201
|
Toribio RE. Equine Neonatal Encephalopathy: Facts, Evidence, and Opinions. Vet Clin North Am Equine Pract 2019; 35:363-378. [PMID: 31088699 DOI: 10.1016/j.cveq.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Neonatal encephalopathy (NE) and neonatal maladjustment syndrome (NMS) are terms used for newborn foals that develop noninfectious neurologic signs in the immediate postpartum period. Cerebral ischemia, hypoxia, and inflammation leading to neuronal and glial dysfunction and excitotoxicity are considered key mechanisms behind NE/NMS. Attention has been placed on endocrine and paracrine factors that alter brain cell function. Abnormal steroid concentrations (progestogens, neurosteroids) have been measured in critically ill and NE foals. In addition to supportive treatment, antimicrobials should be considered. Controversies regarding the pathophysiology, diagnosis, and treatment of NE and NMS will remain until controlled mechanistic and therapeutic studies are conducted.
Collapse
Affiliation(s)
- Ramiro E Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
202
|
Loomis WP, den Hartigh AB, Cookson BT, Fink SL. Diverse small molecules prevent macrophage lysis during pyroptosis. Cell Death Dis 2019; 10:326. [PMID: 30975978 PMCID: PMC6459844 DOI: 10.1038/s41419-019-1559-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.
Collapse
Affiliation(s)
- Wendy P Loomis
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Brad T Cookson
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Susan L Fink
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
203
|
Huang QT, Sheng CW, Jiang J, Tang T, Jia ZQ, Han ZJ, Zhao CQ. Interaction of insecticides with heteromeric GABA-gated chloride channels from zebrafish Danio rerio (Hamilton). JOURNAL OF HAZARDOUS MATERIALS 2019; 366:643-650. [PMID: 30580138 DOI: 10.1016/j.jhazmat.2018.11.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 05/07/2023]
Abstract
The ionotropic GABAA receptor (GABAAR) is the main fast inhibitory post-synaptic receptor and is also an important insecticidal target. Effect of insecticides on fish has attracted intensive attention. However, no systematic study on heteromeric zebrafish GABAAR expressed in oocytes has been reported to date. In this study, the α1 subunit, the β2S subunit lacking 47 amino acid residues compared with the β2L subunit, and the γ2 subunit having five transmembrane domains were isolated from zebrafish Danio rerio. The responses of homomeric and heteromeric (α1, β2S and γ2) channels to agonists and GABAAR-targeted compounds were detected with two-electrode voltage clamp. Dose-dependent responses were observed in heteromeric α1β2S, β2Sγ2, and α1β2Sγ2 GABAR channels with EC50 values at 21.75, 6291, and 33.69 μM for GABA-induced current and 3.28, 155.5, and 3.79 mM for β-alanine-induced current, respectively. However, no response was induced by benzamidine in all GABAR channels. Abamectin, dieldrin, fluralaner and fipronil could strongly inhibited GABA-induced inward current ≥50% at 10-6 M, while α-endosulfan, flufiprole and ethiprole only inhibited GABA-induced current <50%. This study has clarified the interaction of insecticides with the heteromeric GABAAR channel, which could help us further explore the potential function and toxicological importance of GABAARs from D. rerio.
