201
|
Zhou A, Lin K, Zhang S, Ma L, Xue J, Morris SA, Aldape KD, Huang S. Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep 2017. [PMID: 28623188 DOI: 10.15252/embr.201643124] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway drives the tumorigenesis of multiple cancers. In this study, we screened a panel of deubiquitinases that may regulate the Hh pathway. We find that deubiquitinase USP48 activates Gli-dependent transcription by stabilizing Gli1 protein. Mechanistically, USP48 interacts with Gli1 and cleaves its ubiquitin off directly. In glioblastoma cells, knockdown of USP48 inhibits cell proliferation and the expression of Gli1's downstream targets, which leads to repressed glioblastoma tumorigenesis. Importantly, USP48's effect on cell proliferation and tumorigenesis depends to some extent on Gli1. In addition, we find that the Sonic Hedgehog (SHH) pathway induces USP48 expression through Gli1-mediated transcriptional activation, which forms thus a positive feedback loop to regulate Hh signaling. In human glioblastoma specimens, the expression levels of USP48 and Gli1 proteins are clinically relevant, and high expression of USP48 correlates with glioma malignancy. In summary, our study reveals that the USP48-Gli1 regulatory axis is critical for glioma cell proliferation and glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kangyu Lin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sicong Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Li Ma
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neuro-oncology and Neurosurgery, National Clinical Research Center for Cancer, Tianjin Medical University Institute and Hospital, Tianjin, China
| | - Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saint-Aaron Morris
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth D Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
202
|
Du J, Chen W, Yang L, Dai J, Guo J, Wu Y, Gong K, Zhang J, Yu N, Xie Z, Xi S. Disruption of SHH signaling cascade by SBE attenuates lung cancer progression and sensitizes DDP treatment. Sci Rep 2017; 7:1899. [PMID: 28507311 PMCID: PMC5432500 DOI: 10.1038/s41598-017-02063-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022] Open
Abstract
Deregulated Sonic Hedgehog (SHH) pathway facilitates the initiation, progression, and metastasis of Non-small cell lung cancer (NSCLC), confers drug resistance and renders a therapeutic interference option to lung cancer patients with poor prognosis. In this study, we screened and evaluated the specificity of a Chinese herb Scutellariabarbata D. Don extraction (SBE) in repressing SHH signaling pathway to block NSCLC progression. Our study confirmed that aberrant activation of the SHH signal pathway conferred more proliferative and invasive phenotypes to human lung cancer cells. This study revealed that SBE specifically repressed SHH signaling pathway to interfere the SHH-mediated NSCLC progression and metastasis via arresting cell cycle progression. We also found that SBE significantly sensitized lung cancer cells to chemotherapeutic agent DDP via repressing SHH components in vitro and in vivo. Mechanistic investigations indicated that SBE transcriptionally and specifically downregulated SMO and consequently attenuated the activities of GLI1 and its downstream targets in SHH signaling pathway, which interacted with cell cycle checkpoint enzymes to arrest cell cycle progression and lead to cellular growth inhibition and migration blockade. Collectively, our results suggest SBE as a novel drug candidate for NSCLC which specifically and sensitively targets SHH signaling pathway.
Collapse
Affiliation(s)
- Jing Du
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Weiwei Chen
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Lijuan Yang
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Jiwei Guo
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Kaikai Gong
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Jian Zhang
- Department of Pathology, Binzhou City People's Hospital, 256610, Binzhou, P.R. China
| | - Ning Yu
- Department of Pathology, Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Zhen Xie
- Department of Thoracic Surgery, Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Sichuan Xi
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China.
| |
Collapse
|
203
|
Daniele JR, Baqri RM, Kunes S. Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biol Open 2017; 6:714-721. [PMID: 28298319 PMCID: PMC5450320 DOI: 10.1242/bio.024075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila melanogaster (Dmel) eye is an ideal model to study development, intracellular signaling, behavior, and neurodegenerative disease. Interestingly, dynamic data are not commonly employed to investigate eye-specific disease models. Using axonal transport of the morphogen Hedgehog (Hh), which is integral to Dmel eye-brain development and implicated in stem cell maintenance and neoplastic disease, we demonstrate the ability to comprehensively quantify and characterize its trafficking in various neuron types and a neurodegeneration model in live early third-instar larval Drosophila. We find that neuronal Hh, whose kinetics have not been reported previously, favors fast anterograde transport and varies in speed and flux with respect to axonal position. This suggests distinct trafficking pathways along the axon. Lastly, we report abnormal transport of Hh in an accepted model of photoreceptor neurodegeneration. As a technical complement to existing eye-specific disease models, we demonstrate the ability to directly visualize transport in real time in intact and live animals and track secreted cargoes from the axon to their release points. Particle dynamics can now be precisely calculated and we posit that this method could be conveniently applied to characterizing disease pathogenesis and genetic screening in other established models of neurodegeneration. Summary: A novel method to directly visualize Hedgehog transport in the photoreceptor neurons of living animals offers unprecedented positional and temporal detail of complex phenotypes in real time.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Rehan M Baqri
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sam Kunes
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
204
|
Daniele JR, Chu T, Kunes S. A novel proteolytic event controls Hedgehog intracellular sorting and distribution to receptive fields. Biol Open 2017; 6:540-550. [PMID: 28298318 PMCID: PMC5450321 DOI: 10.1242/bio.024083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The patterning activity of a morphogen depends on secretion and dispersal mechanisms that shape its distribution to the cells of a receptive field. In the case of the protein Hedgehog (Hh), these mechanisms of secretion and transmission remain unclear. In the developing Drosophila visual system, Hh is partitioned for release at opposite poles of photoreceptor neurons. Release into the retina regulates the progression of eye development; axon transport and release at axon termini trigger the development of postsynaptic neurons in the brain. Here we show that this binary targeting decision is controlled by a C-terminal proteolysis. Hh with an intact C-terminus undergoes axonal transport, whereas a C-terminal proteolysis enables Hh to remain in the retina, creating a balance between eye and brain development. Thus, we define a novel mechanism for the apical/basal targeting of this developmentally important protein and posit that similar post-translational regulation could underlie the polarity of related ligands.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Tehyen Chu
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sam Kunes
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
205
|
GLI3 repressor determines Hedgehog pathway activation and is required for response to SMO antagonist glasdegib in AML. Blood 2017; 129:3465-3475. [PMID: 28487292 DOI: 10.1182/blood-2016-05-718585] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 04/29/2017] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway is activated in many cancers and is a promising target for therapeutic development. Deletions in the receptor Patched (PTCH) or activating mutations in Smoothened (SMO) have been reported in basal cell carcinoma and medulloblastoma, but are largely absent in most tumor types. Therefore, the mechanism of pathway activation in most cancers, including hematological malignancies, remains unknown. In normal tissues, Hh pathway activation via PTCH/SMO causes an increase in the downstream transcriptional activator GLI1 and a decrease in the GLI3 transcriptional repressor (GLI3R). In this article, we confirm that the Hh pathway is active in acute myeloid leukemia (AML), however, this activity is largely independent of SMO. Epigenetic and gene expression analysis of The Cancer Genome Atlas AML data set reveals that GLI3 expression is silenced in most AML patient samples, and the GLI3 locus is abnormally methylated. We show that GLI3R is required for the therapeutic effect of SMO antagonists in AML samples and restoration of GLI3R suppresses the growth of AML. We additionally demonstrate that GLI3R represses AML growth by downregulating AKT expression. In summary, this study provides the first evidence that GLI3R plays an essential role in SMO-independent Hh signaling in AML, and suggests that GLI3R could serve as a potential biomarker for patient selection in SMO antagonist clinical trials. Furthermore, these data support rational combinations of hypomethylating agents with SMO antagonists in clinical trials.
