201
|
Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumour Biol 2017; 39:1010428317701652. [PMID: 28468587 DOI: 10.1177/1010428317701652] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a major cause of cancer mortality worldwide, with a low survival rate for patients with advanced forms of the disease. Over the recent decades, the investigation of the pathophysiological mechanisms of tumourigenesis has opened promising avenues to understand some of the complexities of cancer treatment. However, tumour regeneration and metastasis impose great difficulty for gastric cancer cure. In recent years, cancer stem cells - a small subset of tumour cells in many cancers - have become a major focus of cancer research. Cancer stem cells are capable of self-renewal and are known to be responsible for tumour initiation, metastasis, therapy resistance and cancer recurrence. Recent studies have revealed the key role of microRNAs - small noncoding RNAs regulating gene expression - in these processes. MicroRNAs play crucial roles in the regulation of a wide range of biological processes in a post-transcriptional manner, though their expression is dysregulated in most malignancies, including gastric cancer. In this article, we review the consequences of aberrant expression of microRNA-34 in cancer and cancer stem cells, with a specific focus on the miR-34 dysregulation in gastric cancer and gastric cancer stem cells. We address the critical effects of the aberrant expression of miR-34 and its target genes in maintaining cancer stem cell properties. Information collection and discussion about the advancements in gastric cancer stem cells and microRNAs can be useful for providing novel insights into patient treatment.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
202
|
Prostate Cancer Stem Cell Markers Drive Progression, Therapeutic Resistance, and Bone Metastasis. Stem Cells Int 2017; 2017:8629234. [PMID: 28690641 PMCID: PMC5485361 DOI: 10.1155/2017/8629234] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Metastatic or recurrent tumors are the primary cause of cancer-related death. For prostate cancer, patients diagnosed with local disease have a 99% 5-year survival rate; however, this 5-year survival rate drops to 28% in patients with metastatic disease. This dramatic decline in survival has driven interest in discovering new markers able to identify tumors likely to recur and in developing new methods to prevent metastases from occurring. Biomarker discovery for aggressive tumor cells includes attempts to identify cancer stem cells (CSCs). CSCs are defined as tumor cells capable of self-renewal and regenerating the entire tumor heterogeneity. Thus, it is hypothesized that CSCs may drive primary tumor aggressiveness, metastatic colonization, and therapeutic relapse. The ability to identify these cells in the primary tumor or circulation would provide prognostic information capable of driving prostate cancer treatment decisions. Further, the ability to target these CSCs could prevent tumor metastasis and relapse after therapy allowing for prostate cancer to finally be cured. Here, we will review potential CSC markers and highlight evidence that describes how cells expressing each marker may drive prostate cancer progression, metastatic colonization and growth, tumor recurrence, and resistance to treatment.
Collapse
|
203
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
204
|
Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol 2017; 44:10-24. [DOI: 10.1016/j.semcancer.2017.02.011] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
|
205
|
Singh AK, Sharma N, Ghosh M, Park YH, Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Crit Rev Food Sci Nutr 2017; 57:3449-3463. [DOI: 10.1080/10408398.2015.1129310] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Kumar Singh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, R. S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | | | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
206
|
Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett 2017; 393:33-39. [DOI: 10.1016/j.canlet.2017.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
|
207
|
Han YP, Enomoto A, Shiraki Y, Wang SQ, Wang X, Toyokuni S, Asai N, Ushida K, Ara H, Ohka F, Wakabayashi T, Ma J, Natsume A, Takahashi M. Significance of low mTORC1 activity in defining the characteristics of brain tumor stem cells. Neuro Oncol 2017; 19:636-647. [PMID: 28453744 PMCID: PMC5464440 DOI: 10.1093/neuonc/now237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Background The significance of mammalian target of rapamycin complex 1 (mTORC1) activity in the maintenance of cancer stem cells (CSCs) remains controversial. Previous findings showed that mTORC1 activation depleted the population of leukemia stem cells in leukemia, while maintaining the stemness in pancreatic CSCs. The purpose of this study was to examine the currently unknown role and significance of mTORC1 activity in brain tumor stem cells (BTSCs). Methods Basal mTORC1 activity and its kinetics were investigated in BTSC clones isolated from patients with glioblastoma and their differentiated progenies (DIFFs). The effects of nutrient deprivation and the mTORC1 inhibitors on cell proliferation were compared between the BTSCs and DIFFs. Tissue sections from patients with brain gliomas were examined for expression of BTSC markers and mTORC1 activity by immunohistochemistry. Results BTSCs presented lower basal mTORC1 activity under each culture condition tested and a more rapid decline of mTORC1 activity after nutrient deprivation than observed in DIFFs. The self-renewal capacity of BTSCs was unaffected by mTORC1 inhibition, whereas it effectively suppressed DIFF proliferation. In agreement, immunohistochemical staining of glioma tissues revealed low mTORC1 activity in tumor cells positive for BTSC markers. In in vitro culture, BTSCs exhibited resistance to the antitumor agent temozolomide. Conclusions Our findings indicated the importance of low mTORC1 activity in maintaining the undifferentiated state of BTSCs, implicating the relevance of manipulating mTORC1 activity when developing future strategies that target BTSCs.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shen-Qi Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xiaoze Wang
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hosne Ara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
208
|
188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. Int J Mol Sci 2017; 18:ijms18050903. [PMID: 28441355 PMCID: PMC5454816 DOI: 10.3390/ijms18050903] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs. Compared to their differentiated counterparts, CSCs have been demonstrated to display a significantly higher level of autophagy flux. Moreover, mitophagy, a specific type of autophagy that selectively degrades excessive or damaged mitochondria, is shown to contribute to cancer progression and recurrence in several types of tumors. Nanomedicine has been shown to tackle the CSCs problem by overcoming drug resistance. In this work, we developed a nanomedicine, 188Re-liposome, which was demonstrated to target autophagy and mitophagy in the tumor microenvironment. Of note, the inhibition of autophagy and mitophagy could lead to significant tumor inhibition in two xenograft animal models. Lastly, we presented two cases of recurrent ovarian cancer, both in drug resistance status that received a level I dose from a phase I clinical trial. Both cases developing drug resistance showed drug sensitivity to 188Re-liposome. These results suggest that inhibition of autophagy and mitophagy by a nanomedicine may be a novel strategy to overcome drug resistance in ovarian cancer.
