017; 16:2570-2578. [PMID: 28677789 PMCID: PMC5548046 DOI: 10.3892/mmr.2017.6873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common disease that is associated with the proliferation and apoptosis of vascular smooth muscle cells (VSMCs). VSMCs are regulated by microRNAs (miRNA). The aim of the present study was to identify miRNA sequences that regulate aortic SMCs during AAA. miRNA-504 was identified using a miRNA PCR array and by reverse transcription-quantitative polymerase chain reaction analysis, and its expression levels were observed to be downregulated in the aortic cells derived from patients with AAA when compared with controls. Transfection of SMCs with pMSCV-miRNA-504 vector was performed, and cell proliferation and the expression levels of proliferating cell nuclear antigen (PCNA), replication factor C subunit 4 (RFC4), B-cell lymphoma-2 (Bcl-2) and caspase-3/9 were measured by western blotting. The mechanisms underlying the effects of miRNA-504 was then analyzed. The results demonstrated that overexpression of miRNA-504 significantly upregulated the expression levels of PCNA, RFC4 and Bcl-2, while caspase-3/9 expression was significantly inhibited when compared with non-targeting controls. In addition, miRNA-504 overexpression was observed to promote the proliferation of SMCs. The expression level of the tumor suppressor, p53, which is known to be a direct target of miRNA-504, was inhibited following transfection of SMCs with pMSCV-miRNA-504. In addition, the expression of the downstream targets of p53, p21 and Bcl-like protein-4, were significantly reduced following overexpression of miRNA-504. These results revealed the anti-apoptotic role of miRNA-504 in SMCs derived from patients with AAA via direct targeting of p53.
Collapse
Affiliation(s)
- Xue Cao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Zhenguo Cai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Junyan Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Yanru Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Xin Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Hongyuan Xia
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| |
Collapse
|
214
|
Zhang J, Wu W, Xu S, Zhang J, Zhang J, Yu Q, Jiao Y, Wang Y, Lu A, You Y, Zhang J, Lu X. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12. Tumour Biol 2017; 39:1010428317705766. [PMID: 28618952 DOI: 10.1177/1010428317705766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.
Collapse
Affiliation(s)
- Jie Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weining Wu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuo Xu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiale Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qun Yu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuanyuan Jiao
- 2 Department of Hematology, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Yingyi Wang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ailin Lu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongping You
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Junxia Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoming Lu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
215
|
Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer. Oncotarget 2017; 8:60149-60158. [PMID: 28947960 PMCID: PMC5601128 DOI: 10.18632/oncotarget.18557] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Currently available studies have suggested that a number of exosome-encapsulated microRNAs (miRNAs) are recognized as stable biomarkers for cancers. However, little is known about the effect of exosomal miRNAs on colorectal cancer (CRC). The aim of study is to identify specific miRNAs in serum exosomes, which may serve as potential diagnostic and prognostic biomarkers and therapeutic targets for CRC. Microarray analyses of miRNAs in serum exosomes from 3 primary CRC patients and 3 healthy controls were performed. Those differentially expressed exosome-encapsulated miRNAs were verified in exosome-enriched serum samples from 77 CRC patients and 20 healthy controls by quantitative real-time PCR (qRT-PCR). A total of 39 aberrantly expressed miRNAs in serum exosomes were identified by microarray analysis. After confirmation by qRT-PCR, we found that 5 exosome-encapsulated miRNAs (miR-638, miR-5787, miR-8075, miR-6869-5p and miR-548c-5p) were significantly down-regulated, while 2 exosome-encapsulated miRNAs (miR-486-5p and miR-3180-5p) were significantly up-regulated in serum. Decreased levels of miR-638 in serum exosomes were associated with increased risk of liver metastasis and later TNM stage of CRC. Networks analyses revealed that 5 aberrantly expressed miRNAs (miR-638, miR-5787, miR-8075, miR-6869-5p, and miR-548c-5p) might be involved in the process of glucose metabolism in CRC. The present study shows the specific serum profile of exosome-encapsulated miRNAs in CRC. Those specific miRNAs in serum exosomes may serve as disease biomarkers and novel therapeutic targets for CRC.
Collapse
|
216
|
Nawaz Z, Patil V, Thinagararjan S, Rao SA, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K. Impact of somatic copy number alterations on the glioblastoma miRNome: miR-4484 is a genomically deleted tumour suppressor. Mol Oncol 2017; 11:927-944. [PMID: 28378523 PMCID: PMC5537698 DOI: 10.1002/1878-0261.12060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and most malignant primary brain tumour in adults. GBMs have a unique landscape of somatic copy number alterations (SCNAs), with the concomitant appearance of numerous driver amplifications and deletions. Here, we examined the genomic regions harbouring SCNAs and their impact on the GBM miRNome. We found that 40% of SCNA events covering 70–88% of the genomically altered regions, as identified by GISTIC and RAE algorithms, carried miRNA genes. Of 1426 annotated mature miRNAs analysed, ~ 14% (n = 198) were mapped to such fragile loci. Further, we identified an intragenic miRNA, miR‐4484 located on chromosome‐10, as a deleted and downregulated miRNA in GBM. miR‐4484 exhibited a strong positive correlation with the expression of its host gene uroporphyrinogen III synthase (UROS), thereby indicating that the loss of miR‐4484 is a codeletion event in GBM. Overexpression of miR‐4484 reduced the colony‐forming ability and suppressed the migratory capacity of glioma cells. Analysis of the RNA‐seq‐derived transcriptome upon exogenous miR‐4484 overexpression in conjunction with an integrative bioinformatics approach revealed several putative targets of miR‐4484. Unbiased functional enrichment of these targets through DAVID identified a cohort of important gene ontology terms, which possibly explain the functional role of miR‐4484 in gliomagenesis. Selected targets were validated and, importantly, were found to be upregulated in GBM. In brief, our study identified a panel of miRNAs that are likely to be regulated by genomic deletions and amplifications. Further, miR‐4484 was found to be deleted and acts as a tumour suppressor miRNA in GBM.
Collapse
Affiliation(s)
- Zahid Nawaz
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Soumya A Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Alangar S Hegde
- Department of Neurosurgery, Sri Satya Sai Institute of Higher Medical Sciences, Bangalore, Karnataka, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
217
|
Wu D, Niu X, Tao J, Li P, Lu Q, Xu A, Chen W, Wang Z. MicroRNA-379-5p plays a tumor-suppressive role in human bladder cancer growth and metastasis by directly targeting MDM2. Oncol Rep 2017; 37:3502-3508. [PMID: 28498468 DOI: 10.3892/or.2017.5607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Bladder cancer is the second most common urological malignancy in the US and is the most frequently diagnosed urological malignancy in China. An increasing amount of evidence indicates that microRNAs perform extremely important functions in many biological processes related to the formation and progression of cancers, including bladder cancer. Previous studies have reported that microRNA‑379-5p (miR-379-5p) is involved in tumour initiation and development in human cancers. However, the expression pattern, biological functions and the underlying mechanisms of miR-379-5p in bladder cancer remain unknown. The present study demonstrated that the expression levels of miR‑379-5p in bladder cancer tissues and cell lines were lower than the levels in adjacent normal tissues and the human bladder epithelial immortalized SV-HUC-1 cell line. Restoration of the expression of miR-379-5p inhibited bladder cancer cell proliferation, migration and invasion. Mouse double minute 2 (MDM2) was identified as a direct target gene of miR-379-5p. Furthermore, similar to miR-379-5p overexpression in bladder cancer cells, inhibition of MDM2 exerted tumor-suppressive effects. Rescue experiments showed that upregulation of MDM2 reversed the inhibitory effects of miR-379-5p on bladder cancer cell proliferation, migration and invasion. MDM2 was highly expressed and inversely correlated with miR-379-5p expression in bladder cancer tissues. These findings suggest that the miR-379-5p/MDM2 pathway plays an important role in bladder cancer and could serve as a potential candidate for bladder cancer therapeutics.
