201
|
Zhang B, Shen XL, Liang R, Li Y, Huang K, Zhao C, Luo Y, Xu W. Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J Proteomics 2014; 101:154-68. [PMID: 24565693 DOI: 10.1016/j.jprot.2014.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2013] [Revised: 01/29/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Ochratoxin A (OTA) is a common kind of mycotoxin and food contaminant, which has various toxicological effects, especially nephrotoxicity. Our previous work about OTA-induced renal cytotoxicity indicated that mitochondrial Lon Protease 1 (Lonp1) might play a protective role. Lonp1 is a multifunctional ATP-dependent protease which mainly participates in mitochondrial proteolysis and protein quality control. The study aimed at probing how Lonp1 functioned in OTA-induced renal cytotoxicity. By means of RNA interference, we down-regulated the expression of Lonp1 in HEK293 cells. Cell viability results revealed that cells with Lonp1 deficiency were more vulnerable to OTA. Then we identified differentially expressed proteins between Lonp1 knock-down cells and scrambled control both in the absence and presence of OTA, using iTRAQ-based quantitative proteomics approach. Thirty-four proteins were differentially expressed as a result of Lonp1 deficiency, while forty-four proteins were differentially expressed in response to both Lonp1 deficiency and OTA treatment. By function summary and pathway analysis, we presumed that Lonp1 realized its protective function in the resistance to OTA-induced renal cytotoxicity via 4 processes: defensing against OTA-induced oxidative stress in the mitochondria; regulating protein synthesis, modification and repair; maintaining the balance of carbohydrate metabolism; and assisting in mtDNA maintenance. BIOLOGICAL SIGNIFICANCE OTA is a kind of mycotoxin that seriously threatens human health and has various toxicological effects. However, the mechanisms of its toxicity have not been exactly elucidated yet. The method of combination of RNAi and iTRAQ-based quantitative proteomics paves the way to gain a better understanding of the toxicity mechanisms of OTA. The present study, for the first time, verified the protective role of Lonp1 in OTA-induced renal cytotoxicity and clarified the defensive mechanism. Proteomic changes in Lonp1 deficient cells induced by OTA added new knowledge to OTA cytotoxicity.
Collapse
Affiliation(s)
- Boyang Zhang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiao Li Shen
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| | - Rui Liang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuzhe Li
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kunlun Huang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Yunbo Luo
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
202
|
Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Varès G, Honda K, Mishra DP, Wang B, Benjamin I, Sassone-Corsi P, Ozawa T, Takamatsu K. ROS stress resets circadian clocks to coordinate pro-survival signals. PLoS One 2013; 8:e82006. [PMID: 24312621 PMCID: PMC3846904 DOI: 10.1371/journal.pone.0082006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2013] [Accepted: 10/20/2013] [Indexed: 01/04/2023] Open
Abstract
Dysfunction of circadian clocks exacerbates various diseases, in part likely due to impaired stress resistance. It is unclear how circadian clock system responds toward critical stresses, to evoke life-protective adaptation. We identified a reactive oxygen species (ROS), H2O2 -responsive circadian pathway in mammals. Near-lethal doses of ROS-induced critical oxidative stress (cOS) at the branch point of life and death resets circadian clocks, synergistically evoking protective responses for cell survival. The cOS-triggered clock resetting and pro-survival responses are mediated by transcription factor, central clock-regulatory BMAL1 and heat shock stress-responsive (HSR) HSF1. Casein kinase II (CK2) –mediated phosphorylation regulates dimerization and function of BMAL1 and HSF1 to control the cOS-evoked responses. The core cOS-responsive transcriptome includes CK2-regulated crosstalk between the circadian, HSR, NF-kappa-B-mediated anti-apoptotic, and Nrf2-mediated anti-oxidant pathways. This novel circadian-adaptive signaling system likely plays fundamental protective roles in various ROS-inducible disorders, diseases, and death.
Collapse
Affiliation(s)
- Teruya Tamaru
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan
- * E-mail: (TT); (TO)
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Science, Chiba, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Guillaume Varès
- Research Center for Radiation Protection, National Institute of Radiological Science, Chiba, Japan
| | - Kousuke Honda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Science, Chiba, Japan
| | - Ivor Benjamin
- Division of Cardiology, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail: (TT); (TO)
| | - Ken Takamatsu
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
203
|
Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park CM, Carroll KS, Filipovic MR, Xian M. Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem Int Ed Engl 2013; 53:575-81. [PMID: 24288186 DOI: 10.1002/anie.201305876] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2013] [Indexed: 01/08/2023]
Abstract
Protein S-sulfhydration (forming -S-SH adducts from cysteine residues) is a newly defined oxidative posttranslational modification and plays an important role in H2 S-mediated signaling pathways. In this study we report the first selective, "tag-switch" method which can directly label protein S-sulfhydrated residues by forming stable thioether conjugates. Furthermore we demonstrate that H2 S alone cannot lead to S-sulfhydration and that the two possible physiological mechanisms include reaction with protein sulfenic acids (P-SOH) or the involvement of metal centers which would facilitate the oxidation of H2 S to HS(.) .