Collapse
|
209
|
Wang L, Liu X, Ren Y, Zhang J, Chen J, Zhou W, Guo W, Wang X, Chen H, Li M, Yuan X, Zhang X, Yang J, Wu C. Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis 2017; 8:e2746. [PMID: 28406482 PMCID: PMC5477570 DOI: 10.1038/cddis.2016.409] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
Chemotherapeutic agents are generally used as a frontline therapy for non-small cell lung cancer (NSCLC). However, resistance to chemotherapy arises rapidly in NSCLC, and the reasons for chemotherapy resistance have not been fully determined. Here, we found cisplatin, but not paclitaxel and doxorubicin, induced the enrichment of cancer stem cell (CSC) and conferred multidrug resistance in NSCLC cell lines. In vivo study confirmed drug-resistant tumors displayed the enhanced expressions of CSC transcription factors. Mechanistically, cisplatin treatment resulted in C/EBP-β-dependent increasing of TRIB1. The crucial role of TRIB1 in cisplatin-induced enrichment of CSC and drug resistance was verified by knockdown TRIB1. Interestingly, cisplatin treatment also contributed to the increasement of HDAC, the interaction of TRIB1 with HDAC, and inactivation of p53. Similarly, the silencing of HDAC led to reduction of cisplatin-induced CSC, and combined knockdown of HDAC and TRIB1 exhibited enhanced effect. Additionally, the combination of HDAC inhibitor and cisplatin showed a reinforced antitumor action in NSCLC cell lines with TRIB1-dependent manner and remarkably shrink tumors in xenograft models. Moreover, cisplatin-treated NSCLC patients with high levels of TRIB1 exhibited a significantly poorer prognosis. Our findings illustrate a novel perspective in the evolution of chemotherapy resistance and provide a promising approach for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Liu
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Yong Ren
- Department of Pathology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, China
| | - Jingyuan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Junli Chen
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenlong Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Guo
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoxuan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Huiping Chen
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Meng Li
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangzhong Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China
| | - Xun Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University College of Life Science and Biopharmaceutical, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
210
|
Aponte PM, Caicedo A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int 2017; 2017:5619472. [PMID: 28473858 PMCID: PMC5394399 DOI: 10.1155/2017/5619472] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/06/2023] Open
Abstract
Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Andrés Caicedo
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| |
Collapse
|
211
|
Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol 2017; 44:72-82. [PMID: 28344165 DOI: 10.1016/j.semcancer.2017.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is a systemic disease characterized by early dissemination of tumor cells to distant organs. In this foreign environment, tumor cells may stay in a dormant state as single cells or as micrometastases for many years before growing out into a macrometastatic lesion. As metastasis is the primary cause for breast cancer-related death, it is important to understand the mechanisms underlying the maintenance of dormancy and dormancy escape to find druggable targets to eradicate metastatic tumor cells. Metastatic dormancy is regulated by complex interactions between tumor cells and the local microenvironment. In addition, cancer-directed immunity and systemic instigation play a crucial role.
Collapse
|
212
|
Giammona A, Mangiapane LR, Di Franco S, Benfante A, Todaro M, Stassi G. Innovative Therapeutic Strategies Targeting Colorectal Cancer Stem Cells. CURRENT COLORECTAL CANCER REPORTS 2017. [DOI: 10.1007/s11888-017-0353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
213
|
Abstract
Cancer is one of the leading causes of death worldwide. Curcumin is a well-established anticancer agent in vitro but its efficacy is yet to be proven in clinical trials. Poor bioavailability of curcumin is the principal reason behind the lack of efficiency of curcumin in clinical trials. Many studies prove that the bioavailability of curcumin can be improved by administering it through nanoparticle drug carriers. This review focuses on the efforts made in the field of nanotechnology to improve the bioavailability of curcumin. Nanotechnologies of curcumin come in various shapes and sizes. The simplest curcumin nanoparticle that increased the bioavailability of curcumin is the curcumin-metal complex. On the other hand, we have intricate thermoresponsive nanoparticles that can release curcumin upon stimulation (analogous to a remote control). Future research required for developing potent curcumin nanoparticles is also discussed.
Collapse
Affiliation(s)
- Parasuraman Aiya Subramani
- a Department of Zoology , Yogi Vemana University , Kadapa , India.,b Centre for Fish Immunology, School of Life Sciences , Vels Institute of Science Technology and Advanced Studies , Chennai , India
| | - Kalpana Panati
- c Department of Biotechnology , Govt. College for Men , Kadapa , India
| | | |
Collapse
|
214
|
Hui L, Zhang J, Ding X, Guo X, Jiang X. Matrix stiffness regulates the proliferation, stemness and chemoresistance of laryngeal squamous cancer cells. Int J Oncol 2017; 50:1439-1447. [PMID: 28259905 DOI: 10.3892/ijo.2017.3877] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows that matrix stiffness plays a critical role in affecting the phenotype and behavior of tumor cells. We report that matrix stiffness significantly regulated the proliferation and chemotherapeutic response of Hep-2 cells. Increasing substrate stiffness promotes the proliferation of Hep-2 cells. When cultured on soft gels, Hep-2 cells expressed higher level of stem cell markers. Following treatment with cisplatin or 5-FU, we observed reduced apoptosis in Hep-2 cells cultured on soft supports. Sox2 is essential for the chemoresistance of Hep-2 cells cultured in soft stiffness. Our results demonstrated that Sox2 promotes chemoresistance of Hep-2 cells in soft stiffness via upregulating the expression of ABCG2. Our findings will provide a new platform for the future design of anticancer drugs based on the biophysical properties of the tumor site.
Collapse
Affiliation(s)
- Lian Hui
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jingru Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoxu Ding
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing Guo
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Jiang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
215
|
Oei AL, Vriend LEM, Krawczyk PM, Horsman MR, Franken NAP, Crezee J. Targeting therapy-resistant cancer stem cells by hyperthermia. Int J Hyperthermia 2017; 33:419-427. [PMID: 28100096 DOI: 10.1080/02656736.2017.1279757] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells (CSCs), is considered to be of particular significance for tumour initiation, progression and metastasis. CSCs are considered in particular to be therapy-resistant and may drive disease recurrence, which positions CSCs in the focus of anti-cancer research, but successful CSC-targeting therapies are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising radiation and chemotherapy are least effective. Second, hyperthermia can modify factors that are essential for tumour survival and growth, such as the microenvironment, immune responses, vascularisation and oxygen supply. Third, hyperthermia targets multiple DNA repair pathways, which are generally upregulated in CSCs and protect them from DNA-damaging agents. Addition of hyperthermia to the therapeutic armamentarium of oncologists may thus be a promising strategy to eliminate therapy-escaping and -resistant CSCs.
Collapse
Affiliation(s)
- A L Oei
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - L E M Vriend
- c Department of Cell Biology and Histology , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - P M Krawczyk
- c Department of Cell Biology and Histology , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - M R Horsman
- d Department for Experimental Clinical Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - N A P Franken
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - J Crezee
- b Department of Radiotherapy , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
216
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
217
|
Gao W, Li JZ, Chen S, Chu C, Chan JY, Wong T. BEX3 contributes to cisplatin chemoresistance in nasopharyngeal carcinoma. Cancer Med 2017; 6:439-451. [PMID: 28083995 PMCID: PMC5313644 DOI: 10.1002/cam4.982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) can develop cisplatin‐resistant phenotype. Research has revealed that enriched in cancer stem cell population is involved in developing cisplatin‐resistant phenotype. CD271 is a candidate stem cell maker in head and neck cancers. The CD receptor does not possess any enzymatic property. Signal transduction function of CD271 is mediated by the cellular receptor‐associated protein. Our data showed that Brain‐expressed X‐linked 3 (BEX3), a CD271 receptor‐associated protein, was overexpressed in NPC. BEX3 overexpression was a unique event in cancer developed in the head and neck regions, especially NPC. BEX3 expression was inducible by cisplatin in NPC. In cisplatin‐resistant NPC xenograft, treatment with nontoxic level of cisplatin led to a remarkable increase in BEX3 level. High BEX3 expression was accompanied with high octamer‐binding transcription factor 4 (OCT4) expression in cisplatin‐resistant NPC. To confirm the inducing role of BEX3 on OCT4 expression, we knockdown BEX3 using siRNA and compared the expression of OCT4 with mock transfectants. Suppressing BEX3 transcripts led to a significant reduction in OCT4. In addition, targeting BEX3 using shRNA could increase the sensitivity of NPC cells to cisplatin. In summary, our results indicated a unique functional role of BEX3 in mediating the sensitivity of NPC cells to cisplatin. Targeting or blocking BEX3 activity might be useful in reversing the cisplatin‐resistant phenotype in NPC.