Collapse
|
206
|
Guo M, Hong KH, Lv Y, Ding Y, Li C, Xu H, Qi W, Chen J, Ji M, Cai J. A Novel and Efficient Route for Synthesis of Taladegib. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/003685017x14859543105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Taladegib (LY-2940680), a small molecule Hedgehog signalling pathway inhibitor, was obtained from N-benzyl-4-piperidone via Borch reductive amination, acylation with 4-fluoro-2-(trifluoromethyl)benzoyl chloride, debenzylation, substitution with 1,4-dichlorophthalazine and Suzuki cross-coupling reaction with 1-methyl-1H-pyrazole-5-boronic acid. The advantages of this synthesis route were the elimination of Boc protection and deprotection and the inexpensive starting materials. Furthermore, the debenzylation reaction was achieved with simplified operational procedure using ammonium formate as hydrogen source that provided high reaction yield. This synthetic procedure was suitable for large-scale production of the compound for biological evaluation and further study.
Collapse
Affiliation(s)
- Mingliang Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and the Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Yongfeng Lv
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Yu Ding
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Congcong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Hua Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Wenxiu Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Junqing Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, P.R. China
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, P.R. China
| | - Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P.R. China
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, P.R. China
| |
Collapse
|
207
|
Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal 2017; 15:15. [PMID: 28427431 PMCID: PMC5397778 DOI: 10.1186/s12964-017-0171-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.
Collapse
Affiliation(s)
- Silja Wessler
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria.
| | - Linda M Krisch
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria
| | - Dominik P Elmer
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| | - Fritz Aberger
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.
| |
Collapse
|
208
|
Amaral T, Garbe C. Non-melanoma skin cancer: new and future synthetic drug treatments. Expert Opin Pharmacother 2017; 18:689-699. [PMID: 28414587 DOI: 10.1080/14656566.2017.1316372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Non-melanoma skin cancers (NMSC) mainly comprise two different entities: basal cell carcinoma (BCC) and squamous cell carcinoma (SCC); beneath these two entities, Merkel cell carcinoma, adnexal tumors, dermatofibrosarcoma protuberans, angiosarcoma, and cutaneous lymphoma belong to NMSC. These rare skin tumors are not the topic of this review. BCC and SCC are the most common cancers diagnosed in humans. The preferred treatment is surgery, which in most cases is curative. Although a high recurrence rate is seen, these cancers rarely metastasize. Therefore, systemic treatments were not a priority for these patients. It is long known that the abnormal activation of Hedgehog and epidermal growth factor receptor pathways were involved in BCC and SCC. In the last decade, metastatic disease became an important area of research, mostly because new therapies that targeted components of these two pathways became available. Areas covered: Here we cover the available therapeutic options for patients diagnosed with BCC and SCC, focus on systemic and targeted therapies. Expert opinion: BCC and SCC are common cancers, with good prognosis. More than the metastatic disease, advanced local disease and recurrent disease pose clinicians a great challenge. Albeit there are promising results with targeted therapies, resistance development has already been described.
Collapse
Affiliation(s)
- Teresa Amaral
- a Center for Dermatooncology, Department of Dermatology , University Hospital Tübingen , Tübingen , Germany.,b Portuguese Air Force Health Direction , Paço do Lumiar , Portugal
| | - Claus Garbe
- a Center for Dermatooncology, Department of Dermatology , University Hospital Tübingen , Tübingen , Germany
| |
Collapse
|
209
|
Lanyon-Hogg T, Patel NV, Ritzefeld M, Boxall KJ, Burke R, Blagg J, Magee AI, Tate EW. Microfluidic Mobility Shift Assay for Real-Time Analysis of Peptide N-Palmitoylation. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:418-424. [PMID: 28296537 PMCID: PMC5453399 DOI: 10.1177/2472555216689529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023]
Abstract
The Hedgehog pathway is a key developmental signaling pathway but is also implicated in many types of cancer. The extracellular signaling protein Sonic hedgehog (Shh) requires dual lipidation for functional signaling, whereby N-terminal palmitoylation is performed by the enzyme Hedgehog acyltransferase (Hhat). Hhat is an attractive target for small-molecule inhibition to arrest Hedgehog signaling, and methods for assaying Hhat activity are central to understanding its function. However, all existing assays to quantify lipidation of peptides suffer limitations, such as safety hazards, high costs, extensive manual handling, restriction to stopped-assay measurements, or indirect assessment of lipidation. To address these limitations, we developed a microfluidic mobility shift assay (MSA) to analyze Shh palmitoylation. MSA allowed separation of fluorescently labeled Shh amine-substrate and palmitoylated Shh amide-product peptides based on differences in charge and hydrodynamic radius, coupled with online fluorescence intensity measurements for quantification. The MSA format was employed to study Hhat-catalyzed reactions, investigate Hhat kinetics, and determine small-molecule inhibitor IC50 values. Both real-time and stopped assays were performed, with the latter achieved via addition of excess unlabeled Shh peptide. The MSA format therefore allows direct and real-time fluorescence-based measurement of acylation and represents a powerful alternative technique in the study of N-lipidation.
Collapse
Affiliation(s)
| | - Neki V. Patel
- Department of Chemistry, Imperial College London, London, UK
| | | | - Katherine J. Boxall
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Anthony I. Magee
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, UK
| |
Collapse
|
210
|
Zhang Q, Feng Y, Kennedy D. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? Cell Mol Life Sci 2017; 74:777-801. [PMID: 27622244 PMCID: PMC11107623 DOI: 10.1007/s00018-016-2362-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
Chemotherapy is one of the most effective and broadly used approaches for cancer management and many modern regimes can eliminate the bulk of the cancer cells. However, recurrence and metastasis still remain a major obstacle leading to the failure of systemic cancer treatments. Therefore, to improve the long-term eradication of cancer, the cellular and molecular pathways that provide targets which play crucial roles in drug resistance should be identified and characterised. Multidrug resistance (MDR) and the existence of tumor-initiating cells, also referred to as cancer stem cells (CSCs), are two major contributors to the failure of chemotherapy. MDR describes cancer cells that become resistant to structurally and functionally unrelated anti-cancer agents. CSCs are a small population of cells within cancer cells with the capacity of self-renewal, tumor metastasis, and cell differentiation. CSCs are also believed to be associated with chemoresistance. Thus, MDR and CSCs are the greatest challenges for cancer chemotherapy. A significant effort has been made to identify agents that specifically target MDR cells and CSCs. Consequently, some agents derived from nature have been developed with a view that they may overcome MDR and/or target CSCs. In this review, natural products-targeting MDR cancer cells and CSCs are summarized and clustered by their targets in different signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Yunjiang Feng
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
211
|
Dauti A, Gerstl B, Chong S, Chisholm O, Anazodo A. Improvements in Clinical Trials Information Will Improve the Reproductive Health and Fertility of Cancer Patients. J Adolesc Young Adult Oncol 2017; 6:235-269. [PMID: 28207285 DOI: 10.1089/jayao.2016.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are a number of barriers that result in cancer patients not being referred for oncofertility care, which include knowledge about reproductive risks of antineoplastic agents. Without this information, clinicians do not always make recommendations for oncofertility care. The objective of this study was to describe the level of reproductive information and recommendations that clinicians have available in clinical trial protocols regarding oncofertility management and follow-up, and the information that patients may receive in clinical trials patient information sheets or consent forms. A literature review of the 71 antineoplastic drugs included in the 68 clinical trial protocols showed that 68% of the antineoplastic drugs had gonadotoxic animal data, 32% had gonadotoxic human data, 83% had teratogenic animal data, and 32% had teratogenic human data. When the clinical trial protocols were reviewed, only 22% of the protocols reported the teratogenic risks and 32% of the protocols reported the gonadotoxic risk. Only 56% of phase 3 protocols had gonadotoxic information and 13% of phase 3 protocols had teratogenic information. Nine percent of the protocols provided fertility preservation recommendations and 4% provided reproductive information in the follow-up and survivorship period. Twenty-six percent had a section in the clinical trials protocol, which identified oncofertility information easily. When gonadotoxic and teratogenic effects of treatment were known, they were not consistently included in the clinical trial protocols and the lack of data for new drugs was not reported. Very few protocols gave recommendations for oncofertility management and follow-up following the completion of cancer treatment. The research team proposes a number of recommendations that should be required for clinicians and pharmaceutical companies developing new trials.