Collapse
Affiliation(s)
- Qiu-Tang Huang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cheng-Wang Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jie Jiang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China
| | - Zhong-Qiang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhao-Jun Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chun-Qing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
204
|
Bacopa monnieri abrogates alcohol abstinence-induced anxiety-like behavior by regulating biochemical and Gabra1, Gabra4, Gabra5 gene expression of GABAA receptor signaling pathway in rats. Biomed Pharmacother 2019; 111:1417-1428. [DOI: 10.1016/j.biopha.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
|
205
|
Tian J, Dang H, Karashchuk N, Xu I, Kaufman DL. A Clinically Applicable Positive Allosteric Modulator of GABA Receptors Promotes Human β-Cell Replication and Survival as well as GABA's Ability to Inhibit Inflammatory T Cells. J Diabetes Res 2019; 2019:5783545. [PMID: 30937314 PMCID: PMC6413367 DOI: 10.1155/2019/5783545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
A major goal of T1D research is to develop new approaches to increase β-cell mass and control autoreactive T cell responses. GABAA-receptors (GABAA-Rs) are promising drug targets in both those regards due to their abilities to promote β-cell replication and survival, as well as inhibit autoreactive T cell responses. We previously showed that positive allosteric modulators (PAMs) of GABAA-Rs could promote rat β-cell line INS-1 and human islet cell replication in vitro. Here, we assessed whether treatment with alprazolam, a widely prescribed GABAA-R PAM, could promote β-cell survival and replication in human islets after implantation into NOD/scid mice. We observed that alprazolam treatment significantly reduced human islet cell apoptosis following transplantation and increased β-cell replication in the xenografts. Evidently, the GABAA-R PAM works in conjunction with GABA secreted from β-cells to increase β-cell survival and replication. Treatment with both the PAM and GABA further enhanced human β-cell replication. Alprazolam also augmented the ability of suboptimal doses of GABA to inhibit antigen-specific T cell responses in vitro. Thus, combined GABAA-R agonist and PAM treatment may help control inflammatory immune responses using reduced drug dosages. Together, these findings suggest that GABAA-R PAMs represent a promising drug class for safely modulating islet cells toward beneficial outcomes to help prevent or reverse T1D and, together with a GABAA-R agonist, may have broader applications for ameliorating other disorders in which inflammation contributes to the disease process.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Nataliya Karashchuk
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Irvin Xu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| |
Collapse
|
206
|
Absalom NL, Ahring PK, Liao VW, Balle T, Jiang T, Anderson LL, Arnold JC, McGregor IS, Bowen MT, Chebib M. Functional genomics of epilepsy-associated mutations in the GABA A receptor subunits reveal that one mutation impairs function and two are catastrophic. J Biol Chem 2019; 294:6157-6171. [PMID: 30728247 DOI: 10.1074/jbc.ra118.005697] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
A number of epilepsy-causing mutations have recently been identified in the genes of the α1, β3, and γ2 subunits comprising the γ-aminobutyric acid type A (GABAA) receptor. These mutations are typically dominant, and in certain cases, such as the α1 and β3 subunits, they may lead to a mix of receptors at the cell surface that contain no mutant subunits, a single mutated subunit, or two mutated subunits. To determine the effects of mutations in a single subunit or in two subunits on receptor activation, we created a concatenated protein assembly that links all five subunits of the α1β3γ2 receptor and expresses them in the correct orientation. We created nine separate receptor variants with a single-mutant subunit and four receptors containing two subunits of the γ2R323Q, β3D120N, β3T157M, β3Y302C, and β3S254F epilepsy-causing mutations. We found that the singly mutated γ2R323Q subunit impairs GABA activation of the receptor by reducing GABA potency. A single β3D120N, β3T157M, or β3Y302C mutation also substantially impaired receptor activation, and two copies of these mutants within a receptor were catastrophic. Of note, an effect of the β3S254F mutation on GABA potency depended on the location of this mutant subunit within the receptor, possibly because of the membrane environment surrounding the transmembrane region of the receptor. Our results highlight that precise functional genomic analyses of GABAA receptor mutations using concatenated constructs can identify receptors with an intermediate phenotype that contribute to epileptic phenotypes and that are potential drug targets for precision medicine approaches.
Collapse
Affiliation(s)
- Nathan L Absalom
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Philip K Ahring
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Vivian W Liao
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Thomas Balle
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Tian Jiang
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Lyndsey L Anderson
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia
| | - Jonathon C Arnold
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia
| | - Iain S McGregor
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; the School of Psychology, Faculty of Science, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Michael T Bowen
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; the School of Psychology, Faculty of Science, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Mary Chebib
- From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|
207
|