Collapse
Affiliation(s)
- Wei Gao
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| | - John Zeng‐Hong Li
- Department of SurgeryThe University of Hong KongHong Kong SARChina
- Department of OtolaryngologyThe First People's Hospital of FoshanGuangdong ProvinceChina
| | - Si‐Qi Chen
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| | - Chiao‐Yun Chu
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| | | | - Thian‐Sze Wong
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| |
Collapse
|
218
|
Dauer P, Nomura A, Saluja A, Banerjee S. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology 2017; 17:7-12. [PMID: 28034553 PMCID: PMC5291762 DOI: 10.1016/j.pan.2016.12.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Every year, nearly 300,000 people are diagnosed with pancreatic cancer worldwide, and an equivalent number succumb to this disease. One of the major challenges of pancreatic cancer that contributes to its poor survival rates is the development of resistance to the standard chemotherapy. Heterogeneity of the tumor, the dense fibroblastic stroma, and the aggressive biology of the tumor all contribute to the chemoresistant phenotype. In addition, the acellular components of the tumor microenvironment like hypoxia, stress pathways in the stromal cells, and the cytokines that are secreted by the immune cells, have a definitive role in orchestrating the chemoresistant property of the tumor. In this review, we systematically focus on the role played by the different microenvironmental components in determining chemoresistance of pancreatic tumors.
Collapse
Affiliation(s)
- Patricia Dauer
- Department of Pharmacology, University of Minnesota, MN, USA
| | - Alice Nomura
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA
| | - Ashok Saluja
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA
| | - Sulagna Banerjee
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA,Address of Correspondence: PAP Research Building, Rm 109B, 1550 NW 10th Ave, Miami, FL 33136, USA, , Phone: 305-243-8242
| |
Collapse
|
219
|
Saif MW, Heaton A, Lilischkis K, Garner J, Brown DM. Pharmacology and toxicology of the novel investigational agent Cantrixil (TRX-E-002-1). Cancer Chemother Pharmacol 2016; 79:303-314. [PMID: 28013349 PMCID: PMC5306062 DOI: 10.1007/s00280-016-3224-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Recurrent, chemo-resistant ovarian cancer is thought to be due to a subgroup of slow-growing, drug-resistant cancer cells with stem-like properties and a high capacity for tumour repair. Cantrixil targets this sub-population of cells and is being developed as an intraperitoneal therapy to be used as first-line therapy in combination with carboplatin for epithelial ovarian cancer. The studies presented here justify further development. METHODS A GLP dog CV study using a 4 × 4 Latin Square Crossover study was conducted using telemetric ECG recordings from dogs post IP administration to assess for cardiac abnormalities. Mutagenic potential was assessed using the bacterial reverse mutation assay. Clastogenicity was assessed by determining micronuclei formation in the bone marrow of SPF Arc(S) Swiss mice dosed at clinical concentrations. TRX-E-002-1 toxicology was evaluated in GLP-compliant MTD and 28-day repeat-dose studies in rats and dogs. RESULTS In vitro TRX-E-002-1 has potent cytotoxic activity against human cancer cells including CD44+/MyD88+ ovarian cancer stem cells. TRX-E-002-1 increased phosphorylated c-Jun levels in these cancer cells resulting in caspase-mediated apoptosis. In vivo, Cantrixil was active in a model of disseminated ovarian cancer as a monotherapy and in combination with Cisplatin. Cantrixil was active as maintenance therapy in a model of drug-resistant, recurrent ovarian cancer and in an orthotopic model of pancreatic cancer. CONCLUSIONS In animals, this clinical formulation and route of administration of Cantrixil demonstrated acceptable activity, safety pharmacology, genotoxicity and toxicology profile and constituted a successful Investigational New Drug application to the US Food and Drug Administration.
Collapse
Affiliation(s)
- Muhammad Wasif Saif
- Department of Medicine and Cancer Center, Tufts Medical Center, 800 Washington Street, Box 245, Boston, MA, 02111, USA.
| | | | | | | | | |
Collapse
|
220
|
Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, Loaiza AE, Barreto A, Li S, Fiorentino S. Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016. [DOI: 10.1142/s0192415x16500956 pmid: 27852125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cancer stem cells (CSC) are the primary cell type responsible for metastasis and relapse. ABC-transporters are integral membrane proteins involved in the translocation of substrates across membranes protecting CSC from chemotherapeutic agents. A plant extract derived from C. spinosa (P2Et) previously investigated for its antitumor activity has been shown to reduce lung and spleen metastasis in mice that have been transplanted with breast cancer cells, suggesting that P2Et has a significant activity against cancer stem cells (CSC). P2Et extract was thoroughly characterized by HPLC/MS. The cytotoxicity of P2Et extract was evaluated using a MTT assay in human and murine cell lines with different profiles of resistance, by Pgp overexpression or by enrichment in cancer stem cells. The synergistic effect of P2Et with doxorubicin was evaluated in vitro in several cell lines and in vivo in mice transplanted with TS/A cells, a highly resistant cell line and enriched in CD44[Formula: see text]CD24[Formula: see text]CSC. The chromatographic fingerprint of P2Et extract revealed 13 gallotannins. We also found that P2Et extract was cytotoxic to cells regardless of their resistant phenotype. Similarly, complementary activities were observed as drug efflux reversion and antioxidant activity. Short-treatment with P2Et extract, revealed a synergistic effect with doxorubicin in resistant cell lines. In vivo the P2Et increases mice survival in a TS/A breast cancer model associated with augmentation of calreticulin expression. Our results suggest that P2Et treatment could be used as adjuvant along with conventional chemotherapy to treat tumors with a MDR phenotype or with high frequency of CSC.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Claudia P. Urueña
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Mónica Llano
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alejandra Gómez-Cadena
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - John F. Hernández
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Luis Gonzalo Sequeda
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alix E. Loaiza
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alfonso Barreto
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Shaoping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Susana Fiorentino
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| |
Collapse
|
221
|
Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, Loaiza AE, Barreto A, Li S, Fiorentino S. Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1693-1717. [DOI: 10.1142/s0192415x16500956] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSC) are the primary cell type responsible for metastasis and relapse. ABC-transporters are integral membrane proteins involved in the translocation of substrates across membranes protecting CSC from chemotherapeutic agents. A plant extract derived from C. spinosa (P2Et) previously investigated for its antitumor activity has been shown to reduce lung and spleen metastasis in mice that have been transplanted with breast cancer cells, suggesting that P2Et has a significant activity against cancer stem cells (CSC). P2Et extract was thoroughly characterized by HPLC/MS. The cytotoxicity of P2Et extract was evaluated using a MTT assay in human and murine cell lines with different profiles of resistance, by Pgp overexpression or by enrichment in cancer stem cells. The synergistic effect of P2Et with doxorubicin was evaluated in vitro in several cell lines and in vivo in mice transplanted with TS/A cells, a highly resistant cell line and enriched in CD44[Formula: see text]CD24[Formula: see text]CSC. The chromatographic fingerprint of P2Et extract revealed 13 gallotannins. We also found that P2Et extract was cytotoxic to cells regardless of their resistant phenotype. Similarly, complementary activities were observed as drug efflux reversion and antioxidant activity. Short-treatment with P2Et extract, revealed a synergistic effect with doxorubicin in resistant cell lines. In vivo the P2Et increases mice survival in a TS/A breast cancer model associated with augmentation of calreticulin expression. Our results suggest that P2Et treatment could be used as adjuvant along with conventional chemotherapy to treat tumors with a MDR phenotype or with high frequency of CSC.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Claudia P. Urueña