Collapse
Affiliation(s)
- Angela Dauti
- 1 College of Arts and Sciences, Department of Chemistry, New York University , New York City, New York.,2 Population Sciences Department, Dana-Farber Cancer Institute , Boston, Massachusetts.,3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Brigitte Gerstl
- 4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia
| | - Serena Chong
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Orin Chisholm
- 5 Department of Pharmaceutical Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Antoinette Anazodo
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia .,4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia .,6 Nelune Comprehensive Cancer Centre, Prince of Wales Hospital , Randwick, Australia
| |
Collapse
|
212
|
Peng WX, Zhu SL, Zhang BY, Shi YM, Feng XX, Liu F, Huang JL, Zheng SG. Smoothened Regulates Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Activation of Rho GTPase Signaling. Front Immunol 2017; 8:159. [PMID: 28261216 PMCID: PMC5309251 DOI: 10.3389/fimmu.2017.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) acquire aggressive phenotypes characterized with enhanced migration abilities and inherent invasive qualities in rheumatoid arthritis (RA). Smoothened (Smo) is a key component of sonic hedgehog (Shh) signaling and contributes to tumor cell invasion and metastasis. The objective of this study is to investigate the role of Smo in the modulation of cell migration and explore the underlying molecular mechanism(s). FLSs were isolated from RA synovium. Shh levels were regulated by a Smo agonist (purmorphamine), Smo antagonist (KAAD-cyclopamine), or small interfering RNA targeting the Smo gene (Smo-siRNA) in RA-FLSs. Expression of Smo was detected by real-time PCR and western blot analysis. Cell migration was examined by Transwell assay and activation of Rho GTPases was measured by pull-down assays. Incubation with purmorphamine resulted in a significant increase of cell migration and activation of Rho GTPase signaling compared to controls (P < 0.05). However, treatment with KAAD-cyclopamine or transfection with Smo-siRNA suppressed migration of RA-FLSs and showed an inhibitory effect of Rho GTPase signaling. Together, these results suggest that Smo plays an important role in RA-FLSs migration through activation of Rho GTPase signaling and may contribute to progression of RA, thus, targeting Shh signal may have a therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Wei-Xiang Peng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of for Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Division of Nephrology, Zhuhai People's Hospital, Zhuhai, China
| | - Shang-Ling Zhu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Bai-Yu Zhang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Yi-Ming Shi
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Xiao-Xue Feng
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Fang Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Jian-Lin Huang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Song Guo Zheng
- Department of for Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
213
|
Gao YH, Ma LG, Cai AZ, Xi HQ, Chen L. Gastric cancer stem cells: Signal pathways and targeted therapies. Shijie Huaren Xiaohua Zazhi 2017; 25:351-357. [DOI: 10.11569/wcjd.v25.i4.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is still one of the most common malignant neoplasms worldwide and the third leading cause of cancer-related death. Therefore, it is of great significance to clarify the mechanism of gastric cancer oncogenesis. In the past decades, the theory of cancer stem cell has enhanced our knowledge of gastric cancer. Cancer stem cells are defined as cells within a tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. The dysregulation of certain signal pathways occurs during tumor formation. Recently, the research on gastric cancer stem cells (GCSCs) and related signal pathways has provided a new theoretical basis for clarifying the mechanism of gastric cancer and treating this malignancy. This review will discuss the role of related signal pathways in GCSCs and therapies targeting the key molecules of these pathways.
Collapse
|
214
|
Zhang Z, Shen L, Law K, Zhang Z, Liu X, Hua H, Li S, Huang H, Yue S, Hui CC, Cheng SY. Suppressor of Fused Chaperones Gli Proteins To Generate Transcriptional Responses to Sonic Hedgehog Signaling. Mol Cell Biol 2017; 37:e00421-16. [PMID: 27849569 PMCID: PMC5247608 DOI: 10.1128/mcb.00421-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/19/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to the graded Sonic Hedgehog (Shh) morphogenic signal are orchestrated by three Gli genes that give rise to both transcription activators and repressors. An essential downstream regulator of the pathway, encoded by the tumor suppressor gene Suppressor of fused (Sufu), plays critical roles in the production, trafficking, and function of Gli proteins, but the mechanism remains controversial. Here, we show that Sufu is upregulated in active Shh responding tissues and accompanies Gli activators translocating into and Gli repressors out of the nucleus. Trafficking of Sufu to the primary cilium, potentiated by Gli activators but not repressors, was found to be coupled to its nuclear import. We have identified a nuclear export signal (NES) motif of Sufu in juxtaposition to the protein kinase A (PKA) and glycogen synthase kinase 3 (GSK3) dual phosphorylation sites and show that Sufu binds the chromatin with both Gli1 and Gli3. Close comparison of neural tube development among individual Ptch1-/-, Sufu-/-, and Ptch1-/-; Sufu-/- double mutant embryos indicates that Sufu is critical for the maximal activation of Shh signaling essential to the specification of the most-ventral neurons. These data define Sufu as a novel class of molecular chaperone required for every aspect of Gli regulation and function.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longyan Shen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kelvin Law
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zengdi Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaotong Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hu Hua
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sanen Li
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huijie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
215
|
Bekaii-Saab T, El-Rayes B. Identifying and targeting cancer stem cells in the treatment of gastric cancer. Cancer 2017; 123:1303-1312. [PMID: 28117883 PMCID: PMC5412889 DOI: 10.1002/cncr.30538] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Current treatment regimens for gastric cancer are not adequate. Cancer stem cells (CSCs) may be a key driving factor for growth and metastasis of this tumor type. In contrast to the conventional clonal evolution hypothesis, CSCs can initiate tumor formation, self‐renew, and differentiate into tumor‐propagating cells. Because gastric cancer can originate from CSCs, it is necessary to review current targets of signaling pathways for CSCs in gastric cancer that are being studied in clinical trials. These pathways are known to regulate the self‐renewal and differentiation process in gastric CSCs. A better understanding of the clinical results of trials that target gastric CSCs will lead to better outcomes for patients with gastric cancer. Cancer 2017;123:1303–1312. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Cancer stem cells may be a key driving factor in the growth and metastasis of gastric cancer. Because gastric cancer can originate from cancer stem cells, it is necessary to review current targets of signaling pathways for cancer stem cells in gastric cancer that are being studied in clinical trials.
Collapse
Affiliation(s)
- Tanios Bekaii-Saab
- Gastrointestinal Cancer Program, Mayo Clinic Cancer Center, Phoenix, Arizona.,Division of Hematology and Oncology, Mayo Clinic, Phoenix, Arizona
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory School of Medicine, Atlanta, Georgia
| |
Collapse
|
216
|
Reduced proliferation and colony formation of head and neck squamous cell carcinoma (HNSCC) after dual targeting of EGFR and hedgehog pathways. Cancer Chemother Pharmacol 2017; 79:411-420. [PMID: 28110457 DOI: 10.1007/s00280-017-3239-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The hedgehog signalling pathway (Hh) is frequently active in head and neck squamous cell carcinoma (HNSCC). Overexpressed Hh associates with poor prognosis. The Hh inhibitor vismodegib targets smoothened, and based on molecular data, may prevent resistance to EGFR targeting. METHODS To elucidate potential roles of vismodegib in HNSCC therapy, its sole effects and those combined with cisplatin, docetaxel, and cetuximab on HNSCC cell lines were assessed by MTT metabolisation and BrdU incorporation. Colony formation (CF) of primary HNSCC cells was studied utilizing the FLAVINO-protocol. Combinatory effects were analysed regarding antagonism, additivity or synergism. Associations between the ex vivo detected mode of action of vismodegib with other treatments related to patient characteristics were assessed and progression-free survival (PFS) in patient groups compared using Kaplan-Meier curves. RESULTS Vismodegib suppressed BrdU incorporation significantly stronger than MTT turnover; CF was significantly inhibited at ≥20 µM vismodegib while concentrations <20 µM acted hormetic. Combining 20 µM vismodegib plus docetaxel (T), cisplatin (P), and cetuximab (E), additively enhanced anti-tumoral activity in HNSCC samples from patients with superior PFS highlighting a potential role for ex-vivo testing of this combination for use as a prognostic classifier. CONCLUSION We provide ex-vivo evidence for vismodegib's potential in HNSCC therapies, especially if combined with cetuximab, cisplatin and docetaxel.