Liu H, Zhou X, Wang Y, Yang M, Xu X, Wu A. Mixed micelle as nanocarrier for etomidate: Development, in vitro characterizations, and in vivo study on toxicity and anesthetic effects. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
208
|
Rhine MA, Parrott JM, Schultz MN, Kazdoba TM, Crawley JN. Hypothesis-driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Res 2019; 12:401-421. [PMID: 30653853 PMCID: PMC6402976 DOI: 10.1002/aur.2066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental syndrome diagnosed primarily by persistent deficits in social interactions and communication, unusual sensory reactivity, motor stereotypies, repetitive behaviors, and restricted interests. No FDA‐approved medical treatments exist for the diagnostic symptoms of autism. Here we interrogate multiple pharmacological targets in two distinct mouse models that incorporate well‐replicated autism‐relevant behavioral phenotypes. Compounds that modify inhibitory or excitatory neurotransmission were selected to address hypotheses based on previously published biological abnormalities in each model. Shank3B is a genetic model of a mutation found in autism and Phelan‐McDermid syndrome, in which deficits in excitatory neurotransmission and synaptic plasticity have been reported. BTBR is an inbred strain model of forms of idiopathic autism in which reduced inhibitory neurotransmission and excessive mTOR signaling have been reported. The GABA‐A receptor agonist gaboxadol significantly reduced repetitive self‐grooming in three independent cohorts of BTBR. The TrkB receptor agonist 7,8‐DHF improved spatial learning in Shank3B mice, and reversed aspects of social deficits in BTBR. CX546, a positive allosteric modulator of the glutamatergic AMPA receptor, and d‐cycloserine, a partial agonist of the glycine site on the glutamatergic NMDA receptor, did not rescue aberrant behaviors in Shank3B mice. The mTOR inhibitor rapamycin did not ameliorate social deficits or repetitive behavior in BTBR mice. Comparison of positive and negative pharmacological outcomes, on multiple phenotypes, evaluated for replicability across independent cohorts, enhances the translational value of mouse models of autism for therapeutic discovery. GABA agonists present opportunities for personalized interventions to treat components of autism spectrum disorder. Autism Res 2019, 12: 401–421 © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Many of the risk genes for autism impair synapses, the connections between nerve cells in the brain. A drug that reverses the synaptic effects of a mutation could offer a precision therapy. Combining pharmacological and behavioral therapies could reduce symptoms and improve the quality of life for people with autism. Here we report reductions in repetitive behavior by a GABA‐A receptor agonist, gaboxadol, and improvements in social and cognitive behaviors by a TrkB receptor agonist, in mouse models of autism.
Collapse
Affiliation(s)
- Maya A Rhine
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Jennifer M Parrott
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Maria N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| |
Collapse
|
209
|
Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, Aricescu AR. GABA A receptor signalling mechanisms revealed by structural pharmacology. Nature 2019; 565:454-459. [PMID: 30602790 PMCID: PMC6370056 DOI: 10.1038/s41586-018-0832-5] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023]
Abstract
Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.
Collapse
Affiliation(s)
- Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Rooma Desai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Itziar Serna Martin
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Duncan Laverty
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Abhay Kotecha
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
210
|
Cruz DA, Glantz LA, McGaughey KD, Parke G, Shampine LJ, Kilts JD, Naylor JC, Marx CE, Williamson DE. Neurosteroid Levels in the Orbital Frontal Cortex of Subjects with PTSD and Controls: A Preliminary Report. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019838570. [PMID: 31276078 PMCID: PMC6604657 DOI: 10.1177/2470547019838570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Background Neurosteroids mediate stress signaling and have been implicated in the pathogenesis of post-traumatic stress disorder (PTSD) in both preclinical and clinical studies. Compared to controls, subjects with PTSD exhibit altered neurosteroid levels in peripheral blood and cerebrospinal fluid as well as hypoactivity in the medial orbital frontal cortex (mOFC). Therefore, the aim of this study was to compare neurosteroid levels in the mOFC of subjects with PTSD (n = 18) and controls (n = 35). Methods Gray matter was dissected from fresh-frozen mOFC, and levels of the neurosteroids pregnenolone, allopregnanolone, pregnanolone, epiallopregnanolone, epipregnanolone, tetrahydrodeoxycorticosterone, and androsterone were determined by gas chromatography - tandem mass spectrometry (GC/MS/MS). Results Analyses of unadjusted levels revealed that males with PTSD had significantly decreased levels of allopregnanolone (p = 0.03) compared to control males and females with PTSD had significantly increased levels of pregnenolone (p = 0.03) relative to control females. After controlling for age, postmortem interval, and smoking status, results showed that males with PTSD had significantly decreased levels of androsterone (t46 = 2.37, p = 0.02) compared to control males and females with PTSD had significantly increased levels of pregnanolone (t46 = -2.25, p = 0.03) relative to control females. Conclusions To our knowledge, this is the first report of neurosteroid levels in postmortem brain tissue of subjects with PTSD. Although replication is required in other brain regions and in a larger cohort of subjects, the results suggest a dysregulation of allopregnanolone and androsterone in males with PTSD and pregnanolone in females with PTSD in the mOFC.