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Mónica Llano
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alejandra Gómez-Cadena
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - John F. Hernández
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Luis Gonzalo Sequeda
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alix E. Loaiza
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alfonso Barreto
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Shaoping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Susana Fiorentino
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| |
Collapse
|
222
|
|
223
|
Gammaitoni L, Giraudo L, Macagno M, Leuci V, Mesiano G, Rotolo R, Sassi F, Sanlorenzo M, Zaccagna A, Pisacane A, Senetta R, Cangemi M, Cattaneo G, Martin V, Coha V, Gallo S, Pignochino Y, Sapino A, Grignani G, Carnevale-Schianca F, Aglietta M, Sangiolo D. Cytokine-Induced Killer Cells Kill Chemo-surviving Melanoma Cancer Stem Cells. Clin Cancer Res 2016; 23:2277-2288. [PMID: 27815354 DOI: 10.1158/1078-0432.ccr-16-1524] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The MHC-unrestricted activity of cytokine-induced killer (CIK) cells against chemo-surviving melanoma cancer stem cells (mCSC) was explored, as CSCs are considered responsible for chemoresistance and relapses.Experimental Design: Putative mCSCs were visualized by engineering patient-derived melanoma cells (MC) with a lentiviral vector encoding eGFP under expression control by stemness gene promoter oct4 Their stemness potential was confirmed in vivo by limiting dilution assays. We explored the sensitivity of eGFP+ mCSCs to chemotherapy (CHT), BRAF inhibitor (BRAFi) or CIK cells, as single agents or in sequence, in vitro First, we treated MCs in vitro with fotemustine or dabrafenib (BRAF-mutated cases); then, surviving MCs, enriched in mCSCs, were challenged with autologous CIK cells. CIK cell activity against chemoresistant mCSCs was confirmed in vivo in two distinct immunodeficient murine models.Results: We visualized eGFP+ mCSCs (14% ± 2.1%) in 11 MCs. The tumorigenic precursor rate in vivo was higher within eGFP+ MCs (1/42) compared with the eGFP- counterpart (1/4,870). In vitro mCSCs were relatively resistant to CHT and BRAFi, but killed by CIK cells (n = 11, 8/11 autologous), with specific lysis ranging from 95% [effector:tumor ratio (E:T), 40:1] to 20% (E:T 1:3). In vivo infusion of autologous CIK cells into mice bearing xenografts from three distinct melanomas demonstrated significant tumor responses involving CHT-spared eGFP+ mCSCs (P = 0.001). Sequential CHT-immunotherapy treatment retained antitumor activity (n = 12, P = 0.001) reducing mCSC rates (P = 0.01).Conclusions: These findings are the first demonstration that immunotherapy with CIK cells is active against autologous mCSCs surviving CHT or BRAFi. An experimental platform for mCSC study and rationale for CIK cells in melanoma clinical study is provided. Clin Cancer Res; 23(9); 2277-88. ©2016 AACR.
Collapse
Affiliation(s)
- Loretta Gammaitoni
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Lidia Giraudo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Marco Macagno
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valeria Leuci
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giulia Mesiano
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Ramona Rotolo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Martina Sanlorenzo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Section of Dermatology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandro Zaccagna
- Surgical Dermatology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Alberto Pisacane
- Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Rebecca Senetta
- Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Michela Cangemi
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giulia Cattaneo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Martin
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Valentina Coha
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Susanna Gallo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Ymera Pignochino
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Anna Sapino
- Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Fabrizio Carnevale-Schianca
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Massimo Aglietta
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Dario Sangiolo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy. .,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| |
Collapse
|
224
|
Wang J, Li H, Wang Y, Wang L, Yan X, Zhang D, Ma X, Du Y, Liu X, Yang Y. MicroRNA-552 enhances metastatic capacity of colorectal cancer cells by targeting a disintegrin and metalloprotease 28. Oncotarget 2016; 7:70194-70210. [PMID: 27661126 PMCID: PMC5342546 DOI: 10.18632/oncotarget.12169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common prevalent cancer types worldwide. MicroRNAs (miRNAs or miRs) have been demonstrated to play crucial roles in the development, metastasis and drug resistance of CRC. In the present study, a strikingly elevated expression of miR-552 was determined in CRC tumor tissues and cells by a miRNA profiling analysis. Importantly, the gene of A Disintegrin And Metalloprotease (ADAM) family member 28 (ADAM28) was identified as a target of miR-552, which was further validated in terms of genetic dual luciferase report assay. Furthermore, an inhibition of miR-552 in LOVE and LS174T CRC cells by transducing miR-552 inhibitor (antagomiR-552) with a lentiviral vector exhibited an ability to reduce cell proliferation, migration and clonogenicity. Moreover, both LOVO and LS174T cells stably expressing miR-552 inhibitor displayed a decreased ability to develop tumors in a murine xenograft model in vivo. In contrast, a knockdown of ADAM28 by short hairpin RNA could reverse the antagomiR-552-induced inhibition of metastatic features of CRC cells in vitro. These results suggested that miR-552 is an oncomir able to promote CRC metastasis in part through a mechanism of targeting ADAM28, which may be a novel target for CRC treatment and warrants for further investigation.
Collapse
Affiliation(s)
- Jian Wang
- The general hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital at Ningxia Medical University, Yinchuan 750004, China
| | - Hai Li
- Department of Colorectal Surgery, the General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yong Wang
- The general hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital at Ningxia Medical University, Yinchuan 750004, China
| | - Libin Wang
- Human Stem Cell Institute of the General Hospital at Ningxia Medical University, Yinchuan 750004, China
| | - Xiurui Yan
- Human Stem Cell Institute of the General Hospital at Ningxia Medical University, Yinchuan 750004, China
| | - Dong Zhang
- Department of Colorectal Surgery, the General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqiang Ma
- Department of Colorectal Surgery, the General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yong Du
- The general hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoming Liu
- Human Stem Cell Institute of the General Hospital at Ningxia Medical University, Yinchuan 750004, China
| | - Yinxue Yang
- The general hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital at Ningxia Medical University, Yinchuan 750004, China
- Department of Colorectal Surgery, the General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
225
|
Huang WT, Larsson M, Lee YC, Liu DM, Chiou GY. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells. Eur J Pharm Biopharm 2016; 109:165-173. [PMID: 27793756 DOI: 10.1016/j.ejpb.2016.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/18/2016] [Accepted: 10/22/2016] [Indexed: 01/01/2023]
Abstract
Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept that addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. (1) It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, (2) release kinetics may differ between drugs and (3) general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggests preclinical studies using relevant disease models to be justified.