Collapse
|
217
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
218
|
Benvenuto M, Masuelli L, De Smaele E, Fantini M, Mattera R, Cucchi D, Bonanno E, Di Stefano E, Frajese GV, Orlandi A, Screpanti I, Gulino A, Modesti A, Bei R. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget 2017; 7:9250-70. [PMID: 26843616 PMCID: PMC4891038 DOI: 10.18632/oncotarget.7062] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant Hedgehog (Hh)/glioma-associated oncogene (GLI) signaling has been implicated in cancer progression. Here, we analyzed GLI1, Sonic Hedgehog (Shh) and NF-κB expression in 51 breast cancer (ductal carcinoma) tissues using immunohistochemistry. We found a positive correlation between nuclear GLI1 expression and tumor grade in ductal carcinoma cases. Cytoplasmic Shh staining significantly correlated with a lower tumor grade. Next, the in vitro effects of two Hh signaling pathway inhibitors on breast cancer cell lines were evaluated using the Smoothened (SMO) antagonist GDC-0449 and the direct GLI1 inhibitor GANT-61. GDC-0449 and GANT-61 exhibited the following effects: a) inhibited breast cancer cell survival; b) induced apoptosis; c) inhibited Hh pathway activity by decreasing the mRNA expression levels of GLI1 and Ptch and inhibiting the nuclear translocation of GLI1; d) increased/decreased EGFR and ErbB2 protein expression, reduced p21-Ras and ERK1/ERK2 MAPK activities and inhibited AKT activation; and e) decreased the nuclear translocation of NF-κB. However, GANT-61 exerted these effects more effectively than GDC-0449. The in vivo antitumor activities of GDC-0449 and GANT-61 were analyzed in BALB/c mice that were subcutaneously inoculated with mouse breast cancer (TUBO) cells. GDC-0449 and GANT-61 suppressed tumor growth of TUBO cells in BALB/c mice to different extents. These findings suggest that targeting the Hh pathway using antagonists that act downstream of SMO is a more efficient strategy than using antagonists that act upstream of SMO for interrupting Hh signaling in breast cancer.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Danilo Cucchi
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giovanni Vanni Frajese
- Department of Physical Education, Human Sciences and Health, University of Rome "Foro Italico", Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Alberto Gulino
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
219
|
Bhattarai D, Jung JH, Han S, Lee H, Oh SJ, Ko HW, Lee K. Design, synthesis, and biological evaluation of structurally modified isoindolinone and quinazolinone derivatives as hedgehog pathway inhibitors. Eur J Med Chem 2017; 125:1036-1050. [DOI: 10.1016/j.ejmech.2016.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023]
|
220
|
Barbato S, Solaini G, Fabbri M. MicroRNAs in Oncogenesis and Tumor Suppression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:229-268. [PMID: 28729026 DOI: 10.1016/bs.ircmb.2017.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (MiRNAs) have emerged in the last 15 years as central players in the biology of cancer. Increasing lines of evidence have supported their regulatory role in the expression of both oncogenes and tumor-suppressor genes, progressively clarifying which genes are modulated by specific MiRNAs dysregulated in cancer. Intriguingly, a "target-specific" understanding of MiRNA function in oncology has been replaced by a more "pathway-specific" vision of their involvement in cancer biology. This work provides a state-of-the-art knowledge of the role of MiRNAs in the most frequently altered signaling pathways in cancer cells and provides an updated overview on some of the most relevant findings trying to decode the complex molecular mechanisms of cancer.
Collapse
Affiliation(s)
- Simona Barbato
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Bologna, Italy
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Bologna, Italy
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
221
|
Chaudary N, Pintilie M, Hedley D, Hill RP, Milosevic M, Mackay H. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts. Br J Cancer 2016; 116:50-57. [PMID: 27875522 PMCID: PMC5220149 DOI: 10.1038/bjc.2016.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Hedgehog (Hh) pathway is upregulated in cervical cancer and associated with poor outcome. We explored the effects of Hh pathway inhibition in combination with RTCT in a patient derived orthotopic cervical cancer xenograft model (OCICx). METHODS 5E1, a monoclonal antibody for SHH, or Sonidegib (LDE225), a clinical SMO inhibitor (Novartis) were added to RTCT. We investigated tumour growth delay, metastasis and GI toxicity using orthotopic cervical cancer xenografts models. The xenografts were treated with radiotherapy (15 × 2 Gy daily fractions over 3 weeks) and weekly cisplatin 4 mg kg-1 concurrently, with or without 5E1 or Sonidegib (LDE225). The Hh inhibitors were administered by subcutaneous injection (5E1; 20 mg kg-1 weekly for 3 weeks), or by oral gavage (Sonidegib; 60 mg kg-1 daily for 3 weeks). RESULTS We observed that both Hh inhibitors administered with RTCT were well tolerated and showed increased tumour growth delay, and reduced metastasis, with no increase in acute GI-toxicity relative to RTCT alone. CONCLUSIONS Our data suggest Hh can be a valid therapeutic target in cervical cancer and supports data suggesting a potential therapeutic role for targeting Hh in patients undergoing RTCT. This warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Naz Chaudary
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada
| | - Melania Pintilie
- Biostatistics Department, Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - David Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario MG5 2M9, Canada
| | - Richard P Hill
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario MG5 2M9, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario MG5 2M9, Canada
| | - Michael Milosevic
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario MG5 2M9, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada
| | - Helen Mackay
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada
| |
Collapse
|
222
|
Prediction of Bacillus Calmette-Guerin Response in Patients with Bladder Cancer after Transurethral Resection of Bladder Tumor by Using Genetic Variation Based on Genomic Studies. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9859021. [PMID: 27896277 PMCID: PMC5118509 DOI: 10.1155/2016/9859021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Purpose. We aimed to comprehensively review contemporary literature on genetic and epigenetic biomarkers associated with the prediction of Bacillus Calmette-Guerin (BCG) response after the transurethral resection of a bladder tumor and to discuss the application of these biomarkers in precision cancer care for bladder cancer. Method. We performed a systematic review of published literatures in the databases PubMed and Embase by using the following key words: bladder cancer, BCG, gene, and methylation. Studies associated with cell lines, animal models, and muscle invasive bladder cancer were excluded. Results. The genetic variations associated with BCG response can be classified into three categories: germline variations, somatic variations, and epigenetic alterations. Genes related to BCG response were mainly involved in single-nucleotide polymorphisms, copy number variations, and gene methylations. Conclusions. Although these gene alterations are currently the most promising predictive markers of BCG response, most studies about bladder cancer DNA biomarkers are related to germline variations in candidate genes, and the results are not consistent. Only one study is related to somatic variation, and further evaluation in large-scale validation studies should be conducted to assess the potential clinical application of these findings. In addition, other biomarkers based on different “–omics” technologies should be considered in future studies.
Collapse
|
223
|
Rucki AA, Foley K, Zhang P, Xiao Q, Kleponis J, Wu AA, Sharma R, Mo G, Liu A, Van Eyk J, Jaffee EM, Zheng L. Heterogeneous Stromal Signaling within the Tumor Microenvironment Controls the Metastasis of Pancreatic Cancer. Cancer Res 2016; 77:41-52. [PMID: 27821486 DOI: 10.1158/0008-5472.can-16-1383] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Understanding how stromal signals regulate the development of pancreatic ductal adenocarcinoma (PDAC) may suggest novel therapeutic interventions in this disease. In this study, we assessed the metastatic role of stromal signals suggested to be important in the PDAC microenvironment. Src and IGF-1R phosphorylated the prometastatic molecule Annexin A2 (AnxA2) at Y23 and Y333 in response to stromal signals HGF and IGF-1, respectively, and IGF-1 expression was regulated by the Sonic Hedgehog (Shh) pathway. Both Shh and HGF were heterogeneously expressed in PDAC stroma, and only dual inhibition of these pathways could significantly suppress AnxA2 phosphorylation, PDAC growth, and metastasis. Taken together, our results illuminate tumor-stromal interactions, which drive metastasis, and provide a mechanism-based rationale for a stroma-directed therapy for PDAC. Cancer Res; 77(1); 41-52. ©2016 AACR.