Collapse
Affiliation(s)
- Deyao Wu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiaobing Niu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jun Tao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pengchao Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Qiang Lu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei Chen
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
218
|
Wang H, Zhi H, Ma D, Li T. MiR-217 promoted the proliferation and invasion of glioblastoma by repressing YWHAG. Cytokine 2017; 92:93-102. [DOI: 10.1016/j.cyto.2016.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
|
219
|
Wu N, Zhu Q, Chen B, Gao J, Xu Z, Li D. High-throughput sequencing of pituitary and hypothalamic microRNA transcriptome associated with high rate of egg production. BMC Genomics 2017; 18:255. [PMID: 28335741 PMCID: PMC5364632 DOI: 10.1186/s12864-017-3644-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/18/2017] [Indexed: 01/21/2023] Open
Abstract
Background MicroRNAs exist widely in viruses, plants and animals. As endogenous small non-coding RNAs, miRNAs regulate a variety of biological processes. Tissue miRNA expression studies have discovered numerous functions for miRNAs in various tissues of chicken, but the regulation of miRNAs in chicken pituitary and hypothalamic development related to high and low egg-laying performance has remained unclear. Results In this study, using high-throughput sequencing technology, we sequenced two tissues (pituitary and hypothalamus) in 3 high- and 3 low-rate egg production Luhua chickens at the age of 300 days. By comparing low- and high-rate egg production chickens, 46 known miRNAs and 27 novel miRNAs were identified as differentially expressed (P < 0.05). Six differentially expressed known miRNAs, which are expressed in both tissues, were used in RT-qPCR validation and SNP detection. Among them, seven SNPs in two miRNA precursors (gga-miR-1684a and gga-miR-1434) were found that might enhance or reduce the production of the mature miRNAs. In addition, 124 and 30 reciprocally expressed miRNA-target pairs were identified by RNA-seq in pituitary and hypothalamic tissues, respectively and randomly selected candidate miRNA and miRNA-target pairs were validated by RT-qPCR in Jiuyuan black fowl. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation illustrated that a large number of egg laying-related pathways were enriched in the high-rate egg production chickens, including ovarian steroidogenesis and steroid hormone biosynthesis. Conclusions These differentially expressed miRNAs and their predicted target genes, especially identified reciprocally expressed miRNA-target pairs, advance the study of miRNA function and egg production associated miRNA identification. The analysis of the miRNA-related SNPs and their effects provided insights into the effects of SNPs on miRNA biogenesis and function. The data generated in this study will further our understanding of miRNA regulation mechanisms in the chicken egg-laying process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3644-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China, 610000
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China, 610000
| | - Binlong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China, 610000
| | - Jian Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China, 610000
| | - Zhongxian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China, 610000
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China, 610000.
| |
Collapse
|
220
|
The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis. Cell Res 2017; 27:416-439. [PMID: 28244490 DOI: 10.1038/cr.2017.26] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA) biogenesis is finely controlled by complex layers of post-transcriptional regulators, including RNA-binding proteins (RBPs). Here, we show that an RBP, QKI5, activates the processing of primary miR-124-1 (pri-124-1) during erythropoiesis. QKI5 recognizes a distal QKI response element and recruits Microprocessor through interaction with DGCR8. Furthermore, the recruited Microprocessor is brought to pri-124-1 stem loops by a spatial RNA-RNA interaction between two complementary sequences. Thus, mutations disrupting their base-pairing affect the strength of QKI5 activation. When erythropoiesis proceeds, the concomitant decrease of QKI5 releases Microprocessor from pri-124-1 and reduces mature miR-124 levels to facilitate erythrocyte maturation. Mechanistically, miR-124 targets TAL1 and c-MYB, two transcription factors involved in normal erythropoiesis. Importantly, this QKI5-mediated regulation also gives rise to a unique miRNA signature, which is required for erythroid differentiation. Taken together, these results demonstrate the pivotal role of QKI5 in primary miRNA processing during erythropoiesis and provide new insights into how a distal element on primary transcripts affects miRNA biogenesis.
Collapse
|
221
|
Li SH, Chen L, Pang XM, Su SY, Zhou X, Chen CY, Huang LG, Li JP, Liu JL. Decreased miR-146a expression in acute ischemic stroke directly targets the Fbxl10 mRNA and is involved in modulating apoptosis. Neurochem Int 2017; 107:156-167. [PMID: 28202285 DOI: 10.1016/j.neuint.2017.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/14/2017] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND miR-146a, a strong pro-apoptotic factor in some pathophysiological processes, is reported to be involved in ischemic stroke (IS), though its role remains unclear. Fbxl10 is an active anti-apoptotic factor and a predicted target of miR-146a. We hypothesized that dysregulation of miR-146a contributes to ischemic injury by targeting Fbxl10. METHODS Circulating miRNAs were detected by miRNA microarray and qRT-PCR. miR-146a targets were predicted using bioinformatics and confirmed with a dual luciferase reporter assay. We used an in vitro ischemic model of oxygen-glucose deprivation and reperfusion (OGD/R) to mimic cerebral ischemia/reperfusion (I/R) conditions. Expression of miR-146a, Fbxl10 and Bcl2l2 mRNAs, and Fbxl10 and Bcl2l2 proteins was verified by qRT-PCR and Western blotting. The effects of miR-146a on neuronal cell apoptosis were evaluated by flow cytometry. RESULTS A significant reduction in miR-146a expression was observed in acute ischemic stroke (AIS). A dual-luciferase reporter assay showed that Fbxl10, but not Bcl2l2, is a target of miR-146a. Transfection with miR-146a mimics promoted apoptosis in SK-N-SH cells and significantly reduced expression of Fbxl10. Conversely, miR-146a inhibition attenuated OGD/R-induced neuronal cell death and significantly up-regulated Fbxl10 expression. CONCLUSIONS miR-146a expression was significantly down-regulated in AIS, and Fbxl10 was identified as a target of miR-146a. Moreover, up-regulation of Fbxl10, a miR-146a target, likely protects neurons from ischemic death.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| | - Lan Chen
- Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xiao-Min Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Sheng-You Su
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Chun-Yong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Li-Gang Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Pin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| |
Collapse
|
222
|
Abstract
Activation of oncogenes or the deactivation of tumor suppressor genes has long been established as the fundamental mechanism leading towards carcinogenesis. Although this age old axiom is vastly accurate, thorough study over the last 15years has given us unprecedented information on the involvement of epigenetic in cancer. Various biochemical pathways that are essential towards tumorigenesis are regulated by the epigenetic phenomenons like remodeling of nucleosome by histone modifications, DNA methylation and miRNA mediated targeting of various genes. Moreover the presence of mutations in the genes controlling the epigenetic players has further strengthened the association of epigenetics in cancer. This merger has opened up newer avenues for targeted anti-cancer drug therapy with numerous pharmaceutical industries focusing on expanding their research and development pipeline with epigenetic drugs. The information provided here elaborates the elementary phenomena of the various epigenetic regulators and discusses their alteration associated with the development of cancer. We also highlight the recent developments in epigenetic drugs combining preclinical and clinical data to signify this evolving field in cancer research.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