Collapse
Affiliation(s)
- Wei-Ting Huang
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu City 300, Taiwan, ROC
| | - Mikael Larsson
- School of Energy and Resources, University College London, 220 Victoria Square, Adelaide, SA 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia
| | - Yi-Chi Lee
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu City 300, Taiwan, ROC
| | - Dean-Mo Liu
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu City 300, Taiwan, ROC.
| | - Guang-Yuh Chiou
- College of Biological Science and Technology, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu City 300, Taiwan, ROC.
| |
Collapse
|
226
|
von Manstein V, Groner B. Tumor cell resistance against targeted therapeutics: the density of cultured glioma tumor cells enhances Stat3 activity and offers protection against the tyrosine kinase inhibitor canertinib. MEDCHEMCOMM 2016; 8:96-102. [PMID: 30108694 PMCID: PMC6072326 DOI: 10.1039/c6md00463f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/04/2016] [Indexed: 01/03/2023]
Abstract
Tumor cell resistance to drug treatment severely limits the therapeutic success of treatment.
Tumor cell resistance to drug treatment severely limits the therapeutic success of treatment. Tumor cells, exposed to chemotherapeutic drugs, have developed intricate strategies to escape the cytotoxic effects and adapt to adverse conditions. The molecular mechanisms causing drug resistance can be based upon modifications of drug transport or metabolism, structural alterations of drug targets or adaptation of cellular signaling. An important component in the transformation of cells and the emergence of drug resistance is the activation of the transcription factor Stat3. The persistent, inappropriate activation of Stat3 causes the expression of target genes which promote tumor cell proliferation, survival, invasion and immune suppression, and it is instrumental in the process of the emergence of resistance to both conventional chemotherapeutic agents and novel targeted compounds. For these reasons, Stat3 inhibition is being pursued as a promising therapeutic strategy. We have investigated the effects of the tyrosine kinase inhibitor canertinib on the glioma cell line Tu-2449. In these cells Stat3 is persistently phosphorylated and activated downstream of the oncogenic driver v-Src and its effector, the cytoplasmic tyrosine kinase Bmx. Canertinib exposure of Tu-2449 cells rapidly caused the inhibition of the Bmx kinase and the deactivation of Stat3. Prolonged exposure of the cells to canertinib caused the death of the large majority of the cells. Only a few cells became resistant to canertinib and survived in tight clusters. These cells have become drug resistant. When the canertinib resistant cells were expanded and cultured at lower cell densities, they regained their sensitivity towards canertinib. We measured the extent of Stat3 activation as a function of cell density and found that higher cell densities are accompanied by increased Stat3 activation and a higher expression of Stat3 target genes. We suggest that Stat3 induction through tight cell–cell interactions, most likely through the engagement of cadherins, can counteract the inhibitory effects exerted by canertinib on Bmx. Cell–cell interactions induced Stat3 and compensated for the suppression of Stat3 by canertinib, thus transiently protecting the cells from the cytotoxic effects of the inhibitor.
Collapse
Affiliation(s)
- V von Manstein
- Georg Speyer Haus , Institute for Tumor Biology and Experimental Therapy , Paul Ehrlich Str. 42 , 60596 Frankfurt am Main , Germany . ; Tel: +49 6963395180
| | - B Groner
- Georg Speyer Haus , Institute for Tumor Biology and Experimental Therapy , Paul Ehrlich Str. 42 , 60596 Frankfurt am Main , Germany . ; Tel: +49 6963395180
| |
Collapse
|
227
|
Song L, Chen X, Gao S, Zhang C, Qu C, Wang P, Liu L. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway. Tumour Biol 2016; 37:10.1007/s13277-016-5461-8. [PMID: 27734340 DOI: 10.1007/s13277-016-5461-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.
Collapse
Affiliation(s)
- Libin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
228
|
Wanjale MV, Kumar GSV. Peptides as a therapeutic avenue for nanocarrier-aided targeting of glioma. Expert Opin Drug Deliv 2016; 14:811-824. [PMID: 27690671 DOI: 10.1080/17425247.2017.1242574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Very few successful interventions have been possible in glioma therapy owing to its aggressive nature as well as its hindrance of targeted therapy together with the limited access afforded by the blood-brain barrier (BBB). With the advent of nanotechnology based delivery vehicles such as micelles, dendrimers, polymer-based nanoparticles and nanogels, the breach of the BBB has been facilitated. However, there remains the issue of targeted therapy for glioma cells. Peptide-mediated surface modification of nanocarriers serves this purpose, extending the ability to target glioma further than the enhanced permeability and retention effect. Areas covered: Here we have tried to re-establish the significance of peptides that could be used in various ways for treating glioma. Peptide-embellished nanocarriers used to deliver anticancer drugs; nucleic acids (siRNA, miRNA); micelles or dendrimers grafted with immunogenic glioma-derived peptides used for stimulating active immunity in vaccine therapy, glioma targets for cell penetrating peptides and homing to specific receptors are reviewed. Expert opinion: Peptides have multifunctional potential in targeting, BBB and cell penetration, and can serve as antagonists of various ligands and agonists of particular over-expressed receptors as discussed in this review. Using peptides in targeted personalized therapy would be one step forward and may offer new avenues for glioma therapeutics.
Collapse
Affiliation(s)
- Mrunal Vitthal Wanjale
- a Chemical Biology, Nano Drug Delivery Systems, Bio-Innovation Center (BIC) , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - G S Vinod Kumar
- a Chemical Biology, Nano Drug Delivery Systems, Bio-Innovation Center (BIC) , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| |
Collapse
|
229
|
Hepatocellular Carcinoma-propagating Cells are Detectable by Side Population Analysis and Possess an Expression Profile Reflective of a Primitive Origin. Sci Rep 2016; 6:34856. [PMID: 27725724 PMCID: PMC5057076 DOI: 10.1038/srep34856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
The recent identification of “Side Population” (SP) cells in a number of unrelated human cancers has renewed interests in the hypothesis of cancer stem cells. Here we isolated SP cells from HepG2 cells and 18 of the 21 fresh hepatocellular carcinoma (HCC) tissue samples. These SP cells have higher abilities of forming spheroids, invasion and migration. Tumors could generate only from SP, not non-SP (NSP), cells in a low dose of subcutaneous injection to the NOD/SCID mice (5 × 102 cells/mouse). The mRNA microarray analysis of the SP vs. NSP cells isolated from HepG2 cells revealed that the SP cells express higher levels of pluripotency- and stem cell-associated transcription factors including Klf4, NF-Ya, SALL4 and HMGA2. Some of the known hepatobiliary progenitor/stem cell markers, such as Sox9 was also up-regulated. RT-qPCR analysis of the gene expression between SP cells and NSP cells isolated from both HepG2 cells and HCC tissue samples showed that most of the tested mRNAs’ changes were in consistent with the microarray data, including the general progenitor/stem cells markers such as Klf4, NF-Ya, SALL4 and HMGA2, which were up-regulated in SP cells. Our data indicates that HCC cancer stem cells exist in HepG2 and HCC fresh tissue samples and can be isolated by SP assay.
Collapse
|
230
|
The Architectural Chromatin Factor High Mobility Group A1 Enhances DNA Ligase IV Activity Influencing DNA Repair. PLoS One 2016; 11:e0164258. [PMID: 27723831 PMCID: PMC5056749 DOI: 10.1371/journal.pone.0164258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens.
Collapse
|
231
|
Lee G, Hall RR, Ahmed AU. Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance. JOURNAL OF STEM CELL RESEARCH & THERAPY 2016; 6:363. [PMID: 27891292 PMCID: PMC5123595 DOI: 10.4172/2157-7633.1000363] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.