Collapse
Affiliation(s)
- Agnieszka A Rucki
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pingbo Zhang
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qian Xiao
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Kleponis
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Annie A Wu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajni Sharma
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guanglan Mo
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angen Liu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Van Eyk
- Department of Medicine, Biological Chemistry and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
224
|
Lee H, Ko HW. Ciliary smoothened-mediated noncanonical hedgehog signaling promotes tubulin acetylation. Biochem Biophys Res Commun 2016; 480:574-579. [PMID: 27793670 DOI: 10.1016/j.bbrc.2016.10.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Hedgehog (Hh) signaling plays key roles in animal development and tissue homeostasis. Binding of the secreted ligand to its Ptch1 receptor triggers Hh signaling through distinct canonical or noncanonical signaling pathways. Canonical Hh signaling leads to the activation of Gli transcription factors to induce Hh target-gene expression. In contrast, noncanonical Hh signaling regulates cytoskeleton rearrangement and apoptosis. Recently, it has been shown that primary cilia are important for canonical Hh signaling, but the ciliary role for signaling through the noncanonical pathway remains unresolved. Here, we examine the role of primary cilia in noncanonical Hh signaling in cultured mammalian cells. We found that Hh pathway activation in mouse embryonic fibroblast cells (MEFs) increases microtubule acetylation via smoothened (Smo), and suppression of Hh signaling by a Smo antagonist abrogates the microtubule acetylation. Using genetically engineered MEFs, we revealed that the increase in microtubule acetylation by Hh is dependent on Smo, but not on Sufu or Gli. In Kif3a-/- MEFs, which cannot form primary cilia, we observed that primary cilia were required for transducing noncanonical Hh signaling. Furthermore, we revealed that an increase in intracellular calcium is important for Hh-dependent tubulin acetylation at the downstream of Smo. Collectively, these findings suggest that Smo and primary cilia-dependent noncanonical Hh signaling leads to post-translational regulation of microtubules and may be important for modulating cell behaviors.
Collapse
Affiliation(s)
- Hankyu Lee
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyangsi, Gyeonggido, 10326, South Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyangsi, Gyeonggido, 10326, South Korea.
| |
Collapse
|
225
|
Liu G, Xue D, Yang J, Wang J, Liu X, Huang W, Li J, Long YQ, Tan W, Zhang A. Design, Synthesis, and Pharmacological Evaluation of 2-(2,5-Dimethyl-5,6,7,8-tetrahydroquinolin-8-yl)-N-aryl Propanamides as Novel Smoothened (Smo) Antagonists. J Med Chem 2016; 59:11050-11068. [PMID: 27736063 DOI: 10.1021/acs.jmedchem.6b01247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of novel Smo antagonists were developed either by directly incorporating the basic skeleton of the natural product artemisinin or by first breaking artemisinin into structurally simpler and stable intermediates and then reconstructing into diversified heterocyclic derivatives, equipped with a Smo-targeting bullet. 2-(2,5-Dimethyl-5,6,7,8-tetrahydroquinolin-8-yl)-N-arylpropanamide 65 was identified as the most potent, with an IC50 value of 9.53 nM against the Hh signaling pathway. Complementary mechanism studies confirmed that 65 inhibits Hh signaling pathway by targeting Smo and shares the same binding site as that of the tool drug cyclopamine. Meanwhile, 65 has a good plasma exposure and an acceptable oral bioavailability. Dose-dependent antiproliferative effects were observed in ptch+/-;p53-/- medulloblastoma cells, and significant tumor growth inhibitions were achieved for 65 in the ptch+/-;p53-/- medulloblastoma allograft model.
Collapse
Affiliation(s)
- Gang Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Ding Xue
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Xiaohua Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Jie Li
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| |
Collapse
|
226
|
Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, Li Z. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma. J Cancer 2016; 7:2067-2076. [PMID: 27877222 PMCID: PMC5118670 DOI: 10.7150/jca.15786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022] Open
Abstract
Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways.
Collapse
Affiliation(s)
- Yuqiong Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.; No. 411 Hospital of PLA, Shanghai 200081, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Quanjiang Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.; Department of Oncology, No. 150 Central Hospital of PLA, Luoyang, Henan Province 471000, China
| | | | - Weimin Hu
- No. 411 Hospital of PLA, Shanghai 200081, China
| | - Ping Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shude Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hongyu Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun Gao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
227
|
Lubik AA, Nouri M, Truong S, Ghaffari M, Adomat HH, Corey E, Cox ME, Li N, Guns ES, Yenki P, Pham S, Buttyan R. Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment. Int J Cancer 2016; 140:358-369. [PMID: 27672740 DOI: 10.1002/ijc.30450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.
Collapse
Affiliation(s)
- Amy A Lubik
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mannan Nouri
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Truong
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mazyar Ghaffari
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans H Adomat
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Michael E Cox
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Na Li
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emma S Guns
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Parvin Yenki
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Steven Pham
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ralph Buttyan
- The Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
228
|
Solasonine, A Natural Glycoalkaloid Compound, Inhibits Gli-Mediated Transcriptional Activity. Molecules 2016; 21:molecules21101364. [PMID: 27754442 PMCID: PMC6274431 DOI: 10.3390/molecules21101364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/28/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
The major obstacle limiting the efficacy of current Smoothened (Smo) inhibitors is the primary and acquired resistance mainly caused by Smo mutations and Gli amplification. In this context, developing Hh inhibitors targeting Gli, the final effector of this signaling pathway, may combat the resistance. In this study we found that solasonine, a natural glycoalkaloid compound, significantly inhibited the hedgehog (Hh) pathway activity. Meanwhile, solasonine may obviously inhibit the alkaline phosphatase (ALP) activity in C3H10T1/2 cells, concomitantly with reductions of the mRNA expression of Gli1 and Ptch1. However, we found that solasonine exhibited no effect on the transcriptional factors activities provoked by TNF-α and PGE2, thus suggesting its selectivity against Hh pathway activity. Furthermore, we identified that solasonine inhibited the Hh pathway activity by acting on its transcriptional factor Gli using a series of complementary data. We also observed that solasonine obviously inhibited the Gli-luciferase activity provoked by ectopic expression of Smo mutants which may cause the resistance to the current Smo inhibitors. Our study suggests that solasonine may significantly inhibit the Hh pathway activity by acting on Gli, therefore indicating the possibility to use solasonine as a lead compound to develop anticancer drugs for combating the resistance of current Smo inhibitors.
Collapse
|
229
|
Song L, Chen X, Gao S, Zhang C, Qu C, Wang P, Liu L. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway. Tumour Biol 2016; 37:10.1007/s13277-016-5461-8. [PMID: 27734340 DOI: 10.1007/s13277-016-5461-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.
Collapse
Affiliation(s)
- Libin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
230
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
231
|
Quinlan M, Zhou J, Hurh E, Sellami D. Exposure-QT analysis for sonidegib (LDE225), an oral inhibitor of the hedgehog signaling pathway, for measures of the QT prolongation potential in healthy subjects and in patients with advanced solid tumors. Eur J Clin Pharmacol 2016; 72:1427-1432. [PMID: 27663457 DOI: 10.1007/s00228-016-2128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE Sonidegib prevents activation of the Hedgehog signal transduction pathway. This PK-QT analysis has been performed to test for potential prolongation of the QT/QTc interval during extended use, and to understand the exposure-QT relationship for sonidegib in patients and in healthy volunteers (HV). METHODS A pooled analysis of the change in QT interval corrected for heart rate according to Fridericia's formula was conducted across four patient studies from a total of 341 patients (n = 211, 102, 21, and 7 from the phase II pivotal study A2201, study X2101, study X1101, and study B2209, respectively), and across four healthy volunteer studies from a total of 204 healthy volunteers (n = 146, 36, 16, and 6 from study A2114, study A1102, study A2108, and study A2110, respectively). A PK/ECG subgroup of 62 patients from the pivotal study A2201 was also analyzed to assess the QT prolongation risk at steady-state exposures. Sonidigib PK and ECG data were matched to determine the change from baseline in QTcF using a linear mixed-effect model. RESULTS Clinical data indicate sonidegib does not cause QTc prolongation. ΔQTcF at steady-state concentrations for both 200 and 800-mg doses were all below 5 ms. The highest mean ΔQTcF at steady state was -3.9 ms at week 17 pre-dose in the sonidegib 200-mg group and 2.7 ms at 2-h post-dose in the sonidegib 800-mg group. The upper one-sided 95 % confidence interval of the estimated ΔQTcF at steady-state concentrations from the linear mixed-effect models were all <10 ms. No cases of ventricular arrhythmia or torsades de pointes and no deaths associated with QT prolongation have been reported in the sonidegib clinical development program. CONCLUSIONS Based on these analyses, there is no evidence of QT prolongation associated with sonidegib 200 or 800 mg in solid tumor patients and HV.