Collapse
Affiliation(s)
- Dehui Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park CM, Carroll KS, Filipovic MR, Xian M. Detektion von Persulfidbildung an Proteinen (S-Sulfhydrierung) mithilfe einer Tag-Switch-Technik. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
205
|
Karantanos T, Tanimoto R, Edamura K, Hirayama T, Yang G, Golstov AA, Wang J, Kurosaka S, Park S, Thompson TC. Systemic GLIPR1-ΔTM protein as a novel therapeutic approach for prostate cancer. Int J Cancer 2013; 134:2003-13. [PMID: 24590455 DOI: 10.1002/ijc.28529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023]
Abstract
GLIPR1 is a p53 target gene known to be downregulated in prostate cancer, and increased endogenous GLIPR1 expression has been associated with increased production of reactive oxygen species, increased apoptosis, decreased c-Myc protein levels and increased cell cycle arrest. Recently, we found that upregulation of GLIPR1 in prostate cancer cells increases mitotic catastrophe through interaction with heat shock cognate protein 70 (Hsc70) and downregulation of Aurora kinase A and TPX2. In this study, we evaluated the mechanisms of recombinant GLIPR1 protein (glioma pathogenesis-related protein 1-transmembrane domain deleted [GLIPR1-ΔTM]) uptake by prostate cancer cells and the efficacy of systemic GLIPR1-ΔTM administration in a prostate cancer xenograft mouse model. GLIPR1-ΔTM was selectively internalized by prostate cancer cells, leading to increased apoptosis through reactive oxygen species production and to decreased c-Myc protein levels. Interestingly, GLIPR1-ΔTM was internalized through clathrin-mediated endocytosis in association with Hsc70. Systemic administration of GLIPR1-ΔTM significantly inhibited VCaP xenograft growth. GLIPR1-ΔTM showed no evidence of toxicity following elimination from mouse models 8 hr after injection. Our results demonstrate that GLIPR1-ΔTM is selectively endocytosed by prostate cancer cells, leading to increased reactive oxygen species production and apoptosis, and that systemic GLIPR1-ΔTM significantly inhibits growth of VCaP xenografts without substantial toxicity.
Collapse
Affiliation(s)
- Theodoros Karantanos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 2013; 9:1937-54. [PMID: 24121476 DOI: 10.4161/auto.26448] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
HSPA8/HSC70 protein is a fascinating chaperone protein. It represents a constitutively expressed, cognate protein of the HSP70 family, which is central in many cellular processes. In particular, its regulatory role in autophagy is decisive. We focused this review on HSC70 structure-function considerations and based on this, we put a particular emphasis on HSC70 targeting by small molecules and peptides in order to develop intervention strategies that deviate some of HSC70 properties for therapeutic purposes. Generating active biomolecules regulating autophagy via its effect on HSC70 can effectively be designed only if we understand the fine relationships between HSC70 structure and functions.
Collapse
Affiliation(s)
- François Stricher
- CNRS; Institut de Biologie Moléculaire et Cellulaire; Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis; Strasbourg, France
| | | | | | | |
Collapse
|
207
|
Sakamura Y, Yoshiura M, Tang H, Mori T, Katayama Y, Niidome T. Thermal Enhancement of Gene Transfection in Tumor Cells Mediated by the Photothermal Effect of Gold Nanorods. CHEM LETT 2013. [DOI: 10.1246/cl.130220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Sakamura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Moemi Yoshiura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Hengmin Tang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
- International Research Center for Molecular System, Kyushu University
| | - Takuro Niidome
- Graduate School of Science and Technology, Kumamoto University
| |
Collapse
|
208
|
Liu T, Dean A, Ashwini S, Sheridan PP, Bhushan A, Lai JCK, Cao S, Daniels CK. Identification and characterization of a 66-68-kDa protein as a methotrexate-binding protein in murine leukemia L1210 cells. Cell Stress Chaperones 2013; 18:223-34. [PMID: 23090015 PMCID: PMC3581622 DOI: 10.1007/s12192-012-0376-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 01/07/2023] Open
Abstract
We previously observed an unidentified, tyrosine-phosphorylated, membrane-associated, 66-68-kDa protein which was present in the L1210 murine leukemia cells but not present, at least in the tyrosine-phosphorylated form, in cisplatin-methotrexate (CDDP-MTX) cross-resistant L1210/DDP cells. We purified and characterized this 66-68-kDa protein by affinity chromatography purification using its two identified properties, tyrosine phosphorylation and MTX-binding, and yielded a single band of 66-68 kDa. The purified protein was subjected to trypsin digestion and the isolated peptide fragments were sequenced and yielded two partial peptide sequences: VEIIANDQ and VTNAVVTVPAYFNDSQRQA. The two peptide sequences were used to search for the mouse genome at the national center for biotechnology information (NCBI) database for Open Reading Frame Sequence (ORFs) containing these peptides using the TBLASTN function. A single gene was identified containing both sequences, the HSPa8 gene, which codes for the heat shock family protein, HSC70. We further demonstrated that HSC70 is a MTX-binding protein using a binding assay with MTX-agarose beads followed by Western blotting. The HSC70 also existed in various cancer cell lines and showed binding to MTX. Additionally, the HSC70 protein, cloned from the L1210 murine leukemia cells, was expressed and purified from E. coli cells using a polyhistidine-tag purification system and it also showed the binding properties with MTX. DnaK, the HSC70 homologue in E. coli, also binds to MTX. By using the purified truncated HSC70 domains, we identified the adenosine triphosphatase (ATPase) domain of HSC70 that can bind to MTX. Thus, we have tentatively characterized a new, novel property of HSC70 as a MTX-binding protein.