Collapse
Affiliation(s)
- Gina Lee
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | - Robert R Hall
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
232
|
CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis. Oncotarget 2016; 6:42019-27. [PMID: 26503471 PMCID: PMC4747206 DOI: 10.18632/oncotarget.5714] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Background CD133 is one of the most commonly used markers of cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CD133 in gastric cancer remains controversial. To clarify a precise determinant of the clinical significance of CD133, we conducted a systematic review and meta-analysis to elucidate the correlation of CD133 overexpression with prognosis and clinicopathological features of GC patients. Methods A search in the Cochrane Library, Pubmed, Medline, Web of Knowledge and Chinese CNKI, CBM (up to Jun 30, 2015) was performed using the following keywords gastric cancer, CD133, AC133, prominin-1, etc. Electronic searches were supplemented by hand searching reference lists, abstracts and proceedings from meetings. Outcomes included overall survival and various clinicopathological features. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted the data, and assessed the methodological quality of the included studies, and then RevMan 5.2.0 software was used for meta-analysis. Results A total of 603 gastric cancer patients from 8 studies were included. The results of the meta-analyses showed that, there were significant differences of CD133 expression in the following comparisons: gastric cancer tissues vs. normal esophageal tissue (OR = 3.49, 95% CI [2.48, 490], P < 0.00001), lymph node metastasis vs. non-lymph node metastasis (OR = 2.75, 95% CI [1.99, 3.81], P < 0.00001), distant metastasis vs. non-distant metastasis (OR = 2.38, 95%CI [1.47, 3.85], P < 0.0004), clinical stages III~IV vs. clinical stages I~II (OR = 2.83, 95% CI [2.13, 3.76], P < 0.00001), as well as the accumulative 5-year overall survival rates of CD133-positive vs. CD133-negative patients (OR = 0.23, 95% CI [0.16, 0.33], P < 0.00001). Conclusion Overexpression of CD133 is associated with lymph node metastasis, distant metastasis, poor TNM stage. Additionally, CD133-positive gastric cancer patients had worse prognosis. Our results indicate that CD133 may be involved in the carcinogenesis of gastric cancer. Evaluation of cytoplasmic CD133 overexpression in gastric cancer tissue sections may be useful in the future as a novel prognostic factor. Nevertheless, due to the poor quality and small sample size of included trials, more well-designed multi-center randomized controlled trials should be performed.
Collapse
|
233
|
A preliminary study of the role of extracellular -5′- nucleotidase in breast cancer stem cells and epithelial-mesenchymal transition. In Vitro Cell Dev Biol Anim 2016; 53:132-140. [DOI: 10.1007/s11626-016-0089-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
|
234
|
Affiliation(s)
- Ashish R Kadia
- Department of Pharmacology and Clinical Pharmacy, K.B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Clinical Pharmacy, K.B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| |
Collapse
|
235
|
Lee HJ, Li CF, Ruan D, Powers S, Thompson PA, Frohman MA, Chan CH. The DNA Damage Transducer RNF8 Facilitates Cancer Chemoresistance and Progression through Twist Activation. Mol Cell 2016; 63:1021-33. [PMID: 27618486 DOI: 10.1016/j.molcel.2016.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Twist has been shown to cause treatment failure, cancer progression, and cancer-related death. However, strategies that directly target Twist are not yet conceivable. Here we reveal that K63-linked ubiquitination is a crucial regulatory mechanism for Twist activation. Through an E3 ligase screen and biochemical studies, we unexpectedly identified that RNF8 functions as a direct Twist activator by triggering K63-linked ubiquitination of Twist. RNF8-promoted Twist ubiquitination is required for Twist localization to the nucleus for subsequent EMT and CSC functions, thereby conferring chemoresistance. Our histological analyses showed that RNF8 expression is upregulated and correlated with disease progression, EMT features, and poor patient survival in breast cancer. Moreover, RNF8 regulates cancer cell migration and invasion and cancer metastasis, recapitulating the effect of Twist. Together, our findings reveal a previously unrecognized tumor-promoting function of RNF8 and provide evidence that targeting RNF8 is an appealing strategy to tackle tumor aggressiveness and treatment resistance.
Collapse
Affiliation(s)
- Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan; Department of Pathology, Chi-Mei Foundational Medical Center, Tainan 710, Taiwan
| | - Diane Ruan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
236
|
Abstract
Heterogeneity within and between tumors is a well-known phenomenon that greatly complicates the diagnosis and treatment of cancer. A large body of research indicates that heterogeneity develops through time as tumor-initiating stem cells, also known as cancer stem cells (CSCs), evolve genetic or epigenetic alterations that allow them to differentiate into multiple tumor cell types. Similar to normal stem cells, CSCs can self-renew and possess long-term repopulation potential. However, unlike normal stem cells, CSCs are not subject to the usual controls that limit growth. Different models have been postulated to explain the heterogeneity of tumors, but it is widely agreed that interactions between tumor cells and their microenvironment create niches that promote CSC properties and enable their survival. Within the microenvironment, CSC self-renewal, replication, and differentiation are postulated to produce a hierarchy of cells constituting the tumor mass. Increased understanding of the factors that create and contribute to tumor heterogeneity may support the design of therapies that affect CSC function and their microenvironments.
Collapse
Affiliation(s)
- Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Correspondence: Jeremy N. Rich, Cleveland Clinic, Cleveland, OH 44195 (e-mail: )
| |
Collapse
|
237
|
Abstract
The expression of annexin A2 (ANXA2) in nasopharyngeal carcinoma (NPC) cells induces the immunosuppressive response in dendritic cells; however, the oncogenic effect and clinical significance of ANXA2 have not been fully investigated in NPC cells. Immunohistochemical staining for ANXA2 was performed in 61 patients and the association with clinicopathological status was determined. Short hairpin (sh)RNA knockdown of ANXA2 was used to examine cellular effects of ANXA2, by investigating alterations in cell proliferation, migration, invasion, adhesion, tube-formation assay, and chemo- and radiosensitivity assays were performed. RT-qPCR, Western blotting, and immunofluorescence were applied to determine molecular expression levels. Clinical association studies showed that the expression of ANXA2 was significantly correlated with metastasis (p = 0.0326) and poor survival (p = 0.0256). Silencing of ANXA2 suppressed the abilities of cell proliferation, adhesion, migration, invasion, and vascular formation in NPC cell. ANXA2 up-regulated epithelial-mesenchymal transition associated signal proteins. Moreover, ANXA2 reduced sensitivities to irradiation and chemotherapeutic drugs. These results define ANXA2 as a novel prognostic factor for malignant processes, and it can serve as a molecular target of therapeutic interventions for NPC.