Collapse
Affiliation(s)
- Michelle Quinlan
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA
| | - Jocelyn Zhou
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA
| | - Eunju Hurh
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA.,Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Dalila Sellami
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA.
| |
Collapse
|
232
|
Infante P, Alfonsi R, Ingallina C, Quaglio D, Ghirga F, D'Acquarica I, Bernardi F, Di Magno L, Canettieri G, Screpanti I, Gulino A, Botta B, Mori M, Di Marcotullio L. Inhibition of Hedgehog-dependent tumors and cancer stem cells by a newly identified naturally occurring chemotype. Cell Death Dis 2016; 7:e2376. [PMID: 27899820 PMCID: PMC5059851 DOI: 10.1038/cddis.2016.195] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) inhibitors have emerged as valid tools in the treatment of a wide range of cancers. Indeed, aberrant activation of the Hh pathway occurring either by ligand-dependent or -independent mechanisms is a key driver in tumorigenesis. The smoothened (Smo) receptor is one of the main upstream transducers of the Hh signaling and is a validated target for the development of anticancer compounds, as underlined by the FDA-approved Smo antagonist Vismodegib (GDC-0449/Erivedge) for the treatment of basal cell carcinoma. However, Smo mutations that confer constitutive activity and drug resistance have emerged during treatment with Vismodegib. For this reason, the development of new effective Hh inhibitors represents a major challenge for cancer therapy. Natural products have always represented a unique source of lead structures in drug discovery, and in recent years have been used to modulate the Hh pathway at multiple levels. Here, starting from an in house library of natural compounds and their derivatives, we discovered novel chemotypes of Hh inhibitors by mean of virtual screening against the crystallographic structure of Smo. Hh functional based assay identified the chalcone derivative 12 as the most effective Hh inhibitor within the test set. The chalcone 12 binds the Smo receptor and promotes the displacement of Bodipy-Cyclopamine in both Smo WT and drug-resistant Smo mutant. Our molecule stands as a promising Smo antagonist able to specifically impair the growth of Hh-dependent tumor cells in vitro and in vivo and medulloblastoma stem-like cells and potentially overcome the associated drug resistance.
Collapse
Affiliation(s)
- Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Romina Alfonsi
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Cinzia Ingallina
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Deborah Quaglio
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Ilaria D'Acquarica
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, Italy
| | - Flavia Bernardi
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Alberto Gulino
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, Italy
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| |
Collapse
|
233
|
Fiorini L, Tribalat MA, Sauvard L, Cazareth J, Lalli E, Broutin I, Thomas OP, Mus-Veteau I. Natural paniceins from mediterranean sponge inhibit the multidrug resistance activity of Patched and increase chemotherapy efficiency on melanoma cells. Oncotarget 2016; 6:22282-97. [PMID: 26068979 PMCID: PMC4673163 DOI: 10.18632/oncotarget.4162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/20/2015] [Indexed: 01/27/2023] Open
Abstract
Multidrug resistance has appeared to mitigate the efficiency of anticancer drugs and the possibility of successful cancer chemotherapy. The Hedgehog receptor Patched is a multidrug transporter expressed in several cancers and as such it represents a new target to circumvent chemotherapy resistance. We report herein that paniceins and especially panicein A hydroquinone, natural meroterpenoids produced by the Mediterranean sponge Haliclona (Soestella) mucosa, inhibit the doxorubicin efflux activity of Patched and enhance the cytotoxicity of this chemotherapeutic agent on melanoma cells in vitro. These results are supported by the molecular docking performed on the structure of the bacterial drug efflux pump AcrB and on the Patched model built from AcrB structure. Docking calculations show that panicein A hydroquinone interacts with AcrB and Patched model close to the doxorubicin binding site. This compound thus appears as the first antagonist of the doxorubicin efflux activity of Patched. The use of inhibitors of Patched drug efflux activity in combination with classical chemotherapy could represent a novel approach to reduce tumor drug resistance, recurrence and metastasis.
Collapse
Affiliation(s)
- Laura Fiorini
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis, CNRS, Valbonne, France
| | - Marie-Aude Tribalat
- Institut de Chimie de Nice, UMR 7272, Université Nice Sophia Antipolis, CNRS, Faculté des Sciences, Nice, France
| | - Lucy Sauvard
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis, CNRS, Valbonne, France.,Institut de Chimie de Nice, UMR 7272, Université Nice Sophia Antipolis, CNRS, Faculté des Sciences, Nice, France
| | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis, CNRS, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis, CNRS, Valbonne, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS - Faculte de Pharmacie, Paris, France
| | - Olivier P Thomas
- Institut de Chimie de Nice, UMR 7272, Université Nice Sophia Antipolis, CNRS, Faculté des Sciences, Nice, France.,Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263, CNRS, IRD, Université Aix-Marseille, Université Avignon, Station Marine d'Endoume, Marseille, France
| | - Isabelle Mus-Veteau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis, CNRS, Valbonne, France
| |
Collapse
|
234
|
Lin Z, Li S, Sheng H, Cai M, Ma LYS, Hu L, Xu S, Yu LS, Zhang N. Suppression of GLI sensitizes medulloblastoma cells to mitochondria-mediated apoptosis. J Cancer Res Clin Oncol 2016; 142:2469-2478. [PMID: 27601167 PMCID: PMC5095157 DOI: 10.1007/s00432-016-2241-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/29/2023]
Abstract
Purpose The sonic hedgehog (SHH) signalling pathway plays the important role in medulloblastoma (MB). Altered GLI expression plays a key role in these processes, and the inhibition of GLI may be a good cancer-targeted therapy. This study aimed to investigate whether GANT61, a GLI inhibitor, may inhibit the SHH signalling pathway promoting cell mitochondria-mediated apoptosis and enhance cisplatin apoptosis antineoplastic therapy. Methods In our study, we determined the effect of GANT61-mediated inhibition of GLI in Daoy MB cells. Cells were treated with different concentrations of GANT61 alone or in combination with cisplatin. Cell proliferation was assessed with CCK-8 assays, and cell invasion and migration were performed using 8-µm transwell inserts. Cell apoptosis was assessed with flow cytometric analysis and rhodamine 123. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Results The GANT61 significantly inhibited cell proliferation. GANT61 decreased the cell migration and invasion, impairing these crucial steps in tumour progression. Cell apoptosis was significantly increased in Daoy cells. Rhodamine 123 assay showed that GANT61 could decrease the mitochondrial membrane potential promoting cell mitochondria-mediated apoptosis. GANT61 inhibited the expression of GLI and Bcl-2 at both the mRNA and protein levels and might affect the expression of Bax, caspase-3 and caspase-9 to promote cell intrinsic apoptosis. Furthermore, GANT61 could enhance cisplatin-induced apoptosis to decrease the IC50 value of cisplatin. Finally, data suggest that GANT61 could enhance cisplatin-induced apoptosis through promoting the expression of Bax, caspase-3 and caspase-9 protein levels. Conclusion Our data suggest that the SHH signalling pathway plays an important role in MB. GLI is an oncogenic transcription factor in the SHH pathway, and targeting GLI with GANT61 results in favourable antitumour activity and targeted therapy.