Collapse
Affiliation(s)
- Dianne A. Cruz
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Leisa A. Glantz
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Kara D. McGaughey
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Gillian Parke
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Lawrence J. Shampine
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Jason D. Kilts
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Jennifer C. Naylor
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
| | - Christine E. Marx
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
- Durham
VA Medical Center, Durham, NC, USA
- VA Mid-Atlantic MIRECC, Durham, NC,
USA
| | - Douglas E. Williamson
- Department of Psychiatry and Behavioral
Sciences, Duke University Medical Center, Durham, NC, USA
- Durham
VA Medical Center, Durham, NC, USA
| |
Collapse
|
211
|
Shin DJ, Germann AL, Covey DF, Steinbach JH, Akk G. Analysis of GABA A Receptor Activation by Combinations of Agonists Acting at the Same or Distinct Binding Sites. Mol Pharmacol 2019; 95:70-81. [PMID: 30337372 PMCID: PMC6277923 DOI: 10.1124/mol.118.113464] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022] Open
Abstract
Under both physiologic and clinical conditions GABAA receptors are exposed to multiple agonists, including the transmitter GABA, endogenous or exogenous neuroactive steroids, and various GABAergic anesthetic and sedative drugs. The functional output of the receptor reflects the interplay among all active agents. We have investigated the activation of the concatemeric α1β2γ2L GABAA receptor by combinations of agonists. Simulations of receptor activity using the coagonist concerted transition model demonstrate that the response amplitude in the presence of agonist combinations is highly dependent on whether the paired agonists interact with the same or distinct sites. The experimental data for receptor activation by agonist combinations were in agreement with the established views of the overlap of binding sites for several pairs of orthosteric (GABA, β-alanine, and piperidine-4-sulfonic acid) and/or allosteric agents (propofol, pentobarbital, and several neuroactive steroids). Conversely, the degree of potentiation when two GABAergic agents are coapplied can be used to determine whether the compounds act by binding to the same or distinct sites. We show that common interaction sites mediate the actions of 5α- and 5β-reduced neuroactive steroids, and natural and enantiomeric steroids. Furthermore, the results indicate that the anesthetics propofol and pentobarbital interact with partially shared binding sites. We propose that the findings may be used to predict the efficacy of drug mixtures in combination therapy and thus have potential clinical relevance.
Collapse
Affiliation(s)
- Daniel J Shin
- Departments of Anesthesiology (D.J.S., A.L.G., J.H.S., G.A.) and Developmental Biology (D.F.C.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Allison L Germann
- Departments of Anesthesiology (D.J.S., A.L.G., J.H.S., G.A.) and Developmental Biology (D.F.C.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Douglas F Covey
- Departments of Anesthesiology (D.J.S., A.L.G., J.H.S., G.A.) and Developmental Biology (D.F.C.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Departments of Anesthesiology (D.J.S., A.L.G., J.H.S., G.A.) and Developmental Biology (D.F.C.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Departments of Anesthesiology (D.J.S., A.L.G., J.H.S., G.A.) and Developmental Biology (D.F.C.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
212
|
Abstract
Neurosteroids (NS) are the main modulators of γ-aminobutyric acid type A receptors (GABAARs), which are the ligand-gated channels target of the major inhibitory neurotransmitter in vertebrates. As a consequence of their ability to modify inhibitory functions in the brain, NS have high physiological and clinical relevance. Accumulated evidence has strongly suggested that NS binding sites were located in the GABAAR transmembrane domain; however the specific localization of these sites has remained an enigma for decades. Fortunately, recent resolution of GABAARs crystal structures, together with computational strategies applied to investigate the NS binding, has paved the way to rationalizing the molecular basis of NS modulation. This work reviews from a historical perspective the road followed for establishing the GABAAR/NS binding mode, from their initial molecular modeling to the latest findings. Furthermore, a comparative analysis describing the NS binding is provided, plus a preliminary analysis of putative NS sites in other assemblies.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina.,UMYMFOR , CONICET-Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina
| | - Adali Pecci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina.,IFIBYNE , CONICET-Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina
| | - Dario A Estrin
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina.,INQUIMAE , CONICET-Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina
| |
Collapse
|
213
|
Na +/K +-pump and neurotransmitter membrane receptors. INVERTEBRATE NEUROSCIENCE 2018; 19:1. [PMID: 30488358 PMCID: PMC6267510 DOI: 10.1007/s10158-018-0221-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023]
Abstract
Na+/K+-pump is an electrogenic transmembrane ATPase located in the outer plasma membrane of cells. The Na+/K+-ATPase pumps 3 sodium ions out of cells while pumping 2 potassium ions into cells. Both cations move against their concentration gradients. This enzyme's electrogenic nature means that it has a chronic role in stabilizing the resting membrane potential of the cell, in regulating the cell volume and in the signal transduction of the cell. This review will mainly consider the role of the Na+/K+-pump in neurons, with an emphasis on its role in modulating neurotransmitter receptor. Most of the literature on the modulation of neurotransmitter receptors refers to the situation in the mammalian nervous system, but the position is likely to be similar in most, if not all, invertebrate nervous systems.
