201
|
Coppin G. The anterior medial temporal lobes: Their role in food intake and body weight regulation. Physiol Behav 2016; 167:60-70. [PMID: 27591841 DOI: 10.1016/j.physbeh.2016.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022]
Abstract
The anterior medial temporal lobes are one of the most studied parts of the brain. Classically, their two main structures - the amygdalae and the hippocampi - have been linked to key cognitive and affective functions, related in particular to learning and memory. Based on abundant evidence, we will argue for an alternative but complementary point of view: they may also play a major role in food intake and body weight regulation. First, an overview is given of early clinical evidence in this line of thought. Subsequently, empirical evidence is presented on how food intake, including in the extreme case of obesity, may relate to amygdalian and hippocampal functioning. The focus is on the amygdala's role in processing the relevance of food stimuli, cue-induced feeding, and stress-induced eating and on the hippocampus' involvement in the use of interoceptive signals of hunger and satiety, as well as memory and inhibitory processes related to food intake. Additionally, an elaboration takes place on possible reciprocal links between food intake, body weight, and amygdala and hippocampus functioning. Finally, issues that seemed particularly critical for future research in the field are discussed.
Collapse
Affiliation(s)
- Géraldine Coppin
- The John B. Pierce Laboratory, School of Medicine, Yale University, 290 Congress Avenue, New Haven, CT 06519, USA; Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
202
|
Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats. Behav Brain Res 2016; 308:104-14. [PMID: 27091300 DOI: 10.1016/j.bbr.2016.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
Corticostriatal circuitry supports flexible reward learning and emotional behavior from the critical neurodevelopmental stage of adolescence through adulthood. It is still poorly understood how prescription drug exposure in adolescence may impact these outcomes in the long-term. We studied adolescent methylphenidate (MPH) and fluoxetine (FLX) exposure in rats and their impact on learning and emotion in adulthood. In Experiment 1, male and female rats were administered MPH, FLX, or saline (SAL), and compared with methamphetamine (mAMPH) treatment beginning in postnatal day (PND) 37. The rats were then tested on discrimination and reversal learning in adulthood. In Experiment 2, animals were administered MPH or SAL also beginning in PND 37 and later tested in adulthood for anxiety levels. In Experiment 3, we analyzed striatal dopamine D1 and D2 receptor expression in adulthood following either extensive learning (after Experiment 1) or more brief emotional measures (after Experiment 2). We found sex differences in discrimination learning and attenuated reversal learning after MPH and only sex differences in adulthood anxiety. In learners, there was enhanced striatal D1, but not D2, after either adolescent MPH or mAMPH. Lastly, also in learners, there was a sex x treatment group interaction for D2, but not D1, driven by the MPH-pretreated females, who expressed significantly higher D2 levels compared to SAL. These results show enduring effects of adolescent MPH on reversal learning in rats. Developmental psychostimulant exposure may interact with learning to enhance D1 expression in adulthood, and affect D2 expression in a sex-dependent manner.
Collapse
|
203
|
Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: An updated perspective. Neuroscience 2016; 345:12-26. [PMID: 26979052 DOI: 10.1016/j.neuroscience.2016.03.021] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/21/2023]
Abstract
Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as a heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principal neurotransmitter systems involved.
Collapse
Affiliation(s)
- A Izquierdo
- Department of Psychology, The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - J L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A K Radke
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - P H Rudebeck
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10014, USA
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
204
|
Tan D, Vyas A. Infection of male rats with Toxoplasma gondii induces effort-aversion in a T-maze decision-making task. Brain Behav Immun 2016; 53:273-277. [PMID: 26783701 DOI: 10.1016/j.bbi.2016.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/27/2015] [Accepted: 01/14/2016] [Indexed: 11/30/2022] Open
Abstract
Rats chronically infected with protozoan Toxoplasma gondii exhibit greater delay aversion in an inter-temporal task. Moreover T. gondii infection also results in dendritic atrophy of basolateral amygdala neurons. Basolateral amygdala is reported to bias decision making towards greater effortful alternatives. In this context, we report that T. gondii increases effort aversion in infected male rats. This host-parasite association has been widely studied in the context of loss of innate fear in the infected males. It is suggested that reduced fear towards predators reflects a parasitic behavioral manipulation to enhance trophic transmission of T. gondii. Observations reported here extend this paradigm away from a monolithic change in fear and towards a multi-dimensional change in decision making.