Collapse
Affiliation(s)
- Zhongxiao Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Sisi Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Ming Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lin Yuan Si Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Liuxun Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shangyu Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Li Sheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
235
|
Dias RB, Valverde LDF, Sales CBS, Guimarães VSN, Cabral MG, de Aquino Xavier FC, dos Santos JN, Ramos EAG, Gurgel Rocha CA. Enhanced Expression of Hedgehog Pathway Proteins in Oral Epithelial Dysplasia. Appl Immunohistochem Mol Morphol 2016; 24:595-602. [DOI: 10.1097/pai.0000000000000225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
236
|
Dietz A, Loeffler M, Rosolowski M, Kreuz M, Lordick F, Knödler M, Mozet C, Wichmann G. [Gene expression analyses and their possible clinical benefit in head and neck cancer]. HNO 2016; 63:773-85. [PMID: 26471186 DOI: 10.1007/s00106-015-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systems biology approaches for mutational (exome analysis and targeted sequencing) and gene expression analysis (transcriptome-wide gene expression profiling) represent a new and growing scientific field in head and neck oncology. In addition to medical biological expertise, bioinformatic assistance is increasingly required. For squamous cell head and neck cancer (HNSCC), the recent molecular genetic single-gene and signal pathway observations represent basic research. Important aspects of this have now been significantly enhanced by systems biology approaches, which have grown into relevant areas of translational clinical research. It is now known that HPV16 is associated with genetic alterations at various locations, but also that it functionally affects genes not altered in their base sequence at the level of methylation. In transcriptome analyses, various consortia found matching clusters of gene expression and HPV16 association with the spectrum of somatic mutations. The differential methylation of gene promoters discovered in HPV16-driven HNSCC proved predictive for survival—even in HNSCC patients without HPV detection. The authors present an overview of some translationally relevant findings and venture an outlook on possible future clinical developments.
Collapse
Affiliation(s)
- A Dietz
- Hals-Nasen-Ohren-Universitätsklinik Leipzig, Leipzig, Deutschland
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Gan GN, Jimeno A. Emerging from their burrow: Hedgehog pathway inhibitors for cancer. Expert Opin Investig Drugs 2016; 25:1153-66. [DOI: 10.1080/13543784.2016.1216973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
238
|
Gerling M, Büller NVJA, Kirn LM, Joost S, Frings O, Englert B, Bergström Å, Kuiper RV, Blaas L, Wielenga MCB, Almer S, Kühl AA, Fredlund E, van den Brink GR, Toftgård R. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun 2016; 7:12321. [PMID: 27492255 PMCID: PMC4980446 DOI: 10.1038/ncomms12321] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/21/2016] [Indexed: 01/07/2023] Open
Abstract
A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppressor. The Hedgehog signalling pathway can drive tumorigenesis. Here, the authors show that in a colitis-associated colon cancer model downstream Hedgehog signalling is restricted to the stroma and its over-activation can inhibit tumorigenesis, associated with activation of BMP signaling.
Collapse
Affiliation(s)
- Marco Gerling
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Nikè V J A Büller
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 69-71, AZ1105 Amsterdam, The Netherlands
| | - Leonard M Kirn
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden.,Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Simon Joost
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Oliver Frings
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Benjamin Englert
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden.,Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Åsa Bergström
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Raoul V Kuiper
- Core Facility for Morphologic Phenotype Analysis, Clinical Research Center, Karolinska Institutet, Hälsovägen 7-9, 14183 Huddinge, Sweden
| | - Leander Blaas
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Mattheus C B Wielenga
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 69-71, AZ1105 Amsterdam, The Netherlands
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, 17176 Stockholm, Sweden.,Center for Digestive Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Erik Fredlund
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 69-71, AZ1105 Amsterdam, The Netherlands
| | - Rune Toftgård
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| |
Collapse
|
239
|
Mutations of the Sonic Hedgehog Pathway Underlie Hypothalamic Hamartoma with Gelastic Epilepsy. Am J Hum Genet 2016; 99:423-9. [PMID: 27453577 DOI: 10.1016/j.ajhg.2016.05.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes. Somatic mutations were identified in genes involving regulation of the sonic hedgehog (Shh) pathway in 14/38 individuals (37%). Three individuals had somatic mutations in PRKACA, which encodes a cAMP-dependent protein kinase that acts as a repressor protein in the Shh pathway, and four subjects had somatic mutations in GLI3, an Shh pathway gene associated with HH. In seven other individuals, we identified two recurrent and three single brain-tissue-specific, large copy-number or loss-of-heterozygosity (LOH) variants involving multiple Shh genes, as well as other genes without an obvious biological link to the Shh pathway. The Shh pathway genes in these large somatic lesions include the ligand itself (SHH and IHH), the receptor SMO, and several other Shh downstream pathway members, including CREBBP and GLI2. Taken together, our data implicate perturbation of the Shh pathway in at least 37% of individuals with the HH epilepsy syndrome, consistent with the concept of a developmental pathway brain disease.
Collapse
|
240
|
Brigui A, Hofmann L, Argüelles C, Sanial M, Holmgren RA, Plessis A. Control of the dynamics and homeostasis of the Drosophila Hedgehog receptor Patched by two C2-WW-HECT-E3 Ubiquitin ligases. Open Biol 2016; 5:rsob.150112. [PMID: 26446620 PMCID: PMC4632511 DOI: 10.1098/rsob.150112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The conserved Hedgehog (HH) signals control animal development, adult stem cell maintenance and oncogenesis. In Drosophila, the HH co-receptor Patched (PTC) controls both HH gradient formation and signalling. PTC is post-translationally downregulated by HH, which promotes its endocytosis and destabilization, but the mechanisms of PTC trafficking and its importance in the control of PTC remain to be understood. PTC interacts with E3 Ubiquitin (UB)-ligases of the C2-WW-HECT family; two of them—SMURF and NEDD4—are known to regulate its levels. We demonstrate that mutation of the PTC PY motif, which mediates binding of C2-WW-HECT family members, inhibits its internalization but not its autonomous and non-autonomous signalling activities. In addition, we show that the two related UB-C2-WW-HECT ligases NEDD4 and SU(DX) regulate PTC trafficking and finely tune its accumulation through partially redundant but distinct functions. While both NEDD4 and SU(DX) promote PTC endocytosis, only SU(DX) is able to induce its lysosomal targeting and degradation. In conclusion, PTC trafficking and homeostasis are tightly regulated by a family of UB-ligases.
Collapse
Affiliation(s)
- Amira Brigui
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Line Hofmann
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Camilla Argüelles
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Matthieu Sanial
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Robert A Holmgren
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| |
Collapse
|
241
|
Houot R, Soussain C, Tilly H, Haioun C, Thieblemont C, Casasnovas O, Bouabdallah K, Morschhauser F, Le Gouill S, Salles G, Hoang-Xuan K, Choquet S, Marchand T, Laurent C, Pangault C, Lamy T. Inhibition of Hedgehog signaling for the treatment of lymphoma and CLL: a phase II study from the LYSA. Ann Oncol 2016; 27:1349-50. [DOI: 10.1093/annonc/mdw138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
242
|
Abstract
Cytotoxic T lymphocytes (CTLs) kill virus-infected and tumour cells with remarkable specificity. Upon recognition, CTLs form a cytolytic immune synapse with their target cell, and marked reorganization of both the actin and the microtubule cytoskeletons brings the centrosome up to the plasma membrane to the point of T cell receptor signalling. Secretory granules move towards the centrosome and are delivered to this focal point of secretion. Such centrosomal docking at the plasma membrane also occurs during ciliogenesis; indeed, striking similarities exist between the cytolytic synapse and the primary cilium that throw light on the possible origins of immune synapses.