Collapse
|
214
|
Abstract
OBJECTIVES Anxiety and adjustment disorders are among the most prevalent mental health conditions. This review focuses on γ-aminobutyric acid receptor type A (GABAAR)-mediated anxiolysis, describing the action of both endogenous and exogenous modulators of GABAAR. Future directions and innovative strategies to alleviate anxiety symptoms are discussed, with a particular emphasis on etifoxine. METHODS We used available data from the recent literature to update the mode of action of anxiolytics. We focussed our search on anxiolytics acting at GABAARs, as well as on the pharmacological properties of formerly and currently prescribed anxiolytics. RESULTS Considering the adverse effects of current treatments aimed at increasing inhibitory controls, optimisation of existing pharmacotherapies is of crucial importance. Among the alternative compounds targeting the GABAergic system, translocator protein (TSPO) ligands, such as etifoxine (EFX), which promote endogenous neurosteroidogenesis, are emerging as promising candidates for anxiety relief. In several papers comparing the efficacy of benzodiazepines and EFX, EFX showed interesting properties with limited side effects. Indeed, neurosteroids are potent GABAAR modulators with highly underrated anxiolytic properties. CONCLUSIONS Novel therapeutic strategies have been emerging following the recognition of neurosteroids as potent anxiolytics. Featured at the top of the list for well-tolerated anxiety relief, TSPO ligands such as etifoxine appear promising.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Geraldine Gazzo
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Laurent Calvel
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| |
Collapse
|
215
|
Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity. Proc Natl Acad Sci U S A 2018; 115:10672-10677. [PMID: 30275330 PMCID: PMC6196478 DOI: 10.1073/pnas.1809650115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to ∼30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.
Collapse
|
216
|
Nieoczym D, Socała K, Wlaź P. Evaluation of the role of different neurotransmission systems in the anticonvulsant action of sildenafil in the 6 Hz-induced psychomotor seizure threshold test in mice. Biomed Pharmacother 2018; 107:1674-1681. [PMID: 30257385 DOI: 10.1016/j.biopha.2018.08.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Sildenafil influences seizure activity in animal seizure models, and its both proconvulsant and anticonvulsant effects were reported. We previously found that this PDE5 inhibitor significantly increased seizure threshold for the 6 Hz-induced psychomotor seizures in mice and therefore we aimed to investigate the influence of some modulators of neurotransmitter receptors, i.e., diazepam (GABA/benzodiazepine receptor agonist), flumazenil (GABA/benzodiazepine receptor antagonist), N-methyl-d-aspartic acid (NMDA glutamate receptor agonist), CGP 37849 (NMDA receptor antagonist), metergoline (serotonin receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (adenosine A1 receptor antagonist) and β-funaltrexamine (μ opioid receptor antagonist), on the anticonvulsant effect of sildenafil in this test. Additionally, we estimated influence of the studied compounds and their combinations with sildenafil on the muscular strength (assessed in the grip strength test) and motor coordination (assessed in the chimney test) in mice. Our results indicate that anticonvulsant properties of sildenafil in the 6 Hz test in mice might be related to its interactions with the GABAergic, glutamatergic, serotonergic and adenosinergic neurotransmission. We did not find interactions between sildenafil and μ opioid receptors. Neither the studied ligands nor their combinations with sildenafil impaired muscular strength and motor coordination. In conclusion, sildenafil has complex and extensive influence on neurotransmission and seizure generation in the CNS.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| |
Collapse
|
217
|
You C, Vandegrift BJ, Zhang H, Lasek AW, Pandey SC, Brodie MS. Histone Deacetylase Inhibitor Suberanilohydroxamic Acid Treatment Reverses Hyposensitivity to γ-Aminobutyric Acid in the Ventral Tegmental Area During Ethanol Withdrawal. Alcohol Clin Exp Res 2018; 42:2160-2171. [PMID: 30103280 PMCID: PMC6214766 DOI: 10.1111/acer.13870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022]
Abstract