Collapse
Affiliation(s)
- Donna Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
205
|
Parkes SL, Ferreira G, Coutureau E. Acquisition of specific response–outcome associations requires NMDA receptor activation in the basolateral amygdala but not in the insular cortex. Neurobiol Learn Mem 2016; 128:40-5. [DOI: 10.1016/j.nlm.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
|
206
|
Baker PM, Oh SE, Kidder KS, Mizumori SJY. Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Front Behav Neurosci 2015; 9:295. [PMID: 26582981 PMCID: PMC4631824 DOI: 10.3389/fnbeh.2015.00295] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
The lateral habenula (LHb) plays a role in a wide variety of behaviors ranging from maternal care, to sleep, to various forms of cognition. One prominent theory with ample supporting evidence is that the LHb serves to relay basal ganglia and limbic signals about negative outcomes to midbrain monoaminergic systems. This makes it likely that the LHb is critically involved in behavioral flexibility as all of these systems have been shown to contribute when flexible behavior is required. Behavioral flexibility is commonly examined across species and is impaired in various neuropsychiatric conditions including autism, depression, addiction, and schizophrenia; conditions in which the LHb is thought to play a role. Therefore, a thorough examination of the role of the LHb in behavioral flexibility serves multiple functions including understanding possible connections with neuropsychiatric illnesses and additional insight into its role in cognition in general. Here, we assess the LHb’s role in behavioral flexibility through comparisons of the roles its afferent and efferent pathways are known to play. Additionally, we provide new evidence supporting the LHb contributions to behavioral flexibility through organization of specific goal directed actions under cognitively demanding conditions. Specifically, in the first experiment, a majority of neurons recorded from the LHb were found to correlate with velocity on a spatial navigation task and did not change significantly when reward outcomes were manipulated. Additionally, measurements of local field potential (LFP) in the theta band revealed significant changes in power relative to velocity and reward location. In a second set of experiments, inactivation of the LHb with the gamma-aminobutyric acid (GABA) agonists baclofen and muscimol led to an impairment in a spatial/response based repeated probabilistic reversal learning task. Control experiments revealed that this impairment was likely due to the demands of repeated switching behaviors as rats were unimpaired on initial discrimination acquisition or retention of probabilistic learning. Taken together, these novel findings compliment other work discussed supporting a role for the LHb in action selection when cognitive or emotional demands are increased. Finally, we discuss future mechanisms by which a superior understanding of the LHb can be obtained through additional examination of behavioral flexibility tasks.
Collapse
Affiliation(s)
- Phillip M Baker
- Department of Psychology, University of Washington Seattle, WA, USA
| | - Sujean E Oh
- Department of Psychology, University of Washington Seattle, WA, USA
| | - Kevan S Kidder
- Department of Psychology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
207
|
Simmank J, Murawski C, Bode S, Horstmann A. Incidental rewarding cues influence economic decisions in people with obesity. Front Behav Neurosci 2015; 9:278. [PMID: 26528158 PMCID: PMC4606016 DOI: 10.3389/fnbeh.2015.00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
Recent research suggests that obesity is linked to prominent alterations in learning and decision-making. This general difference may also underlie the preference for immediately consumable, highly palatable but unhealthy and high-calorie foods. Such poor food-related inter-temporal decision-making can explain weight gain; however, it is not yet clear whether this deficit can be generalized to other domains of inter-temporal decision-making, for example financial decisions. Further, little is known about the stability of decision-making behavior in obesity, especially in the presence of rewarding cues. To answer these questions, obese and lean participants (n = 52) completed two sessions of a novel priming paradigm including a computerized monetary delay discounting task. In the first session, general differences between groups in financial delay discounting were measured. In the second session, we tested the general stability of discount rates. Additionally, participants were primed by affective visual cues of different contextual categories before making financial decisions. We found that the obese group showed stronger discounting of future monetary rewards than the lean group, but groups did not differ in their general stability between sessions nor in their sensitivity toward changes in reward magnitude. In the obese group, a fast decrease of subjective value over time was directly related to a higher tendency for opportunistic eating. Obese in contrast to lean people were primed by the affective cues, showing a sex-specific pattern of priming direction. Our findings demonstrate that environments rich of cues, aiming at inducing unhealthy consumer decisions, can be highly detrimental for obese people. It also underscores that obesity is not merely a medical condition but has a strong cognitive component, meaning that current dietary and medical treatment strategies may fall too short.
Collapse
Affiliation(s)
- Jakob Simmank
- Junior Research Group 'Decision-making in obesity', IFB Adiposity Diseases, Leipzig University Medical Center Leipzig, Germany ; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Carsten Murawski
- Department of Finance, The University of Melbourne Melbourne, Victoria, Australia
| | - Stefan Bode
- Decision Neuroscience Laboratory, Melbourne School of Psychological Sciences, The University of Melbourne Victoria, Australia
| | - Annette Horstmann
- Junior Research Group 'Decision-making in obesity', IFB Adiposity Diseases, Leipzig University Medical Center Leipzig, Germany ; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Collaborative Research Centre, Leipzig University Medical Center Leipzig, Germany
| |
Collapse
|