223
|
Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, Tanaka Y, Stein G, Dahiya R, Majid S. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis 2017; 8:e2572. [PMID: 28125091 PMCID: PMC5386393 DOI: 10.1038/cddis.2017.15] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) have emerged as key players in cancer progression and metastatic initiation yet their importance in regulating prostate cancer (PCa) metastasis to bone has begun to be appreciated. We employed multimodal strategy based on in-house PCa clinical samples, publicly available TCGA cohorts, a panel of cell lines, in silico analyses, and a series of in vitro and in vivo assays to investigate the role of miR-466 in PCa. Expression analyses revealed that miR-466 is under-expressed in PCa compared to normal tissues. Reconstitution of miR-466 in metastatic PCa cell lines impaired their oncogenic functions such as cell proliferation, migration/invasion and induced cell cycle arrest, and apoptosis compared to control miRNA. Conversely, attenuation of miR-466 in normal prostate cells induced tumorigenic characteristics. miR-466 suppressed PCa growth and metastasis through direct targeting of bone-related transcription factor RUNX2. Overexpression of miR-466 caused a marked downregulation of integrated network of RUNX2 target genes such as osteopontin, osteocalcin, ANGPTs, MMP11 including Fyn, pAkt, FAK and vimentin that are known to be involved in migration, invasion, angiogenesis, EMT and metastasis. Xenograft models indicate that miR-466 inhibits primary orthotopic tumor growth and spontaneous metastasis to bone. Receiver operating curve and Kaplan-Meier analyses show that miR-466 expression can discriminate between malignant and normal prostate tissues; and can predict biochemical relapse. In conclusion, our data strongly suggests miR-466-mediated attenuation of RUNX2 as a novel therapeutic approach to regulate PCa growth, particularly metastasis to bone. This study is the first report documenting the anti-bone metastatic role and clinical significance of miR-466 in prostate cancer.
Collapse
Affiliation(s)
- Melissa Colden
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Altaf A Dar
- CPMC Research Institute, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Priya V Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Gary Stein
- Department of Biochemistry and Surgery, University of Vermont College of Medicine, 148 Beaumont Avenue, Burlington, VT, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| |
Collapse
|
224
|
miR clusters target cellular functional complexes by defining their degree of regulatory freedom. Cancer Metastasis Rev 2017; 35:289-322. [PMID: 26970968 DOI: 10.1007/s10555-016-9617-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using the two paralog miR-23∼27∼24 clusters as an example and combining experimental and clinical data in a systematical approach to microRNA (miR) function and dysregulation, a complex picture of their roles in cancer is drawn. Various findings appear to be contradictory to a larger extent and cannot be fully explained by the classical regulatory network models and feedback loops that are mainly considered by one-to-one regulatory interactions of the involved molecules. Here, we propose an extended model of the regulatory role of miRs that, at least, supplements the usually considered single/oligo-target regulation of certain miRs. The cellular availability of the participating miR members in this model reflects an upper hierarchy level of intracellular and extracellular environmental influences, such as neighboring cells, soluble factors, hypoxia, chemotherapeutic drugs, and irradiation, among others. The novel model is based on the understanding of cellular functional complexes, such as for apoptosis, migration, and proliferation. These complexes consist of many regulatory components that can be targeted by miR cluster members to a different extent but may affect the functional complex in different ways. We propose that the final miR-related effect is a result of the possible degree of regulatory freedom provided by the miR effects on the whole functional complex structure. This degree of regulatory freedom defines to which extent the cellular functional complex can react in response to regulatory triggers, also understood as sensitization (more regulatory response options) or de-sensitization (less regulatory response options) of the system rather than single molecules.
Collapse
|
225
|
Huang C, Liu H, Gong XL, Wu LY, Wen B. Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncol Rep 2017; 37:1637-1645. [PMID: 28098901 DOI: 10.3892/or.2017.5379] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 11/05/2022] Open
Abstract
The tissue microenvironment functions as a crucial player in carcinogenesis, and transforming growth factor-β1 (TGF-β1) within the microenvironment stimulates the formation of neoplasms. Using an in vitro model of malignancy induced by TGF-β1, we assessed the effect of evodiamine and berberine on the interaction between DNA methyltransferases (DNMTs) and target microRNAs (miRNAs) in the model. Colon tissues from neonatal rats 7 days of age were cultured and malignancy was induced by TGF-β1 in vitro for 48 h, and then the tissues were respectively treated with evodiamine and berberine for 24 h. Morphological alteration of tissues was observed by an inverted microscope, histological structures were observed using hematoxylin and eosin staining, and the expression levels of DNMTs and targeted miRNAs screened by bioinformatics software combined with Gene chip analysis in our previous study were detected by immunohistochemistry and quantified by real-time PCR. Twenty-four hours after treatment with TGF-β1, expression levels of DNMT1, DNMT3A, DNMT3B and miR-152 (target DNMT1), miR-429 (target DNMT3A) and miR-29a (target DNMT3A/3B) were markedly decreased; however, after 48 h, the expression levels of DNMT1 and DNMT3A were significantly increased, but their target miRNAs were still decreased. After treatment with a DNMT inhibitor (5-Aza-dC), expression levels of the miRNAs were increased to a larger extent, but did not reach normal levels. After treatment with berberine and evodiamine for 24 h, respectively, increased expression of DNMT1, DNMT3A, DNMT3B and miR-152, miR-429, miR-29a was noted. In conclusion, the results of the present study suggest that miRNAs can also be post-transcriptionally regulated by their corresponding DNMTs and that berberine and evodiamine regulate the expression of these genes, which provides early epigenetic evidence for the prevention and therapy of colorectal cancer.
Collapse
Affiliation(s)
- Chao Huang
- Pi-Wei Institute, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Hong Liu
- Pi-Wei Institute, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xiu-Li Gong
- Pi-Wei Institute, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Li-Yun Wu
- Pi-Wei Institute, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Bin Wen
- Pi-Wei Institute, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
226
|
Zhao J, Xu T, Yin D, Zhang B, Bai J. The Regulatory Roles of MicroRNA in Effects of 2,2'4,4'-Tetrabromodiphenyl Ether (BDE47) on the Transcriptome of Zebrafish Larvae. PLoS One 2017; 12:e0169599. [PMID: 28072866 PMCID: PMC5225001 DOI: 10.1371/journal.pone.0169599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022] Open
Abstract
The developmental neurotoxicity caused by environmental pollutants has received great concern; however, there were still barely known about the underlying toxic mechanisms, especially the influence of varieties of regulatory factors such as microRNA (miRNA). A representative flame retardant, 2,2′,4,4′-tetrabromodiphenyl ether (BDE47), was found to disrupt zebrafish development in visual perception and bone formation in previous study, thus here we investigated its effects on miRNA expression profiling of 6 days post fertilization (dpf) zebrafish larvae by deep sequencing. To overcome the shortage of zebrafish miRNA annotation, multiple data processing approaches, especially constructed network based on the interactions between miRNAs and enrichment terms, were adopted and helped us acquire several validated zebrafish miRNAs and two novel miRNAs in BDE47-induced effects, and identify corresponding biological processes of the miRNAs. Among them, miR-735 was supposed to play essential roles in larval sensory development according to analysis results. Our study also provided an effective strategy for analyzing biological effects on non-mammalian miRNAs with limited basic information.