Collapse
|
238
|
Aminuddin A, Ng PY. Promising Druggable Target in Head and Neck Squamous Cell Carcinoma: Wnt Signaling. Front Pharmacol 2016; 7:244. [PMID: 27570510 PMCID: PMC4982242 DOI: 10.3389/fphar.2016.00244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Canonical Wnt signaling pathway, also known as Wnt/β-catenin signaling pathway, is a crucial mechanism for cellular maintenance and development. It regulates cell cycle progression, apoptosis, proliferation, migration, and differentiation. Dysregulation of this pathway correlates with oncogenesis in various tissues including breast, colon, pancreatic as well as head and neck cancers. Furthermore, the canonical Wnt signaling pathway has also been described as one of the critical signaling pathways for regulation of normal stem cells as well as cancer cells with stem cell-like features, termed cancer stem cells (CSC). In this review, we will briefly describe the basic mechanisms of Wnt signaling pathway and its crucial roles in the normal regulation of cellular processes as well as in the development of cancer. Next, we will highlight the roles of canonical Wnt signaling pathway in the regulation of CSC properties namely self-renewal, differentiation, metastasis, and drug resistance abilities, particularly in head and neck squamous cell carcinoma. Finally, we will examine the findings of several recent studies which explore druggable targets in the canonical Wnt signaling pathway which could be valuable to improve the treatment outcome for head and neck cancer.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Drug Discovery and Development Research Group, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug Discovery and Development Research Group, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| |
Collapse
|
239
|
Erguven M, Oktem G, Kara AN, Bilir A. Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels. Oncol Lett 2016; 12:2948-2955. [PMID: 27703531 DOI: 10.3892/ol.2016.4946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide and the levels of differentiation growth factor midkine (MK) are increased in PCa. Cancer and/or the treatment process itself may lead to psychiatric disorders. Lithium chloride (LiCl) has anti-manic properties and has been used in cancer therapy; however, it has a queried safety profile. In addition, cancer stem cells are responsible for the heterogeneous phenotype of tumor cells; they are involved in progression, metastasis, recurrence and therapy resistance in various cancer types. The aims of the present study were to investigate the effect of different concentrations of LiCl on PCa stem cells (whether a shift from tumorigenic to non-tumorigenic cells occurs) and to determine if these results can be explained through changes in MK levels. Monolayer and spheroid cultures of human prostate stem cells and non-stem cells were incubated with low (1, 10 µM) and high (100, 500 µM) concentrations of LiCl for 72 h. Cell proliferation, apoptotic indices, MK levels and ultrastructure were evaluated. Cells stimulated with low concentrations showed high proliferation, low apoptotic indices, high MK levels and more healthy ultrastructure. Opposite results were obtained at high concentrations. Furthermore, stem cells were more sensitive to stimulation and more resistant to inhibition than non-stem cells. LiCl exhibited concentration-dependent effects on stem cell and non-stem cell groups. MK levels were not involved in the biphasic effect of LiCl; however, they were proportionally affected. To the best of our knowledge, the present study was the first to show the effect of LiCl on PCa stem cells through MK.
Collapse
Affiliation(s)
- Mine Erguven
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Aydın University, Küçükçekmece 34295, İstanbul, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, School of Medicine, Ege University, Bornova 35040, İzmir, Turkey
| | - Ali Nail Kara
- Department of Histology and Embryology, İstanbul Faculty of Medicine, İstanbul University, Capa 34390, İstanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Zirve University, Gaziantep 27260, Turkey
| |
Collapse
|
240
|
Yarbrough WG, Panaccione A, Chang MT, Ivanov SV. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest-like stemness as a target. Laryngoscope Investig Otolaryngol 2016; 1:60-77. [PMID: 28894804 PMCID: PMC5510248 DOI: 10.1002/lio2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest-like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. DATA SOURCES Articles available on Pubmed or OVID MEDLINE databases and unpublished data. REVIEW METHODS Systematic review of articles pertaining to ACC and neural crest-like stem cells. RESULTS Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest-like stemness is a major target in this rare tumor. New cell culture techniques and patient-derived xenografts provide tools for preclinical testing. CONCLUSION Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest-like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
- Yale Cancer CenterNew HavenConnecticutUSA
| | - Alexander Panaccione
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeU.S.A.
| | - Michael T. Chang
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| | - Sergey V. Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
241
|
Giornelli GH. Management of relapsed ovarian cancer: a review. SPRINGERPLUS 2016; 5:1197. [PMID: 27516935 PMCID: PMC4963348 DOI: 10.1186/s40064-016-2660-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 01/21/2023]
Abstract
Around 70 % of ovarian cancer patients relapse after primary cytoreductive surgery and standard first-line chemotherapy. The biology of relapse remains unclear, but cancer stem cells seem to play an important role. There are still some areas of controversy on how to manage these relapses and or progressions that occur almost unavoidably in the course of this disease with shorter intervals between them as the natural history of this disease develops. The goal of treatments investigated in this neoplasm has shifted to maintenance therapy, trying to extend the progression free intervals in a disease that is becoming more and more protracted.
Collapse
Affiliation(s)
- Gonzalo H Giornelli
- Genital-Urinary Department, Instituto Alexander Fleming, Cramer 1180, C1426ANZ Buenos Aires, Argentina
| |
Collapse
|
242
|
Makinde AY, Eke I, Aryankalayil MJ, Ahmed MM, Coleman CN. Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy. Semin Radiat Oncol 2016; 26:254-60. [PMID: 27619247 DOI: 10.1016/j.semradonc.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dramatic changes in the technological delivery of radiation therapy, the repertoire of molecular targets for which pathway inhibitors are available, and the cellular and immunologic responses that can alter long-term clinical outcome provide a potentially unique role for using the radiation-inducible changes as therapeutic targets. Various mathematical models of dose and fractionation are extraordinarily useful in guiding treatment regimens. However, although the model may fit the clinical outcome, a deeper understanding of the molecular and cellular effect of the individual dose size and the adaptation to repeated exposure, called multifraction (MF) adaptation, may provide new therapeutic targets for use in combined modality treatments using radiochemotherapy and radioimmunotherapy. We discuss the potential of using different radiation doses and MF adaptation for targeting transcription factors, immune and inflammatory response, and cell "stemness." Given the complex genetic composition of tumors before treatment and their adaptation to drug treatment, innovative combinations using both the pretreatment molecular data and also the MF-adaptive response to radiation may provide an important role for focused radiation therapy as an integral part of precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Adeola Y Makinde
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Iris Eke
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - C Norman Coleman
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
243
|
Steding CE. Creating chemotherapeutic-resistant breast cancer cell lines: advances and future perspectives. Future Oncol 2016; 12:1517-27. [DOI: 10.2217/fon-2016-0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of resistance remains the most significant impediment to generating effective treatments for cancer. In the modern age of personalized medicine, it is of critical importance to understand the principles of both innate and acquired resistance to achieve the most effective therapeutic outcomes. Significant differences exist between cancer cells that exhibit innate resistance verses those that acquire resistance over time. Studying the acquisition of resistance is essential to obtaining a complete understanding of how treatments contribute to disease recurrence and progression. This review will evaluate the current understanding of chemotherapeutic resistance and its role in personalized medicine. This review will also explore how generating resistant cells in culture is essential to the development of improved cancer therapeutics.