Collapse
Affiliation(s)
- Tuoen Liu
- />Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO USA
| | - Allison Dean
- />Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT USA
| | - Saint Ashwini
- />Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 970 South 5th Avenue, Campus Box 8334, Pocatello, ID 83209 USA
| | - Peter P. Sheridan
- />Department of Biological Sciences, Idaho State University, Pocatello, ID USA
- />The ISU Biomedical Research Institute, Idaho State University, Pocatello, ID USA
| | - Alok Bhushan
- />Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 970 South 5th Avenue, Campus Box 8334, Pocatello, ID 83209 USA
- />The ISU Biomedical Research Institute, Idaho State University, Pocatello, ID USA
| | - James C. K. Lai
- />Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 970 South 5th Avenue, Campus Box 8334, Pocatello, ID 83209 USA
- />The ISU Biomedical Research Institute, Idaho State University, Pocatello, ID USA
| | - Shousong Cao
- />Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 USA
| | - Christopher K. Daniels
- />Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 970 South 5th Avenue, Campus Box 8334, Pocatello, ID 83209 USA
- />The ISU Biomedical Research Institute, Idaho State University, Pocatello, ID USA
| |
Collapse
|
209
|
Lockerbie RO, Eddé B, Prochiantz A. Cyclic AMP-dependent protein phosphorylation in isolated neuronal growth cones from developing rat forebrain. J Neurochem 1989; 31:202-14. [PMID: 2537377 DOI: 10.1016/j.devcel.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2014] [Revised: 07/07/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022]
Abstract
We have shown recently that neuronal growth cones isolated from developing rat forebrain possess an appreciable activity of adenylate cyclase, which produces cyclic AMP and can be stimulated by various neurotransmitter receptor agonists and by forskolin. To investigate cyclic AMP-mediated biochemical mechanisms in isolated growth cones, we have centered the present study on cyclic AMP-dependent protein phosphorylation. One-dimensional gel electrophoretic analysis showed that cyclic AMP analogs increased incorporation of 32P into several phosphoproteins in molecular mass ranges of 50-58 and 76-82 kilodaltons, including those of 82, 76, and 51 kilodaltons. Two-dimensional electrophoresis, using isoelectric focusing in the first dimension, resolved phosphorylated alpha- and beta-tubulin species, actin, a very acidic protein (isoelectric point 4.0) with a molecular mass of 93 kilodaltons, and two proteins (x and x') closely neighboring beta-tubulin. Two other phosphoproteins seen in the gels had molecular masses of 56 and 51 kilodaltons (respective isoelectric points, 4.5 and 4.4) and, along with the 93-kilodalton phosphoprotein, were highly enriched in the isolated growth cones. Only the tubulin and actin species were major proteins in the isolated growth cones. Cyclic AMP analogs enhanced incorporation of 32P into phosphoproteins x and x', and, as assessed by immunoprecipitation, into beta-tubulin. Peptide digest experiments suggested that phosphoproteins x and x' are unrelated to beta-tubulin. Nonequilibrium two-dimensional electrophoresis resolved many phosphoproteins, of which a 79- and 75-kilodalton doublet, a 74-kilodalton species, and a 58-kilodalton doublet showed enhanced incorporation of 32P in the presence of cyclic AMP.
Collapse
Affiliation(s)
- R O Lockerbie
- Chaire de Neuropharmacologie, INSERM U 114, Collège de France, Paris
| | | | | |
Collapse
|