Collapse
Affiliation(s)
- Jing Zhao
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, China
- * E-mail:
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, China
| | - Bo Zhang
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Jianfeng Bai
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
227
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (21-23 nucleotides in length) that regulate gene expression at translational or posttranslational levels. The major regulatory mechanisms include translational repression or mRNA degradation (Filipowicz et al., Curr Opin Struct Biol 15:331-341, 2005).Aberrant expression of miRNAs has been found to be associated with a variety of human diseases such as cancers/tumors, diabetes, viral infections, cardiovascular diseases, neurodegenerative diseases, and other diseases (Wang et al., J Cell Physiol 23:25-30, 2016; Lawrie, MicroRNAs in medicine, 2013). The expression of miRNAs is tissue specific and can be used to identify tumor type and its origin (Mishra and Merlino, J Clin Invest 119:2119-2123, 2009). Many investigations suggest that the miRNA-expression profiles are novel diagnostic and prognostic biomarkers for multiple human diseases. Manipulating relevant miRNA expression or function may serve as potential therapeutic strategies for different diseases.
Collapse
Affiliation(s)
- Weili Huang
- Miracle Query, Incorporated, 456 W. 29th Ave., Eugene, OR, 97405, USA.
| |
Collapse
|
228
|
Lin SR, Yeh HC, Wang WJ, Ke HL, Lin HH, Hsu WC, Chao SY, Hour TC, Wu WJ, Pu YS, Huang AM. MiR-193b Mediates CEBPD-Induced Cisplatin Sensitization Through Targeting ETS1 and Cyclin D1 in Human Urothelial Carcinoma Cells. J Cell Biochem 2016; 118:1563-1573. [PMID: 27918099 DOI: 10.1002/jcb.25818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Transcription factor CCAAT/enhancer-binding protein delta (CEBPD) plays multiple roles in tumor progression. Studies have demonstrated that cisplatin (CDDP) induced CEBPD expression and had led to chemotherapeutic drug resistance. However, the underlying molecular mechanisms of CDDP-regulated CEBPD expression and its relevant roles in CDDP responses remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression in a sequence-specific manner. Abnormal miRNAs expression is associated with tumor progression. In current study, a large-scale PCR-based miRNA screening was performed to identify CEBPD-associated miRNAs in urothelial carcinoma cell line NTUB1. Eleven miRNAs were selected with more than twofold changes. MiR-193b-3p, a known tumor suppressor, down-regulated proto-oncogenes Cyclin D1, and ETS1 expression and led to cell cycle arrest, cell invasion, and migration inhibition. The expression of miR-193b-3p was associated with the DNA binding ability of CEBPD in CDDP response. CEBPD knocking-down approach provided a strong evidence of the positive correlation between CEBPD and miR-193b-3p. CDDP-induced CEBPD trans-activated miR-193b-3p expression and it directly targeted the 3'-UTR of Cyclin D1 and ETS1 mRNA, and silenced the protein expression. In addition, miR-193b-3p also inhibited cell migration activity, arrested cell at G1 phase, and sensitized NTUB1 to CDDP treatment. In conclusion, this study indicates that CEBPD exhibits an anti-tumorigenic function through transcriptionally activating miR-193b-3p expression upon CDDP treatment. This study provides a new direction for managing human urothelial carcinoma. J. Cell. Biochem. 118: 1563-1573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siao-Ren Lin
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Jan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yi Chao
- Department of Computer Science and Information Engineering, Chien Hsin University of Science and Technology, Taoyuan, Taiwan
| | - Tzyh-Chyuan Hour
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - A-Mei Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Ph. D. Program in Toxicology, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
229
|
Abstract
Autophagy is a self-digestive process regulated by an intricate network of factors able either to ensure the prosurvival function of autophagy or to convert it in a death pathway. Recently, the involvement of miRNAs in the regulation of autophagy networks has been reported. This review will summarize the main features of these small noncoding endogenous RNAs, focusing on their relevance in cancer and finally addressing their impact on autophagy.
Collapse
|
230
|
Zhao L, Zou D, Wei X, Wang L, Zhang Y, Liu S, Si Y, Zhao H, Wang F, Yu J, Ma Y, Sun G. MiRNA-221-3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1. Tumour Biol 2016; 37:16053–16063. [PMID: 27726102 DOI: 10.1007/s13277-016-5445-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is a highly lethal disease due to its rapid dissemination and resistance to conventional chemotherapy. MicroRNAs (miRNAs) are emerging as novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. MiRNA-221 has been reported to be associated with chemoresistance in various types of cancer. But the detailed molecular mechanism about miR-221-3p regulating 5-fluorouracil (5-FU) resistance in human pancreatic cancer remains to be clarified. In this study, we investigated the association between miR-221-3p expression and 5-FU sensitivity. Studies on pancreatic cancer cell lines suggested an increased 5-FU resistance with miR-221-3p over-expression. In addition, the results indicated that miR-221-3p down-regulated RB1 expression by directly binding to its 3'-UTR and therefore caused increased several aspects of pancreatic cancer pathogenesis, including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Collectively, our findings revealed the important role of miR-221-3p in promoting 5-FU resistance of pancreatic cancer cells and provided a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Lijun Zhao
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, People's Republic of China
| | - Xueju Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Lanlan Wang
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China
| | - Yuanyuan Zhang
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China.
| | - Guotao Sun
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China.
| |
Collapse
|
231
|
Senfter D, Madlener S, Krupitza G, Mader RM. The microRNA-200 family: still much to discover. Biomol Concepts 2016; 7:311-319. [DOI: 10.1515/bmc-2016-0020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
AbstractIn the last decade, microRNAs (miRs or miRNAs) became of great interest in cancer research due to their multifunctional and active regulation in a variety of vital cellular processes. In this review, we discuss the miR-200 family, which is composed of five members (miR-141, miR-200a/200b/200c and miR-429). Although being among the best investigated miRNAs in the field, there are still many open issues. Here, we describe the potential role of miR-200 as prognostic and/or predictive biomarker, its influence on motility and cell migration as well as its role in epithelial to mesenchymal transition (EMT) and metastasis formation in different tumour types. Recent studies also demonstrated the influence of miR-200 on drug resistance and described a correlation between miR-200 expression levels and overall survival of patients. Despite intense research in this field, the full role of the miR-200 family in cancer progression and metastasis is not completely understood and seems to differ between different tumour types and different cellular backgrounds. To elucidate these differences further, a finer characterisation of the role of the individual miRNA-200 family members is currently under investigation.