Collapse
Affiliation(s)
- Catherine E Steding
- The Center for Genomic Advocacy, Indiana State University, 600 Chestnut St., Terre Haute, IN 47809, USA
- The Department of Biology, Indiana State University, 600 Chestnut St., Terre Haute, IN 47809, USA
| |
Collapse
|
244
|
Nassar D, Blanpain C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:47-76. [DOI: 10.1146/annurev-pathol-012615-044438] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dany Nassar
- IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium;
| | - Cédric Blanpain
- IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium;
- WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
245
|
Fu Q, Du Y, Yang C, Zhang D, Zhang N, Liu X, Cho WC, Yang Y. An oncogenic role of miR-592 in tumorigenesis of human colorectal cancer by targeting Forkhead Box O3A (FoxO3A). Expert Opin Ther Targets 2016; 20:771-82. [PMID: 27167185 DOI: 10.1080/14728222.2016.1181753] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE A microRNA (miRNA) that functionally downregulates the expression of tumor suppressors can be defined as an oncomir. Here, we interrogate the biological significance of miR-592 in colorectal cancer (CRC). RESEARCH DESIGN AND METHODS The expression of miR-592 in CRC tissues and cell lines was ascertained by qRT-PCR assay, and the expression of its target gene was determined by immunohistochemistry staining. The oncogenic role of miR-592 was assessed in terms of cell proliferation, migration, and clonogenicity in vitro, whereas the tumorigenicity was assessed by inhibiting endogenous miR-592 in CRC cells in vivo. RESULTS A striking upregulation of miR-592 was observed in CRC tissues and cell lines compared to the matched adjacent non-tumor tissues and normal colon cells. Importantly, Forkhead Box O3A (FoxO3A) was identified as a novel target of miR-592. miR-592 inhibitor exhibited a significant reduction of migration, proliferation, and clonogenicity in CRC cells. These cells also displayed a decreased tumorigenicity in SCID mice relative to the control cells. CONCLUSION These data suggest that miR-592 may promote the progression and metastasis, in part, by targeting FoxO3A in CRC. miR-592 may be a novel target for CRC treatment and antagomir-592 may inhibit the proliferation and metastasis of CRC cells.
Collapse
Affiliation(s)
- Qi Fu
- a Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , China.,b Department of Colorectal Surgery , General Hospital of Ningxia Medical University , Yinchuan , China.,c Graduate School , Ningxia Medical University , Yinchuan , China
| | - Yong Du
- a Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , China.,b Department of Colorectal Surgery , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Chun Yang
- b Department of Colorectal Surgery , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Dong Zhang
- b Department of Colorectal Surgery , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Ningmei Zhang
- d Department of Pathology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Xiaoming Liu
- a Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , China
| | - William C Cho
- e Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong
| | - Yinxue Yang
- a Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , China.,b Department of Colorectal Surgery , General Hospital of Ningxia Medical University , Yinchuan , China
| |
Collapse
|
246
|
Cancer Stem-like Properties in Colorectal Cancer Cells with Low Proteasome Activity. Clin Cancer Res 2016; 22:5277-5286. [DOI: 10.1158/1078-0432.ccr-15-1945] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
|
247
|
Cancer stem cells, cancer-initiating cells and methods for their detection. Drug Discov Today 2016; 21:836-42. [DOI: 10.1016/j.drudis.2016.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/19/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
|
248
|
Huang GH, Xu QF, Cui YH, Li N, Bian XW, Lv SQ. Medulloblastoma stem cells: Promising targets in medulloblastoma therapy. Cancer Sci 2016; 107:583-9. [PMID: 27171351 PMCID: PMC4970825 DOI: 10.1111/cas.12925] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite great improvements in the therapeutic regimen, relapse and leptomeningeal dissemination still pose great challenges to the long‐term survival of MB patients. Developing more effective strategies has become extremely urgent. In recent years, a number of malignancies, including MB, have been found to contain a subpopulation of cancer cells known as cancer stem cells (CSCs), or tumor initiating/propagating cells. The CSCs are thought to be largely responsible for tumor initiation, maintenance, dissemination, and relapse; therefore, their pivotal roles have revealed them to be promising targets in MB therapy. Our growing understanding of the major medulloblastoma molecular subgroups and the derivation of some of these groups from specific stem or progenitor cells adds additional layers to the CSC knowledge base. Herein we review the current knowledge of MB stem cells, highlight the molecular mechanisms relating to MB relapse and leptomeningeal dissemination, and incorporate these with the need to develop more effective and accurate therapies for MB patients.
Collapse
Affiliation(s)
- Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Fu Xu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ningning Li
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
249
|
Kumar S, Chaudhary AK, Kumar R, O'Malley J, Dubrovska A, Wang X, Yadav N, Goodrich DW, Chandra D. Combination therapy induces unfolded protein response and cytoskeletal rearrangement leading to mitochondrial apoptosis in prostate cancer. Mol Oncol 2016; 10:949-65. [PMID: 27106131 DOI: 10.1016/j.molonc.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/13/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Development of therapeutic resistance is responsible for most prostate cancer (PCa) related mortality. Resistance has been attributed to an acquired or selected cancer stem cell phenotype. Here we report the histone deacetylase inhibitor apicidin (APC) or ER stressor thapsigargin (TG) potentiate paclitaxel (TXL)-induced apoptosis in PCa cells and limit accumulation of cancer stem cells. TXL-induced responses were modulated in the presence of TG with increased accumulation of cells at G1-phase, rearrangement of the cytoskeleton, and changes in cytokine release. Cytoskeletal rearrangement was associated with modulation of the cytoplasmic and mitochondrial unfolded protein response leading to mitochondrial dysfunction and release of proapoptotic proteins from mitochondria. TXL in combination with APC or TG enhanced caspase activation. Importantly, TXL in combination with TG induced caspase activation and apoptosis in X-ray resistant LNCaP cells. Increased release of transforming growth factor-beta (TGF-β) was observed while phosphorylated β-catenin level was suppressed with TXL combination treatments. This was accompanied by a decrease in the CD44(+)CD133(+) cancer stem cell-like population, suggesting treatment affects cancer stem cell properties. Taken together, combination treatment with TXL and either APC or TG induces efficient apoptosis in both proliferating and cancer stem cells, suggesting this therapeutic combination may overcome drug resistance and recurrence in PCa.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse, Dresden, Germany; German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
250
|
PKCε inhibits isolation and stemness of side population cells via the suppression of ABCB1 transporter and PI3K/Akt, MAPK/ERK signaling in renal cell carcinoma cell line 769P. Cancer Lett 2016; 376:148-54. [PMID: 27037060 DOI: 10.1016/j.canlet.2016.03.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
Protein kinase C epsilon (PKCε), a member of the novel PKC family, is known to be a transforming oncogene and tumor biomarker for many human solid cancers including renal cell carcinoma (RCC). We isolated side population (SP) cells from the RCC 769P cell line, and proved that those cells possess cancer stem cell (CSC) characteristics. In this study, to identify the function of PKCε in cancer stemness of 769P SP cells, we reduced the expression of PKCε in those cells, following the results demonstrated that PKCε depletion had a negative correlation with the existence of SP cells in 769P cell line. Down-regulation of PKCε also suppresses the CSC potential of sorted 769P SP cells in several ways: proliferation potential, resistance to chemotherapeutics and in vivo tumor formation ability. Our study also reveals that PKCε is associated with ABCB1 and this association probably contributed to the SP cells isolation from 769P cell line. Furthermore, the expression of ABCB1 is directly regulated by PKCε. Additionally, after the depletion of PKCε, the phosphorylation of pAkt, pStat3 and pERK was apparently suppressed in 769P SP cells, whereas PKCε overexpression could promote the phosphorylation of AKT, STAT3 and ERK in 769P Non-SP cells. Overall, PKCε down-regulation suppresses sorting and the cancer stem-like phenotype of RCC 769P SP cells through the regulation of ABCB1 transporter and the PI3K/Akt, Stat3 and MAPK/ERK pathways that are dependent on the phosphorylation effects. Thus, PKCε may work as an important mediator in cancer stem cell pathogenesis of renal cell cancer.
Collapse
|