Background The ventral tegmental area (VTA) is important for alcohol‐related reward and reinforcement. Mouse VTA neurons are hyposensitive to γ‐aminobutyric acid (GABA) during ethanol (EtOH) withdrawal, and GABA responsiveness is normalized by in vitro treatment with histone deacetylase inhibitors (HDACi). The present study examined the effect of a systemically administered HDACi, suberanilohydroxamic acid (SAHA) on GABA sensitivity, and related molecular changes in VTA neurons during withdrawal after chronic EtOH intake in rats. Methods Sprague Dawley male adult rats were fed with Lieber‐DeCarli diet (9% EtOH or control diet) for 16 days. Experimental groups included control diet‐fed and EtOH diet‐fed (0‐ or 24‐hour withdrawal) rats treated with either SAHA or vehicle injection. Single‐unit recordings were used to measure the response of VTA neurons to GABA. Immunohistochemistry was performed to examine levels of HDAC2, acetylated histone H3 lysine 9 (acH3K9), and GABAA receptor α1 and α5 subunits in the VTA; quantitative polymerase chain reaction was performed to examine the mRNA levels of HDAC2 and GABAA receptor subunits. Results VTA neurons from the withdrawal group exhibited GABA hyposensitivity. In vivo SAHA treatment 2 hours before sacrifice normalized the sensitivity of VTA neurons to GABA. EtOH withdrawal was associated with increased HDAC2 and decreased acH3K9 protein levels; SAHA treatment normalized acH3K9 levels. Interestingly, no significant change was observed in the mRNA levels of HDAC2. The mRNA levels, but not protein levels, of GABAA receptor α1 and α5 subunits were increased during withdrawal. Conclusions Withdrawal from chronic EtOH exposure results in a decrease in GABA‐mediated inhibition, and this GABA hyposensitivity is normalized by in vivo SAHA treatment. Disruption of signaling in the VTA produced by alteration of GABA neurotransmission could be 1 neuroadaptive physiological process leading to craving and relapse. These results suggest that HDACi pharmacotherapy with agents like SAHA might be an effective treatment for alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown VA Medical Center , Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown VA Medical Center , Chicago, Illinois
| | - Mark S Brodie
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
218
|
Almeida FB, Fonseca AR, Heidrich N, Nin MS, Barros HMT. The effect of intracerebroventricular allopregnanolone on depressive-like behaviors of rats selectively bred for high and low immobility in the forced swim test. Physiol Behav 2018; 194:246-251. [PMID: 29906470 DOI: 10.1016/j.physbeh.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Depression is a highly incapacitating disorder known to have a multifactorial etiology, including a hereditary genetic background. The neurosteroid allopregnanolone (ALLO) is a positive allosteric modulator of the GABAA receptor and has been shown to have an antidepressant-like effect in animals. This study aimed to assess the behavioral effect of ALLO in animals with different backgrounds of depressive-like activity. An initial population (F0) of male and female Wistar rats was screened for immobility behavior utilizing the Forced Swim Test (FST). Rats with extreme immobility scores were selected for either the High Immobility (HI) group or the Low Immobility (LI) group for breeding, giving origin to the subsequent generations F1 and F2. Guide cannulas were implanted in the lateral ventricle of F2 males for intracerebroventricular infusions of 5 μg/rat of ALLO, 5 μg/rat of imipramine (IMI) or vehicle (CTR), which occurred 24, 5 and 1 h prior to the test session of the drug FST. In the pre-drug FST, a statistically significant difference was observed between the immobility scores from the HI and LI groups of F2 rats. HI rats from F2 also showed significantly higher immobility time when compared to F0. In these HI animals, both IMI and ALLO significantly reduced immobility when compared to the CTR group. IMI-treated rats also showed lower immobility than the ALLO group. In the LI rats, no difference in immobility was found between treatments. In conclusion, two strains of rats with significantly different immobility profiles in the FST were obtained in a relatively short time, after only two generations. Infusions of both ALLO and IMI showed a strain-dependent antidepressant-like effect, being detected in the HI animals but not in the LI animals, which is in line with the clinical understanding that antidepressants have higher efficacy in more severe forms of depression.
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil.
| | - Alan Rios Fonseca
- Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Núbia Heidrich
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Curso de Farmácia, Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado 80, 90420-060 Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|