Collapse
Affiliation(s)
- Daniel Senfter
- 1Department of Paediatrics, Molecular Neuro-Oncology Research Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sibylle Madlener
- 1Department of Paediatrics, Molecular Neuro-Oncology Research Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Georg Krupitza
- 2Institute of Clinical Pathology, Comprehensive Cancer Center of the Medical University of Vienna, A-1090 Vienna, Austria
| | - Robert M. Mader
- 3Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
232
|
Nawaz Z, Patil V, Paul Y, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K. PI3 kinase pathway regulated miRNome in glioblastoma: identification of miR-326 as a tumour suppressor miRNA. Mol Cancer 2016; 15:74. [PMID: 27871300 PMCID: PMC5117574 DOI: 10.1186/s12943-016-0557-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/03/2016] [Indexed: 12/02/2022] Open
Abstract
Background Glioblastomas (GBM) continue to remain one of the most dreaded tumours that are highly infiltrative in nature and easily preclude comprehensive surgical resection. GBMs pose an intricate etiology as they are being associated with a plethora of genetic and epigenetic lesions. Misregulation of the PI3 kinase pathway is one of the most familiar events in GBM. While the PI3 kinase signalling regulated pathways and genes have been comprehensively studied, its impact on the miRNome is yet to be explored. The objective of this study was to elucidate the PI3 kinase pathway regulated miRNAs in GBM. Methods miRNA expression profiling was conducted to monitor the differentially regulated miRNAs upon PI3 kinase pathway abrogation. qRT-PCR was used to measure the abundance of miR-326 and its host gene encoded transcript. Proliferation assay, colony suppression assay and wound healing assay were carried out in pre-miR transfected cells to investigate its role in malignant transformation. Potential targets of miR-326 were identified by transcriptome analysis of miR-326 overexpressing cells by whole RNA sequencing and selected targets were validated. Several publically available data sets were used for various investigations described above. Results We identified several miRNA that were regulated by PI3 kinase pathway. miR-326, a GBM downregulated miRNA, was validated as one of the miRNAs whose expression was alleviated upon abrogation of the PI3 kinase pathway. Overexpression of miR-326 resulted in reduced proliferation, colony suppression and hindered the migration capacity of glioma cells. Arrestin, Beta 1 (ARRB1), the host gene of miR-326, was also downregulated in GBM and interestingly, the expression of ARRB1 was also alleviated upon inhibition of the PI3 kinase pathway, indicating similar regulation pattern. More importantly, miR-326 exhibited a significant positive correlation with ARRB1 in terms of its expression. Transcriptome analysis upon miR-326 overexpression coupled with integrative bioinformatics approach identified several putative targets of miR-326. Selected targets were validated and interestingly found to be upregulated in GBM. Conclusions Taken together, our study uncovered the PI3 kinase regulated miRNome in GBM. miR-326, a PI3 kinase pathway inhibited miRNA, was demonstrated as a tumour suppressor miRNA in GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0557-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahid Nawaz
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Yashna Paul
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Alangar S Hegde
- Department of Neurosurgery, Sri Satya Sai Institute of Higher Medical Sciences, Bangalore, 560066, India
| | - Arimappamagan Arivazhagan
- Departments of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Vani Santosh
- Departments of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
233
|
Ren K, Li T, Zhang W, Ren J, Li Z, Wu G. miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci 2016; 23:79. [PMID: 27832779 PMCID: PMC5103406 DOI: 10.1186/s12929-016-0295-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND miR-199a-3p was significantly downregulated in the majority of human hepatocellular carcinoma (HCC) tissues and HCC cell lines. Yes associated protein 1 (YAP1) was overexpressed in human HCC, which promoted HCC development and progression by upregulating Jagged1 and activating the Notch pathway. We searched potential targets of miR-199a-3p with DIANA, TargetScan and PicTar tools, and found that YAP1 is one of the potential targets. Based on these findings, we speculated that miR-199a-3p might suppress HCC growth by targeting YAP1, downregulating Jagged1 and suppressing the Notch pathway. RESULTS We determined the expression of miR-199a-3p and YAP1 by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found downregulation of miR-199a-3p and upregulation of YAP1 in HCC cell lines. Cell proliferation and apoptosis assays showed that miR-199a-3p suppresses HCC cell proliferation and promotes apoptosis, and knockdown of YAP1 has similar role. Furthermore, we verified that miR-199a-3p can directly target YAP1. We further investigated and confirmed that miR-199a-3p and YAP1 regulate HCC cell proliferation and apoptosis through Jagged1-Notch signaling. CONCLUSION miR-199a-3p targets YAP1, downregulates Jagged1 and suppresses the Notch signaling to inhibit HCC cell proliferation and promote apoptosis. These findings provide new insights into the mechanism by which miR-199a-3p suppresses HCC cell proliferation and induces apoptosis.
Collapse
Affiliation(s)
- Kewei Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Tengfei Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Wenzhe Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Jianzhuang Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Zhen Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Gang Wu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| |
Collapse
|
234
|
Wu N, Gaur U, Zhu Q, Chen B, Xu Z, Zhao X, Yang M, Li D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Anim Genet 2016; 48:205-216. [PMID: 27781291 DOI: 10.1111/age.12516] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/28/2023]
Abstract
MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation.
Collapse
Affiliation(s)
- N Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - U Gaur
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - Q Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - B Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - Z Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - X Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - M Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| | - D Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 610000, China
| |
Collapse
|
235
|
Amirkhah R, Farazmand A, Wolkenhauer O, Schmitz U. RNA Systems Biology for Cancer: From Diagnosis to Therapy. Methods Mol Biol 2016; 1386:305-30. [PMID: 26677189 DOI: 10.1007/978-1-4939-3283-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| |
Collapse
|
236
|
Dissecting the regulation rules of cancer-related miRNAs based on network analysis. Sci Rep 2016; 6:34172. [PMID: 27694936 PMCID: PMC5046108 DOI: 10.1038/srep34172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/06/2016] [Indexed: 01/04/2023] Open
Abstract
miRNAs (microRNAs) are a set of endogenous and small non-coding RNAs which specifically induce degradation of target mRNAs or inhibit protein translation to control gene expression. Obviously, aberrant miRNA expression in human cells will lead to a serious of changes in protein-protein interaction network (PPIN), thus to activate or inactivate some pathways related to various diseases, especially carcinogenesis. In this study, we systematically constructed the miRNA-regulated co-expressed protein-protein interaction network (CePPIN) for 17 cancers firstly. We investigated the topological parameters and functional annotation for the proteins in CePPIN, especially for those miRNA targets. We found that targets regulated by more miRNAs tend to play a more important role in the forming process of cancers. We further elucidated the miRNA regulation rules in PPIN from a more systematical perspective. By GO and KEGG pathway analysis, miRNA targets are involved in various cellular processes mostly related to cell cycle, such as cell proliferation, growth, differentiation, etc. Through the Pfam classification, we found that miRNAs belonging to the same family tend to have targets from the same family which displays the synergistic function of these miRNAs. Finally, the case study on miR-519d and miR-21-regulated sub-network was performed to support our findings.