Collapse
Affiliation(s)
- Maike de la Roche
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- CRUK-Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
243
|
Wang Y, Li Y, Hu G, Huang X, Rao H, Xiong X, Luo Z, Lu Q, Luo S. Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cell Signal 2016; 28:1304-1313. [PMID: 27297360 DOI: 10.1016/j.cellsig.2016.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022]
Abstract
Suppressor of Fused (SuFu) plays a conservative role in the regulation of the Gli transcription factors within the Hedgehog (Hh) signaling pathway. Despite the central importance of SuFu in the Hh pathway, little is known about its regulation. Here, we performed a GAL4-based yeast two-hybrid screen using human SuFu as bait, and identified NIMA-related expressed kinase 2A (Nek2A) as a new SuFu-interacting protein, which was also confirmed by glutathione-S-transferase pull-down and co-immunoprecipitation assays. Intriguingly, Nek2A is found to stabilize SuFu at least partly depending on its kinase activity, thereby triggering phosphorylation of the SuFu protein. Moreover, the phosphorylated SuFu inhibits the nuclear localization and transcriptional activity of Gli2/Hh signaling. These findings reveal a new mechanism of mammalian SuFu regulation, and offers novel insights into Hh signaling regulation in development and human disease.
Collapse
Affiliation(s)
- Yao Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, China
| | - Yong Li
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Guanghui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, China
| | - Xuan Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hai Rao
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiangyang Xiong
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhijun Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Quqin Lu
- Department of Biostatistics & Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, China.
| |
Collapse
|
244
|
Demirci H, Worden F, Nelson CC, Elner VM, Kahana A. Efficacy of Vismodegib (Erivedge) for Basal Cell Carcinoma Involving the Orbit and Periocular Area. Ophthalmic Plast Reconstr Surg 2016; 31:463-6. [PMID: 25675162 DOI: 10.1097/iop.0000000000000388] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Evaluate the effectiveness of vismodegib in the management of basal cell carcinoma with orbital extension and/or extensive periocular involvement. METHODS Retrospective chart review of 6 consecutive patients with biopsy-proven orbital basal cell carcinoma and 2 additional patients with extensive periocular basal cell carcinoma who were treated with oral vismodegib (150 mg/day) was performed. RESULTS Basal cell carcinoma extended in the orbit in 6 of 8 patients (involving orbital bones in 1 patient), and 2 of 8 patients had extensive periocular involvement (1 with basal cell nevus syndrome). Vismodegib therapy was the only treatment in 6 patients, off-label neoadjuvant in 1 patient, and adjuvant treatment in 1 patient. Orbital tumors in all 4 patients who received vismodegib as sole treatment showed partial response with a mean 83% shrinkage in tumor size after a median of 7 months of therapy. In the 2 patients receiving vismodegib as neoadjuvant or adjuvant therapies, there was complete response after a median of 7 months of therapy and no evidence of clinical recurrence after discontinuing therapy for a median of 15 months. The 2 patients with extensive periocular involvement experienced complete clinical response after a median 14 months of treatment. During treatment, the most common side effects were muscle spasm (75%) followed by alopecia (50%), dysgeusia (25%), dysosmia, and episodes of diarrhea and constipation (13%). CONCLUSIONS Basal cell carcinoma with orbital extension and extensive periocular involvement responds to vismodegib therapy. The long-term prognosis remains unknown, and additional prospective studies are indicated.
Collapse
Affiliation(s)
- Hakan Demirci
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, U.S.A
| | | | | | | | | |
Collapse
|
245
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
246
|
Lorberbaum DS, Ramos AI, Peterson KA, Carpenter BS, Parker DS, De S, Hillers LE, Blake VM, Nishi Y, McFarlane MR, Chiang AC, Kassis JA, Allen BL, McMahon AP, Barolo S. An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1. eLife 2016; 5. [PMID: 27146892 PMCID: PMC4887206 DOI: 10.7554/elife.13550] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/03/2016] [Indexed: 12/24/2022] Open
Abstract
The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure—one of the oldest cis-regulatory features discovered in animal genomes—explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways. DOI:http://dx.doi.org/10.7554/eLife.13550.001
Collapse
Affiliation(s)
- David S Lorberbaum
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Program in Cellular and Molecular Biology, University Of Michigan Medical School, Ann Arbor, United States
| | - Andrea I Ramos
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Program in Cellular and Molecular Biology, University Of Michigan Medical School, Ann Arbor, United States
| | - Kevin A Peterson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,The Jackson Laboratory, Bar Harbor, United States
| | - Brandon S Carpenter
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - David S Parker
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Sandip De
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Lauren E Hillers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Victoria M Blake
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yuichi Nishi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Matthew R McFarlane
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Ason Cy Chiang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Judith A Kassis
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Andrew P McMahon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Scott Barolo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
247
|
Mehmood K, Akhtar D, Mackedenski S, Wang C, Lee CH. Inhibition of GLI1 Expression by Targeting the CRD-BP-GLI1 mRNA Interaction Using a Specific Oligonucleotide. Mol Pharmacol 2016; 89:606-17. [PMID: 27036131 DOI: 10.1124/mol.115.102434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
Abstract
The stabilization of glioma-associated oncogene 1 (GLI1) mRNA by coding region determinant binding protein (CRD-BP) through the Wnt/β-catenin signaling pathway is implicated in the proliferation of colorectal cancer and basal cell carcinoma. Here, we set out to characterize the physical interaction between CRD-BP and GLI1 mRNA so as to find inhibitors for such interaction. Studies using CRD-BP variants with a point mutation in the GXXG motif at each KH domain showed that KH1 and KH2 domain are critical for the binding of GLI1 RNA. The smallest region of GLI1 RNA binding to CRD-BP was mapped to nucleotides (nts) 320-380. A 37-nt S1 RNA sense oligonucleotide, containing two distinct stem-loops present in nts 320-380 of GLI1 RNA, was found to be effective in blocking CRD-BP-GLI1 RNA interaction. Studies using various competitor RNAs with modifications to S1 RNA oligonucleotide further displayed that both the sequences and the structure of the two stem-loops are important for CRD-BP-GLI1 RNA binding. The role of the two-stem-loop motif in influencing CRD-BP-RNA interaction was further investigated in cells. The 2'-O-methyl derivative of the S1 RNA oligonucleotide significantly decreased GLI1, c-myc, and CD44 mRNA levels, in a panel of colon and breast cancer cells. The results from this study demonstrate the potential importance of the two-stem-loop motif as a target region for the inhibition of the CRD-BP-GLI1 RNA interaction and Hedgehog signaling pathway. Such results pave the way for the development of novel inhibitors that act by destabilizing the CRD-BP-GLI1 mRNA interaction.
Collapse
Affiliation(s)
- Kashif Mehmood
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daud Akhtar
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sebastian Mackedenski
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Chuyi Wang
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Chow H Lee
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
248
|
Shi Y, Gao S. Recent advances of synthesis of fluorenone and fluorene containing natural products. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
249
|
Abstract
Long noncoding RNAs (lncRNAs) are dysregulated in many cancer types and are believed to play crucial roles in regulating several hallmarks of cancer biology. Currently, most studies support the concept that lncRNAs are involved in either transcriptional or post-transcriptional processes via binding/targeting epigenetic modifiers or hRNP complexes. The discovery of new biological functions of lncRNA and novel RNA binding proteins suggests that lncRNAs may be implicated in a broad spectrum of biological processes such as signal transduction, allosteric regulation of cytoplasmic enzymatic activities, among other potential processes. In a recent report that we have made, based on open-ended lncRNA pulldown technology and a series of systematic analyses, we suggest that lncRNAs also play critical roles in the regulation of noncanonical Hedgehog/GLI 2 signal transduction pathways in cancer cells, which further broadens the scope of known lncRNA functions and aids in the discovery and design of more effective and evidence-based therapeutic targets for the treatment of human cancers and other diseases.
Collapse
Affiliation(s)
- Zhen Xing
- a Department of Molecular and Cellular Oncology; MD Anderson Cancer Center; The University of Texas ; Houston , TX , USA
| | | | | | | |
Collapse
|
250
|
Liu Y, An S, Ward R, Yang Y, Guo XX, Li W, Xu TR. G protein-coupled receptors as promising cancer targets. Cancer Lett 2016; 376:226-39. [PMID: 27000991 DOI: 10.1016/j.canlet.2016.03.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wei Li
- Kidney Cancer Research, Diagnosis and Translational Technology Center of Yunnan Province, Department of Urology, The People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|