Collapse
|
237
|
Merhautova J, Demlova R, Slaby O. MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers. Front Pharmacol 2016; 7:329. [PMID: 27729862 PMCID: PMC5037200 DOI: 10.3389/fphar.2016.00329] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer accounts for the 20 most frequent cancer diseases worldwide and there is a constant urge to bring new therapeutics with new mechanism of action into the clinical practice. Quantity of in vitro and in vivo evidences indicate, that exogenous change in pathologically imbalanced microRNAs (miRNAs) is capable of transforming the cancer cell phenotype. This review analyzed preclinical miRNA-based therapy attempts in animal models of gastric, pancreatic, gallbladder, and colorectal cancer. From more than 400 original articles, 26 was found to assess the effect of miRNA mimics, precursors, expression vectors, or inhibitors administered locally or systemically being an approach with relatively high translational potential. We have focused on mapping available information on animal model used (animal strain, cell line, xenograft method), pharmacological aspects (oligonucleotide chemistry, delivery system, posology, route of administration) and toxicology assessments. We also summarize findings in the field pharmacokinetics and toxicity of miRNA-based therapy.
Collapse
Affiliation(s)
- Jana Merhautova
- Molecular Oncology II - Solid Cancer, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk UniversityBrno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Ondrej Slaby
- Molecular Oncology II - Solid Cancer, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic; Masaryk Memorial Cancer InstituteBrno, Czech Republic
| |
Collapse
|
238
|
Yin Z, Cui Z, Li H, Ren Y, Qian B, Rothman N, Lan Q, Zhou B. Polymorphisms in miR-135a-2, miR-219-2 and miR-211 as well as their interaction with cooking oil fume exposure on the risk of lung cancer in Chinese nonsmoking females: a case-control study. BMC Cancer 2016; 16:751. [PMID: 27663200 PMCID: PMC5035461 DOI: 10.1186/s12885-016-2784-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 09/15/2016] [Indexed: 12/26/2022] Open
Abstract
Background The associations between microRNAs and lung cancer have received increasing attention. This study assess the association between polymorphisms in miR-135a-2, miR-219-2 and miR-211 genes and the risk of lung cancer, as well as the gene–environment interaction between these polymorphisms and cooking oil fume exposure. Methods A case–control study featuring 268 cases and 266 controls was conducted. The associations of miR-135a-2 rs10459194, miR-219-2 rs10988341 and miR-211 rs1514035 polymorphisms with the risk of lung cancer were analyzed. The gene–environment interactions were also reported on both additive and multiplicative scales. Results There were no statistically significant associations between the single-nucleotide polymorphisms (SNPs) and lung cancer or lung adenocarcinoma. The individuals with both a risk genotype of miRNA SNPs and exposure to a risk factor (cooking oil fumes) were at higher risk of lung cancer than those with only one of these two risk factors (odd ratios of 2.208, 1.285 and 1.813 for miR-135a-2 rs10459194; 2.164, 1.209 and 1.806 for miR-219-2 rs10988341; and 2.122, 1.146 and 1.725 for miR-211 rs1514035, respectively). However, the measures of biological interaction indicate that there was no such interaction between the three SNPs and exposure to cooking oil fumes on an additive scale. Logistic regression models also suggested that the gene–environment interactions were not statistically significant on a multiplicative scale. Conclusions There were no significant associations between the polymorphisms in miRNAs (miR-26a-1 rs7372209, miR-605 rs2043556 and miR-16-1 rs1022960) and the risk of lung cancer in the Chinese nonsmoking female population. The interactions between these polymorphisms in miRNAs and cooking oil fume exposure were also not statistically significant.
Collapse
Affiliation(s)
- Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Zhigang Cui
- School of Nursing, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Biyun Qian
- Department of Epidemiology, School of Public Health, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China. .,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
239
|
Liang Y, Yang W, Zhu Y, Yuan Y. Prognostic role of microRNA-203 in various carcinomas: evidence from a meta-analysis involving 13 studies. SPRINGERPLUS 2016; 5:1538. [PMID: 27652111 PMCID: PMC5020041 DOI: 10.1186/s40064-016-3225-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Growing evidence from recent studies has revealed that microRNA-203 (miR-203) might be an attractive prognostic biomarker for cancer. But controversy still remains. The aim of this meta-analysis was to summarize available evidences and clarify the preliminary predictive value of miR-203 for prognosis in cancer patients. Eligible studies were identified through multiple research strategies in PubMed, EMBASE and Web of Science up to October 2015. Key statistics such as pooled hazard ratios (HR) with 95 % confidence intervals (CIs) were utilized to calculate patient survival. 13 eligible studies with 1600 patients were ultimately enrolled in this meta-analysis. Our results failed to show a significant relation between upregulated miR-203 expression and a favorable overall survival (OS) (HR 1.00, 95 % CI 0.65-1.36) in a random effect model. However, in subgroup analysis, we found that high expression of miR-203 was significantly associated with poor OS in Caucasian patients (HR 1.31, 95 % CI 1.06-1.55). In contrast, for Asian patients, over-expression of miR-203 was an independent prognostic factor for better and OS (HR 0.59, 95 % CI 0.22-0.96). It also suggested that cancer types and miRNA assay method were significant associated with prognosis. The over-expression of miR-203 was effectively predictive of worse prognosis in breast cancer (HR 6.35, 95 % CI 1.34-11.36), pancreatic cancer (HR 1.19, 95 % CI 1.08-1.30), ependymoma (HR 1.35, 95 % CI 1.10-1.61), but for glioma patients, elevated miR-203 is a potential biomarker for predicting better progression of cancer (HR 0.26, 95 % CI -0.02 to 0.54). Besides, for direct miRNA profiling studies, over-expression of miR-203 was an independent prognostic factor for worse OS (HR 6.35, 95 % CI 1.34-11.36). This meta-analysis indicated that ethnicity, tumor type and miRNA assay method mainly contributed to heterogeneity. Considering the insufficient evidence, further relevant studies are warranted.
Collapse
Affiliation(s)
- Ying Liang
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, Hubei China
| | - Wenhui Yang
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Yanhui Zhu
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Yulin Yuan
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| |
Collapse
|
240
|
Yang DQ, Zhou JD, Wang YX, Deng ZQ, Yang J, Yao DM, Qian Z, Yang L, Lin J, Qian J. LowmiR-34cexpression is associated with poor outcome inde novoacute myeloid leukemia. Int J Lab Hematol 2016; 39:42-50. [PMID: 27577964 DOI: 10.1111/ijlh.12566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Affiliation(s)
- D.-Q. Yang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - J.-D. Zhou
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Y.-X. Wang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Z.-Q. Deng
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - J. Yang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - D.-M. Yao
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Z. Qian
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - L. Yang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - J. Lin
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - J. Qian
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| |
Collapse
|
241
|
Establishment and Characterization of a Human Small Cell Osteosarcoma Cancer Stem Cell Line: A New Possible In Vitro Model for Discovering Small Cell Osteosarcoma Biology. Stem Cells Int 2016; 2016:3042198. [PMID: 27651797 PMCID: PMC5019944 DOI: 10.1155/2016/3042198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OSA) is the most common primary malignant bone tumor, usually arising in the long bones of children and young adults. There are different subtypes of OSA, among which we find the conventional OS (also called medullary or central osteosarcoma) which has a high grade of malignancy and an incidence of 80%. There are different subtypes of high grade OS like chondroblastic, fibroblastic, osteoblastic, telangiectatic, and the small cell osteosarcoma (SCO). In this study, for the first time, we have isolated, established, and characterized a cell line of cancer stem cells (CSCs) from a human SCO. First of all, we have established a primary finite cell line of SCO, from which we have isolated the CSCs by the sphere formation assay. We have proved their in vitro mesenchymal and embryonic stem phenotype. Additionally, we have showed their neoplastic phenotype, since the original tumor bulk is a high grade osteosarcoma. This research demonstrates the existence of CSCs also in human primary SCO and highlights the establishment of this particular stabilized cancer stem cell line. This will represent a first step into the study of the biology of these cells to discover new molecular targets molecules for new incisive therapeutic strategies against this highly aggressive OSA.
Collapse
|
242
|
Bhatnagar B, Garzon R. Long noncoding RNAs to predict survival in acute myeloid leukemia: a step toward personalized medicine? Biomark Med 2016; 10:935-8. [PMID: 27548737 DOI: 10.2217/bmm-2016-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Bhavana Bhatnagar
- Department of Internal Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ramiro Garzon
- Department of Internal Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
243
|
Fujii T, Shimada K, Asano A, Tatsumi Y, Yamaguchi N, Yamazaki M, Konishi N. MicroRNA-331-3p Suppresses Cervical Cancer Cell Proliferation and E6/E7 Expression by Targeting NRP2. Int J Mol Sci 2016; 17:ijms17081351. [PMID: 27548144 PMCID: PMC5000747 DOI: 10.3390/ijms17081351] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papillomavirus (HPV) related oncoproteins E6 and E7. Cell proliferation in the human cervical cancer cell lines SKG-II, HCS-2, and HeLa was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cellular apoptosis was measured using the TdT-mediated dUTP nick end labeling (TUNEL) and Annexin V assays. Quantitative RT-PCR was used to measure the messenger RNA (mRNA) expression of the NRP2, E6, E7, p63, and involucrin (IVL) genes. A functional assay for cell growth was performed using cell cycle analyses. Overexpression of miR-331-3p inhibited cell proliferation, and induced G2/M phase arrest and apoptosis in SKG-II, HCS-2 and HeLa cells. The luciferase reporter assay of the NRP2 3′-untranslated region revealed the direct regulation of NRP2 by miR-331-3p. Gene expression analyses using quantitative RT-PCR in SKG-II, HCS-2, and HeLa cells overexpressing miR-331-3p or suppressing NRP2 revealed down-regulation of E6, E7, and p63 mRNA and up-regulation of IVL mRNA. Moreover, miR-331-3p overexpression was suppressed NRP2 expression in protein level. We showed that miR-331-3p and NRP2 were key effectors of cell proliferation by regulating the cell cycle, apoptosis. NRP-2 also regulates the expression of E6/E7 and keratinocyte differentiation markers. Our findings suggest that miR-331-3p has an important role in regulating cervical cancer cell proliferation, and that miR-331-3p may contribute to keratinocyte differentiation through NRP2 suppression. miR-331-3p and NRP2 may contribute to anti-cancer effects.
Collapse
Affiliation(s)
- Tomomi Fujii
- Department of Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan.
| | - Keiji Shimada
- Department of Diagnostic Pathology, Nara City Hospital, Nara 630-8305, Japan.
| | - Aya Asano
- Department of Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan.
| | - Yoshihiro Tatsumi
- Department of Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan.
| | - Naoko Yamaguchi
- Department of Central Clinical Laboratory, Nara Medical University Hospital, Nara 634-8521, Japan.
| | - Masaharu Yamazaki
- Department of Central Clinical Laboratory, Nara Medical University Hospital, Nara 634-8521, Japan.
| | - Noboru Konishi
- Department of Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan.
| |
Collapse
|
244
|
Wang L, Wu L, Wu J. Downregulation of miR-154 in human glioma and its clinicopathological and prognostic significance. J Int Med Res 2016; 44:994-1001. [PMID: 27417886 PMCID: PMC5536553 DOI: 10.1177/0300060516649487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective MicroRNA-154 (miR-154) was previously reported to be downregulated in several types of human cancers and may act as a tumour suppressor. This study aimed to measure miR-154 levels and determine its clinical significance in human glioma. Methods This retrospective study analysed fresh human glioma specimens and non-neoplastic brain tissues using real-time quantitative reverse transcription-polymerase chain reaction to determine the relative levels of miR-154. The association between miR-154 levels and various clinicopathological characteristics and survival was analysed. Results A total of 115 patients with gliomas and 115 non-neoplastic brain tissues were examined. MiR-154 levels were significantly downregulated in gliomas compared with non-neoplastic brain tissues. Low levels of miR-154 were associated with high World Health Organization grade, large tumour size (≥ 5 cm), a low Karnofsky performance status score (< 80), and a shorter overall survival. Multivariate analyses using the Cox proportional hazards regression model confirmed that decreased miR-154 level was an independent predictor of a poor prognosis. Conclusions These results suggest that miR-154 downregulation may be involved in glioma formation and progression, and that miR-154 might serve as a potential prognostic biomarker for patients with this disease.
Collapse
Affiliation(s)
- Lingling Wang
- 1 Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China.,2 Department of Neurology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province, China
| | - Lei Wu
- 3 Department of Thoracic Surgery, Jilin Central Hospital, Jilin City, Jilin Province, China
| | - Jiang Wu
- 1 Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
245
|
Li Y, Jiang T, Shao L, Liu Y, Zheng C, Zhong Y, Zhang J, Chang Q. Mir-449a, a potential diagnostic biomarker for WNT group of medulloblastoma. J Neurooncol 2016; 129:423-431. [PMID: 27406588 DOI: 10.1007/s11060-016-2213-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/06/2016] [Indexed: 01/20/2023]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. The 5 year disease-free survival rate is rather low. There is a consensus that MB can be divided into at least four clinically, transcriptionally, and genetically distinct molecular variants, being designated as wingless (WNT), sonic hedgehog (SHH), Group 3 and Group 4. It poses a great challenge to the design of therapeutic strategy for MB patients. Intensive clinical intervention, including high dose radiotherapy, is commonly used in treatment of high risk MB, most of which are considered to be Group 3 patients. But such intensive therapy should be avoided to protect neurologic function of patients in the lower risk WNT group. In present study, MB subgroup assignment in formalin-fixed paraffin embedded (FFPE) specimens from 45 Chinese patients were performed by Nanostring platform using 22 well-known signature genes. Based on comparative expression profiles of miRNA real-time PCR microarray in MB cells with and without treatment of demethylation reagent, as well as MSP assay, miR-449a was demonstrated to be significantly silenced by aberrant DNA methylation in tumor cells. Real-time PCR showed that expression level of miR-449a in WNT group was significantly different from other subgroups, although it was down-regulated in most of the MB samples. In conclusion, current study demonstrates for the first time the feasibility of using the Nanostring assay for subgrouping of MBs in Chinese patients. In addition, MiR-449a, a candidate tumor suppressor regulated by hypermethylation, is a novel potential diagnostic marker for WNT group of MBs.
Collapse
Affiliation(s)
- Yongxiao Li
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Liwei Shao
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Yan Liu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Chen Zheng
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Yanfeng Zhong
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
- Department of Neuropathology, University of Washington, Seattle, WA, USA
| | - Qing Chang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China.
| |
Collapse
|
246
|
Wang H, Men CP. Correlation of Increased Expression of MicroRNA-155 in Bladder Cancer and Prognosis. Lab Med 2016; 46:118-22. [PMID: 25918190 DOI: 10.1309/lmwr9cea2k2xvsox] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the expression level and clinical significance of microRNA-155 (miR-155) in bladder cancer. METHODS We collected 102 pairs of tissue specimens from patients with primary bladder cancer and adjacent normal bladder specimens between March 2008 and May 2013. Quantitative real-time polymerase chain reaction (QRT-PCR) was performed to detect the expression levels of miR-155. We performed univariate survival analyses using the Kaplan-Meier method and assessed statistical significance between survival curves via the log-rank test. RESULTS The mean (SD) level of miR-155 expression in tissues with bladder cancer was 13.78 (4.80), which was significantly higher on average than that in adjacent normal bladder tissues (6.14 [2.26], P <.001). Progression-free survival (PFS) was significantly lower for patients with bladder cancer who had a high expression level of miR-155 (5-year survival rate, 23.0%) than those with a low miR-155 expression level (5-year survival rate, 48.9%; P <.001). CONCLUSIONS We found that elevated expression of miR-155 is correlated with a poor outcome for patients with bladder cancer; this suggests that miR-155 is a potential biomarker for bladder cancer prognosis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chang-Ping Men
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
247
|
Mo JS, Alam KJ, Kim HS, Lee YM, Yun KJ, Chae SC. MicroRNA 429 Regulates Mucin Gene Expression and Secretion in Murine Model of Colitis. J Crohns Colitis 2016; 10:837-849. [PMID: 26818658 DOI: 10.1093/ecco-jcc/jjw033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS miRNAs are non-coding RNAs that play important roles in the pathogenesis of human diseases by regulating target gene expression in specific cells or tissues. We aimed to detect miRNAs related to ulcerative colitis [UC], identify their target molecules, and analyse the correlation between the miRNAs and their target genes in colorectal cells and dextran sulphate sodium [DSS]-induced mouse colitis. METHODS UC-associated miRNAs were identified by miRNA microarray analysis using DSS-induced colitis and normal colon tissues. The results were validated by quantitative real-time polymerase chain reaction [RT-PCR]. We identified target genes of MIR429, a colitis-associated miRNA, from our screen by comparing the mRNA microarray analysis in MIR429-overexpressed cells with predicted candidate target genes. We constructed luciferase reporter plasmids to confirm the effect of MIR429 on target gene expression. The protein expression of the target genes was measured by western blot,enzyme-linked immunosorbent assay [ELISA] analysis, or immunohistochemistry. RESULTS We identified 37 DSS-induced colitis associated miRNAs. We investigated MIR429 that is down-regulated in DSS-induced colitis, and identified 41 target genes of MIR429. We show that the myristoylated alanine-rich protein kinase C substrate [MARCKS] is a direct target of MIR429. MARCKS mRNA and protein expression levels are down-regulated by MIR429, and MIR429 regulates the expression of MARCKS and MARCKS-mediated mucin secretion in colorectal cells and DSS-induced colitis. In addition, anti-MIR429 up-regulates MARCKS expression in colorectal cell lines. CONCLUSION Our findings suggest that MIR429 modulates mucin secretion in human colorectal cells and mouse colitis tissues by up-regulating of MARCKS expression, thereby making MIR429 a candidate for anti-colitis therapy in human UC.
Collapse
Affiliation(s)
- Ji-Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Khondoker Jahengir Alam
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Hun-Soo Kim
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Young-Mi Lee
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| |
Collapse
|
248
|
MicroRNA-320a promotes 5-FU resistance in human pancreatic cancer cells. Sci Rep 2016; 6:27641. [PMID: 27279541 PMCID: PMC4899709 DOI: 10.1038/srep27641] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
The drug-resistance of pancreatic cancer cells results in poor therapeutic effect. To predict the therapeutic effect of the chemotherapy drugs to specific patients and to reverse the resistance of pancreatic cancer cells are critical for chemotherapy of pancreatic cancer. MicroRNAs (miRNAs) have been reported to play important roles in the genesis of drug-resistance of various cancer types. There are also many advantages of miRNAs in diagnosis and therapy of disease. Although several miRNAs regulating 5-Fluorouracil (5-FU) resistance in human pancreatic cancer have been reported, the detailed molecular mechanism remains to be determined. In this study, we found that miR-320a was significantly up-regulated in 5-FU resistant pancreatic cancer cells. Over-expression of miR-320a strongly contributed to pathogenesis of pancreatic cancer, which was represented by the increased proliferation, invasion, metastasis, drug-resistance characteristics and the epithelial-to-mesenchymal transition. Furthermore, we demonstrated that miR-320a was able to bind to 3'UTR of PDCD4 mRNA, and mediated its down-regulation in 5-FU resistance of human pancreatic cancer cells. Whereas restoration of PDCD4 expression could partially attenuate the function of miR-320a in pancreatic cancer. Taken together, our study demonstrated that miR-320a played important role in regulating 5-FU resistance by targeting PDCD4 and might be developed as new therapeutic target for pancreatic cancer.
Collapse
|
249
|
BCR/ABL increases EZH2 levels which regulates XIAP expression via miRNA-219 in chronic myeloid leukemia cells. Leuk Res 2016; 45:24-32. [DOI: 10.1016/j.leukres.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
|
250
|
Zhou W, Li D, Xiong C, Yuan R, Xiang Y. Multicolor-Encoded Reconfigurable DNA Nanostructures Enable Multiplexed Sensing of Intracellular MicroRNAs in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13303-8. [PMID: 27195747 DOI: 10.1021/acsami.6b03165] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite the widespread utilization of gold nanoparticles and graphene for in vivo applications, complex steps for the preparation and functionalization of these nanomaterials are commonly required. In addition, the cytotoxicity of such materials is currently still under debate. In this work, by taking the significant advantages of DNA in terms of biocompatibility, nontoxicity, and controllability as building blocks for DNA nanostructures, we describe the construction of a reconfigurable, multicolor-encoded DNA nanostructure for multiplexed monitoring of intracellular microRNAs (miRNAs) in living cells. The DNA nanostructure nanoprobes containing two fluorescently quenched hairpins can be obtained by simple thermal annealing of four ssDNA oligonucleotides. The presence of the target miRNAs can unfold the hairpin structures and recover fluorescent emissions at distinct wavelengths to achieve multiplexed detection of miRNAs. Importantly, the DNA nanostructure nanoprobes exhibit significantly improved stability over conventional DNA molecular beacon probes in cell lysates and can steadily enter cells to realize simultaneous detection of two types of intracellular miRNAs. The demonstration of the self-assembled DNA nanostructures for intracellular sensing thus offers great potential application of these nanoprobes for imaging, drug delivery and cancer therapy in vivo.
Collapse
Affiliation(s)
- Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P.R. China
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P.R. China
| | - Chengyi Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P.R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P.R. China
| |
Collapse
|